| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2009 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #ifndef BASE_LINKED_LIST_H_ | |
| 6 #define BASE_LINKED_LIST_H_ | |
| 7 | |
| 8 // Simple LinkedList type. (See the Q&A section to understand how this | |
| 9 // differs from std::list). | |
| 10 // | |
| 11 // To use, start by declaring the class which will be contained in the linked | |
| 12 // list, as extending LinkNode (this gives it next/previous pointers). | |
| 13 // | |
| 14 // class MyNodeType : public LinkNode<MyNodeType> { | |
| 15 // ... | |
| 16 // }; | |
| 17 // | |
| 18 // Next, to keep track of the list's head/tail, use a LinkedList instance: | |
| 19 // | |
| 20 // LinkedList<MyNodeType> list; | |
| 21 // | |
| 22 // To add elements to the list, use any of LinkedList::Append, | |
| 23 // LinkNode::InsertBefore, or LinkNode::InsertAfter: | |
| 24 // | |
| 25 // LinkNode<MyNodeType>* n1 = ...; | |
| 26 // LinkNode<MyNodeType>* n2 = ...; | |
| 27 // LinkNode<MyNodeType>* n3 = ...; | |
| 28 // | |
| 29 // list.Append(n1); | |
| 30 // list.Append(n3); | |
| 31 // n3->InsertBefore(n3); | |
| 32 // | |
| 33 // Lastly, to iterate through the linked list forwards: | |
| 34 // | |
| 35 // for (LinkNode<MyNodeType>* node = list.head(); | |
| 36 // node != list.end(); | |
| 37 // node = node->next()) { | |
| 38 // MyNodeType* value = node->value(); | |
| 39 // ... | |
| 40 // } | |
| 41 // | |
| 42 // Or to iterate the linked list backwards: | |
| 43 // | |
| 44 // for (LinkNode<MyNodeType>* node = list.tail(); | |
| 45 // node != list.end(); | |
| 46 // node = node->previous()) { | |
| 47 // MyNodeType* value = node->value(); | |
| 48 // ... | |
| 49 // } | |
| 50 // | |
| 51 // Questions and Answers: | |
| 52 // | |
| 53 // Q. Should I use std::list or base::LinkedList? | |
| 54 // | |
| 55 // A. The main reason to use base::LinkedList over std::list is | |
| 56 // performance. If you don't care about the performance differences | |
| 57 // then use an STL container, as it makes for better code readability. | |
| 58 // | |
| 59 // Comparing the performance of base::LinkedList<T> to std::list<T*>: | |
| 60 // | |
| 61 // * Erasing an element of type T* from base::LinkedList<T> is | |
| 62 // an O(1) operation. Whereas for std::list<T*> it is O(n). | |
| 63 // That is because with std::list<T*> you must obtain an | |
| 64 // iterator to the T* element before you can call erase(iterator). | |
| 65 // | |
| 66 // * Insertion operations with base::LinkedList<T> never require | |
| 67 // heap allocations. | |
| 68 // | |
| 69 // Q. How does base::LinkedList implementation differ from std::list? | |
| 70 // | |
| 71 // A. Doubly-linked lists are made up of nodes that contain "next" and | |
| 72 // "previous" pointers that reference other nodes in the list. | |
| 73 // | |
| 74 // With base::LinkedList<T>, the type being inserted already reserves | |
| 75 // space for the "next" and "previous" pointers (base::LinkNode<T>*). | |
| 76 // Whereas with std::list<T> the type can be anything, so the implementation | |
| 77 // needs to glue on the "next" and "previous" pointers using | |
| 78 // some internal node type. | |
| 79 | |
| 80 namespace base { | |
| 81 | |
| 82 template <typename T> | |
| 83 class LinkNode { | |
| 84 public: | |
| 85 LinkNode() : previous_(0), next_(0) {} | |
| 86 LinkNode(LinkNode<T>* previous, LinkNode<T>* next) | |
| 87 : previous_(previous), next_(next) {} | |
| 88 | |
| 89 // Insert |this| into the linked list, before |e|. | |
| 90 void InsertBefore(LinkNode<T>* e) { | |
| 91 this->next_ = e; | |
| 92 this->previous_ = e->previous_; | |
| 93 e->previous_->next_ = this; | |
| 94 e->previous_ = this; | |
| 95 } | |
| 96 | |
| 97 // Insert |this| into the linked list, after |e|. | |
| 98 void InsertAfter(LinkNode<T>* e) { | |
| 99 this->next_ = e->next_; | |
| 100 this->previous_ = e; | |
| 101 e->next_->previous_ = this; | |
| 102 e->next_ = this; | |
| 103 } | |
| 104 | |
| 105 // Remove |this| from the linked list. | |
| 106 void RemoveFromList() { | |
| 107 this->previous_->next_ = this->next_; | |
| 108 this->next_->previous_ = this->previous_; | |
| 109 } | |
| 110 | |
| 111 LinkNode<T>* previous() const { | |
| 112 return previous_; | |
| 113 } | |
| 114 | |
| 115 LinkNode<T>* next() const { | |
| 116 return next_; | |
| 117 } | |
| 118 | |
| 119 // Cast from the node-type to the value type. | |
| 120 const T* value() const { | |
| 121 return static_cast<const T*>(this); | |
| 122 } | |
| 123 | |
| 124 T* value() { | |
| 125 return static_cast<T*>(this); | |
| 126 } | |
| 127 | |
| 128 private: | |
| 129 LinkNode<T>* previous_; | |
| 130 LinkNode<T>* next_; | |
| 131 }; | |
| 132 | |
| 133 template <typename T> | |
| 134 class LinkedList { | |
| 135 public: | |
| 136 // The "root" node is self-referential, and forms the basis of a circular | |
| 137 // list (root_.next() will point back to the start of the list, | |
| 138 // and root_->previous() wraps around to the end of the list). | |
| 139 LinkedList() : root_(&root_, &root_) {} | |
| 140 | |
| 141 // Appends |e| to the end of the linked list. | |
| 142 void Append(LinkNode<T>* e) { | |
| 143 e->InsertBefore(&root_); | |
| 144 } | |
| 145 | |
| 146 LinkNode<T>* head() const { | |
| 147 return root_.next(); | |
| 148 } | |
| 149 | |
| 150 LinkNode<T>* tail() const { | |
| 151 return root_.previous(); | |
| 152 } | |
| 153 | |
| 154 const LinkNode<T>* end() const { | |
| 155 return &root_; | |
| 156 } | |
| 157 | |
| 158 private: | |
| 159 LinkNode<T> root_; | |
| 160 }; | |
| 161 | |
| 162 } // namespace base | |
| 163 | |
| 164 #endif // BASE_LINKED_LIST_H_ | |
| OLD | NEW |