OLD | NEW |
| (Empty) |
1 // Copyright (c) 2009 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #ifndef BASE_LINKED_LIST_H_ | |
6 #define BASE_LINKED_LIST_H_ | |
7 | |
8 // Simple LinkedList type. (See the Q&A section to understand how this | |
9 // differs from std::list). | |
10 // | |
11 // To use, start by declaring the class which will be contained in the linked | |
12 // list, as extending LinkNode (this gives it next/previous pointers). | |
13 // | |
14 // class MyNodeType : public LinkNode<MyNodeType> { | |
15 // ... | |
16 // }; | |
17 // | |
18 // Next, to keep track of the list's head/tail, use a LinkedList instance: | |
19 // | |
20 // LinkedList<MyNodeType> list; | |
21 // | |
22 // To add elements to the list, use any of LinkedList::Append, | |
23 // LinkNode::InsertBefore, or LinkNode::InsertAfter: | |
24 // | |
25 // LinkNode<MyNodeType>* n1 = ...; | |
26 // LinkNode<MyNodeType>* n2 = ...; | |
27 // LinkNode<MyNodeType>* n3 = ...; | |
28 // | |
29 // list.Append(n1); | |
30 // list.Append(n3); | |
31 // n3->InsertBefore(n3); | |
32 // | |
33 // Lastly, to iterate through the linked list forwards: | |
34 // | |
35 // for (LinkNode<MyNodeType>* node = list.head(); | |
36 // node != list.end(); | |
37 // node = node->next()) { | |
38 // MyNodeType* value = node->value(); | |
39 // ... | |
40 // } | |
41 // | |
42 // Or to iterate the linked list backwards: | |
43 // | |
44 // for (LinkNode<MyNodeType>* node = list.tail(); | |
45 // node != list.end(); | |
46 // node = node->previous()) { | |
47 // MyNodeType* value = node->value(); | |
48 // ... | |
49 // } | |
50 // | |
51 // Questions and Answers: | |
52 // | |
53 // Q. Should I use std::list or base::LinkedList? | |
54 // | |
55 // A. The main reason to use base::LinkedList over std::list is | |
56 // performance. If you don't care about the performance differences | |
57 // then use an STL container, as it makes for better code readability. | |
58 // | |
59 // Comparing the performance of base::LinkedList<T> to std::list<T*>: | |
60 // | |
61 // * Erasing an element of type T* from base::LinkedList<T> is | |
62 // an O(1) operation. Whereas for std::list<T*> it is O(n). | |
63 // That is because with std::list<T*> you must obtain an | |
64 // iterator to the T* element before you can call erase(iterator). | |
65 // | |
66 // * Insertion operations with base::LinkedList<T> never require | |
67 // heap allocations. | |
68 // | |
69 // Q. How does base::LinkedList implementation differ from std::list? | |
70 // | |
71 // A. Doubly-linked lists are made up of nodes that contain "next" and | |
72 // "previous" pointers that reference other nodes in the list. | |
73 // | |
74 // With base::LinkedList<T>, the type being inserted already reserves | |
75 // space for the "next" and "previous" pointers (base::LinkNode<T>*). | |
76 // Whereas with std::list<T> the type can be anything, so the implementation | |
77 // needs to glue on the "next" and "previous" pointers using | |
78 // some internal node type. | |
79 | |
80 namespace base { | |
81 | |
82 template <typename T> | |
83 class LinkNode { | |
84 public: | |
85 LinkNode() : previous_(0), next_(0) {} | |
86 LinkNode(LinkNode<T>* previous, LinkNode<T>* next) | |
87 : previous_(previous), next_(next) {} | |
88 | |
89 // Insert |this| into the linked list, before |e|. | |
90 void InsertBefore(LinkNode<T>* e) { | |
91 this->next_ = e; | |
92 this->previous_ = e->previous_; | |
93 e->previous_->next_ = this; | |
94 e->previous_ = this; | |
95 } | |
96 | |
97 // Insert |this| into the linked list, after |e|. | |
98 void InsertAfter(LinkNode<T>* e) { | |
99 this->next_ = e->next_; | |
100 this->previous_ = e; | |
101 e->next_->previous_ = this; | |
102 e->next_ = this; | |
103 } | |
104 | |
105 // Remove |this| from the linked list. | |
106 void RemoveFromList() { | |
107 this->previous_->next_ = this->next_; | |
108 this->next_->previous_ = this->previous_; | |
109 } | |
110 | |
111 LinkNode<T>* previous() const { | |
112 return previous_; | |
113 } | |
114 | |
115 LinkNode<T>* next() const { | |
116 return next_; | |
117 } | |
118 | |
119 // Cast from the node-type to the value type. | |
120 const T* value() const { | |
121 return static_cast<const T*>(this); | |
122 } | |
123 | |
124 T* value() { | |
125 return static_cast<T*>(this); | |
126 } | |
127 | |
128 private: | |
129 LinkNode<T>* previous_; | |
130 LinkNode<T>* next_; | |
131 }; | |
132 | |
133 template <typename T> | |
134 class LinkedList { | |
135 public: | |
136 // The "root" node is self-referential, and forms the basis of a circular | |
137 // list (root_.next() will point back to the start of the list, | |
138 // and root_->previous() wraps around to the end of the list). | |
139 LinkedList() : root_(&root_, &root_) {} | |
140 | |
141 // Appends |e| to the end of the linked list. | |
142 void Append(LinkNode<T>* e) { | |
143 e->InsertBefore(&root_); | |
144 } | |
145 | |
146 LinkNode<T>* head() const { | |
147 return root_.next(); | |
148 } | |
149 | |
150 LinkNode<T>* tail() const { | |
151 return root_.previous(); | |
152 } | |
153 | |
154 const LinkNode<T>* end() const { | |
155 return &root_; | |
156 } | |
157 | |
158 private: | |
159 LinkNode<T> root_; | |
160 }; | |
161 | |
162 } // namespace base | |
163 | |
164 #endif // BASE_LINKED_LIST_H_ | |
OLD | NEW |