OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (C) 2006-2008 The Android Open Source Project | |
3 * | |
4 * Licensed under the Apache License, Version 2.0 (the "License"); | |
5 * you may not use this file except in compliance with the License. | |
6 * You may obtain a copy of the License at | |
7 * | |
8 * http://www.apache.org/licenses/LICENSE-2.0 | |
9 * | |
10 * Unless required by applicable law or agreed to in writing, software | |
11 * distributed under the License is distributed on an "AS IS" BASIS, | |
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
13 * See the License for the specific language governing permissions and | |
14 * limitations under the License. | |
15 */ | |
16 | |
17 #include "SkInterpolator.h" | |
18 #include "SkMath.h" | |
19 #include "SkTSearch.h" | |
20 | |
21 SkInterpolatorBase::SkInterpolatorBase() { | |
22 fStorage = NULL; | |
23 fTimes = NULL; | |
24 SkDEBUGCODE(fTimesArray = NULL;) | |
25 } | |
26 | |
27 SkInterpolatorBase::~SkInterpolatorBase() { | |
28 if (fStorage) { | |
29 sk_free(fStorage); | |
30 } | |
31 } | |
32 | |
33 void SkInterpolatorBase::reset(int elemCount, int frameCount) { | |
34 fFlags = 0; | |
35 fElemCount = SkToU8(elemCount); | |
36 fFrameCount = SkToS16(frameCount); | |
37 fRepeat = SK_Scalar1; | |
38 if (fStorage) { | |
39 sk_free(fStorage); | |
40 fStorage = NULL; | |
41 fTimes = NULL; | |
42 SkDEBUGCODE(fTimesArray = NULL); | |
43 } | |
44 } | |
45 | |
46 /* Each value[] run is formated as: | |
47 <time (in msec)> | |
48 <blend> | |
49 <data[fElemCount]> | |
50 | |
51 Totaling fElemCount+2 entries per keyframe | |
52 */ | |
53 | |
54 bool SkInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const { | |
55 if (fFrameCount == 0) { | |
56 return false; | |
57 } | |
58 | |
59 if (startTime) { | |
60 *startTime = fTimes[0].fTime; | |
61 } | |
62 if (endTime) { | |
63 *endTime = fTimes[fFrameCount - 1].fTime; | |
64 } | |
65 return true; | |
66 } | |
67 | |
68 SkScalar SkInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime, | |
69 SkMSec nextTime, const SkScalar blend[4]) { | |
70 SkASSERT(time > prevTime && time < nextTime); | |
71 | |
72 SkScalar t = SkScalarDiv((SkScalar)(time - prevTime), | |
73 (SkScalar)(nextTime - prevTime)); | |
74 return blend ? | |
75 SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t; | |
76 } | |
77 | |
78 SkInterpolatorBase::Result SkInterpolatorBase::timeToT(SkMSec time, SkScalar* T, | |
79 int* indexPtr, SkBool* exactPtr) const { | |
80 SkASSERT(fFrameCount > 0); | |
81 Result result = kNormal_Result; | |
82 if (fRepeat != SK_Scalar1) { | |
83 SkMSec startTime = 0, endTime = 0; | |
84 this->getDuration(&startTime, &endTime); | |
85 SkMSec totalTime = endTime - startTime; | |
86 SkMSec offsetTime = time - startTime; | |
87 endTime = SkScalarMulFloor(fRepeat, totalTime); | |
88 if (offsetTime >= endTime) { | |
89 SkScalar fraction = SkScalarFraction(fRepeat); | |
90 offsetTime = fraction == 0 && fRepeat > 0 ? totalTime : | |
91 SkScalarMulFloor(fraction, totalTime); | |
92 result = kFreezeEnd_Result; | |
93 } else { | |
94 int mirror = fFlags & kMirror; | |
95 offsetTime = offsetTime % (totalTime << mirror); | |
96 if (offsetTime > totalTime) { // can only be true if fMirror is true | |
97 offsetTime = (totalTime << 1) - offsetTime; | |
98 } | |
99 } | |
100 time = offsetTime + startTime; | |
101 } | |
102 | |
103 int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time, | |
104 sizeof(SkTimeCode)); | |
105 | |
106 bool exact = true; | |
107 | |
108 if (index < 0) { | |
109 index = ~index; | |
110 if (index == 0) { | |
111 result = kFreezeStart_Result; | |
