Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(197)

Side by Side Diff: skia/sgl/SkGeometry.h

Issue 113827: Remove the remainder of the skia source code from the Chromium repo.... (Closed) Base URL: svn://chrome-svn/chrome/trunk/src/
Patch Set: Created 11 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « skia/sgl/SkFlattenable.cpp ('k') | skia/sgl/SkGeometry.cpp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /* libs/graphics/sgl/SkGeometry.h
2 **
3 ** Copyright 2006, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18 #ifndef SkGeometry_DEFINED
19 #define SkGeometry_DEFINED
20
21 #include "SkMatrix.h"
22
23 /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
24 equation.
25 */
26 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
27
28 ///////////////////////////////////////////////////////////////////////////////
29
30 /** Set pt to the point on the src quadratic specified by t. t must be
31 0 <= t <= 1.0
32 */
33 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tange nt = NULL);
34 void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NUL L);
35
36 /** Given a src quadratic bezier, chop it at the specified t value,
37 where 0 < t < 1, and return the two new quadratics in dst:
38 dst[0..2] and dst[2..4]
39 */
40 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
41
42 /** Given a src quadratic bezier, chop it at the specified t == 1/2,
43 The new quads are returned in dst[0..2] and dst[2..4]
44 */
45 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
46
47 /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
48 for extrema, and return the number of t-values that are found that represent
49 these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
50 function returns 0.
51 Returned count tValues[]
52 0 ignored
53 1 0 < tValues[0] < 1
54 */
55 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
56
57 /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
58 the resulting beziers are monotonic in Y. This is called by the scan convert er.
59 Depending on what is returned, dst[] is treated as follows
60 1 dst[0..2] is the original quad
61 2 dst[0..2] and dst[2..4] are the two new quads
62 If dst == null, it is ignored and only the count is returned.
63 */
64 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
65
66 /** Given 3 points on a quadratic bezier, divide it into 2 quadratics
67 if the point of maximum curvature exists on the quad segment.
68 Depending on what is returned, dst[] is treated as follows
69 1 dst[0..2] is the original quad
70 2 dst[0..2] and dst[2..4] are the two new quads
71 If dst == null, it is ignored and only the count is returned.
72 */
73 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
74
75 //////////////////////////////////////////////////////////////////////////////// ////////
76
77 /** Convert from parametric from (pts) to polynomial coefficients
78 coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
79 */
80 void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
81
82 /** Set pt to the point on the src cubic specified by t. t must be
83 0 <= t <= 1.0
84 */
85 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVecto r* tangentOrNull, SkVector* curvatureOrNull);
86
87 /** Given a src cubic bezier, chop it at the specified t value,
88 where 0 < t < 1, and return the two new cubics in dst:
89 dst[0..3] and dst[3..6]
90 */
91 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
92 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count);
93
94 /** Given a src cubic bezier, chop it at the specified t == 1/2,
95 The new cubics are returned in dst[0..3] and dst[3..6]
96 */
97 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
98
99 /** Given the 4 coefficients for a cubic bezier (either X or Y values), look
100 for extrema, and return the number of t-values that are found that represent
101 these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
102 function returns 0.
103 Returned count tValues[]
104 0 ignored
105 1 0 < tValues[0] < 1
106 2 0 < tValues[0] < tValues[1] < 1
107 */
108 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]);
109
110 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
111 the resulting beziers are monotonic in Y. This is called by the scan convert er.
112 Depending on what is returned, dst[] is treated as follows
113 1 dst[0..3] is the original cubic
114 2 dst[0..3] and dst[3..6] are the two new cubics
115 3 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
116 If dst == null, it is ignored and only the count is returned.
117 */
118 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
119
120 /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
121 inflection points.
122 */
123 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
124
125 /** Return 1 for no chop, or 2 for having chopped the cubic at its
126 inflection point.
127 */
128 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
129
130 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
131 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tV alues[3] = NULL);
132
133 //////////////////////////////////////////////////////////////////////////////// ///////////
134
135 enum SkRotationDirection {
136 kCW_SkRotationDirection,
137 kCCW_SkRotationDirection
138 };
139
140 /** Maximum number of points needed in the quadPoints[] parameter for
141 SkBuildQuadArc()
142 */
143 #define kSkBuildQuadArcStorage 17
144
145 /** Given 2 unit vectors and a rotation direction, fill out the specified
146 array of points with quadratic segments. Return is the number of points
147 written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
148
149 matrix, if not null, is appled to the points before they are returned.
150 */
151 int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotati onDirection,
152 const SkMatrix* matrix, SkPoint quadPoints[]);
153
154 //////////////////////////////////////////////////////////////////////////////
155
156 #ifdef SK_DEBUG
157 class SkGeometry {
158 public:
159 static void UnitTest();
160 };
161 #endif
162
163 #endif
OLDNEW
« no previous file with comments | « skia/sgl/SkFlattenable.cpp ('k') | skia/sgl/SkGeometry.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698