112 } else if (index == fFrameCount) { | |
113 if (fFlags & kReset) { | |
114 index = 0; | |
115 } else { | |
116 index -= 1; | |
117 } | |
118 result = kFreezeEnd_Result; | |
119 } else { | |
120 exact = false; | |
121 } | |
122 } | |
123 SkASSERT(index < fFrameCount); | |
124 const SkTimeCode* nextTime = &fTimes[index]; | |
125 SkMSec nextT = nextTime[0].fTime; | |
126 if (exact) { | |
127 *T = 0; | |
128 } else { | |
129 SkMSec prevT = nextTime[-1].fTime; | |
130 *T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend); | |
131 } | |
132 *indexPtr = index; | |
133 *exactPtr = exact; | |
134 return result; | |
135 } | |
136 | |
137 | |
138 SkInterpolator::SkInterpolator() { | |
139 INHERITED::reset(0, 0); | |
140 fValues = NULL; | |
141 SkDEBUGCODE(fScalarsArray = NULL;) | |
142 } | |
143 | |
144 SkInterpolator::SkInterpolator(int elemCount, int frameCount) { | |
145 SkASSERT(elemCount > 0); | |
146 this->reset(elemCount, frameCount); | |
147 } | |
148 | |
149 void SkInterpolator::reset(int elemCount, int frameCount) { | |
150 INHERITED::reset(elemCount, frameCount); | |
151 fStorage = sk_malloc_throw((sizeof(SkScalar) * elemCount + | |
152 sizeof(SkTimeCode)) * frameCount); | |
153 fTimes = (SkTimeCode*) fStorage; | |
154 fValues = (SkScalar*) ((char*) fStorage + sizeof(SkTimeCode) * frameCount); | |
155 #ifdef SK_DEBUG | |
156 fTimesArray = (SkTimeCode(*)[10]) fTimes; | |
157 fScalarsArray = (SkScalar(*)[10]) fValues; | |
158 #endif | |
159 } | |
160 | |
161 #define SK_Fixed1Third (SK_Fixed1/3) | |
162 #define SK_Fixed2Third (SK_Fixed1*2/3) | |
163 | |
164 static const SkScalar gIdentityBlend[4] = { | |
165 #ifdef SK_SCALAR_IS_FLOAT | |
166 0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f | |
167 #else | |
168 SK_Fixed1Third, SK_Fixed1Third, SK_Fixed2Third, SK_Fixed2Third | |
169 #endif | |
170 }; | |
171 | |
172 bool SkInterpolator::setKeyFrame(int index, SkMSec time, | |
173 const SkScalar values[], const SkScalar blend[4]) { | |
174 SkASSERT(values != NULL); | |
175 | |
176 if (blend == NULL) { | |
177 blend = gIdentityBlend; | |
178 } | |
179 | |
180 bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time, | |
181 sizeof(SkTimeCode)); | |
182 SkASSERT(success); | |
183 if (success) { | |
184 SkTimeCode* timeCode = &fTimes[index]; | |
185 timeCode->fTime = time; | |
186 memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend)); | |
187 SkScalar* dst = &fValues[fElemCount * index]; | |
188 memcpy(dst, values, fElemCount * sizeof(SkScalar)); | |
189 } | |
190 return success; | |
191 } | |
192 | |
193 SkInterpolator::Result SkInterpolator::timeToValues(SkMSec time, | |
194 SkScalar values[]) const { | |
195 SkScalar T; | |
196 int index; | |
197 SkBool exact; | |
198 Result result = timeToT(time, &T, &index, &exact); | |
199 if (values) { | |
200 const SkScalar* nextSrc = &fValues[index * fElemCount]; | |
201 | |
202 if (exact) { | |
203 memcpy(values, nextSrc, fElemCount * sizeof(SkScalar)); | |
204 } else { | |
205 SkASSERT(index > 0); | |
206 | |
207 const SkScalar* prevSrc = nextSrc - fElemCount; | |
208 | |
209 for (int i = fElemCount - 1; i >= 0; --i) { | |
210 values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T); | |
211 } | |
212 } | |
213 } | |
214 return result; | |
215 } | |
216 | |
217 /////////////////////////////////////////////////////////////////////////////// | |
218 | |
219 typedef int Dot14; | |
220 #define Dot14_ONE (1 << 14) | |
221 #define Dot14_HALF (1 << 13) | |
222 | |
223 #define Dot14ToFloat(x) ((x) / 16384.f) | |
224 | |
225 static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) { | |
226 return (a * b + Dot14_HALF) >> 14; | |
227 } | |
228 | |
229 static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) { | |
230 return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t); | |
231 } | |
232 | |
233 static inline Dot14 pin_and_convert(SkScalar x) { | |
234 if (x <= 0) { | |
235 return 0; | |
236 } | |
237 if (x >= SK_Scalar1) { | |
238 return Dot14_ONE; | |
239 } | |
240 return SkScalarToFixed(x) >> 2; | |
241 } | |
242 | |
243 SkScalar SkUnitCubicInterp(SkScalar value, SkScalar bx, SkScalar by, | |
244 SkScalar cx, SkScalar cy) { | |
245 // pin to the unit-square, and convert to 2.14 | |
246 Dot14 x = pin_and_convert(value); | |
247 | |
248 if (x == 0) return 0; | |
249 if (x == Dot14_ONE) return SK_Scalar1; | |
250 | |
251 Dot14 b = pin_and_convert(bx); | |
252 Dot14 c = pin_and_convert(cx); | |
253 | |
254 // Now compute our coefficients from the control points | |
255 // t -> 3b | |
256 // t^2 -> 3c - 6b | |
257 // t^3 -> 3b - 3c + 1 | |
258 Dot14 A = 3*b; | |
259 Dot14 B = 3*(c - 2*b); | |
260 Dot14 C = 3*(b - c) + Dot14_ONE; | |
261 | |
262 // Now search for a t value given x | |
263 Dot14 t = Dot14_HALF; | |
264 Dot14 dt = Dot14_HALF; | |
265 for (int i = 0; i < 13; i++) { | |
266 dt >>= 1; | |
267 Dot14 guess = eval_cubic(t, A, B, C); | |
268 if (x < guess) { | |
269 t -= dt; | |
270 } else { | |
271 t += dt; | |
272 } | |
273 } | |
274 | |
275 // Now we have t, so compute the coeff for Y and evaluate | |
276 b = pin_and_convert(by); | |
277 c = pin_and_convert(cy); | |
278 A = 3*b; | |
279 B = 3*(c - 2*b); | |
280 C = 3*(b - c) + Dot14_ONE; | |
281 return SkFixedToScalar(eval_cubic(t, A, B, C) << 2); | |
282 } | |
283 | |
284 /////////////////////////////////////////////////////////////////////////////// | |
285 /////////////////////////////////////////////////////////////////////////////// | |
286 | |
287 #ifdef SK_DEBUG | |
288 | |
289 #ifdef SK_SUPPORT_UNITTEST | |
290 static SkScalar* iset(SkScalar array[3], int a, int b, int c) { | |
291 array[0] = SkIntToScalar(a); | |
292 array[1] = SkIntToScalar(b); | |
293 array[2] = SkIntToScalar(c); | |
294 return array; | |
295 } | |
296 #endif | |
297 | |
298 void SkInterpolator::UnitTest() { | |
299 #ifdef SK_SUPPORT_UNITTEST | |
300 SkInterpolator inter(3, 2); | |
301 SkScalar v1[3], v2[3], v[3], vv[3]; | |
302 Result result; | |
303 | |
304 inter.setKeyFrame(0, 100, iset(v1, 10, 20, 30), 0); | |
305 inter.setKeyFrame(1, 200, iset(v2, 110, 220, 330)); | |
306 | |
307 result = inter.timeToValues(0, v); | |
308 SkASSERT(result == kFreezeStart_Result); | |
309 SkASSERT(memcmp(v, v1, sizeof(v)) == 0); | |
310 | |
311 result = inter.timeToValues(99, v); | |
312 SkASSERT(result == kFreezeStart_Result); | |
313 SkASSERT(memcmp(v, v1, sizeof(v)) == 0); | |
314 | |
315 result = inter.timeToValues(100, v); | |
316 SkASSERT(result == kNormal_Result); | |
317 SkASSERT(memcmp(v, v1, sizeof(v)) == 0); | |
318 | |
319 result = inter.timeToValues(200, v); | |
320 SkASSERT(result == kNormal_Result); | |
321 SkASSERT(memcmp(v, v2, sizeof(v)) == 0); | |
322 | |
323 result = inter.timeToValues(201, v); | |
324 SkASSERT(result == kFreezeEnd_Result); | |
325 SkASSERT(memcmp(v, v2, sizeof(v)) == 0); | |
326 | |
327 result = inter.timeToValues(150, v); | |
328 SkASSERT(result == kNormal_Result); | |
329 SkASSERT(memcmp(v, iset(vv, 60, 120, 180), sizeof(v)) == 0); | |
330 | |
331 result = inter.timeToValues(125, v); | |
332 SkASSERT(result == kNormal_Result); | |
333 result = inter.timeToValues(175, v); | |
334 SkASSERT(result == kNormal_Result); | |
335 #endif | |
336 } | |
337 | |
338 #endif | |
339 | |
OLD | NEW |