| Index: mozilla/security/nss/lib/freebl/pqg.c
|
| ===================================================================
|
| --- mozilla/security/nss/lib/freebl/pqg.c (revision 164196)
|
| +++ mozilla/security/nss/lib/freebl/pqg.c (working copy)
|
| @@ -3,9 +3,9 @@
|
| * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
| /*
|
| - * PQG parameter generation/verification. Based on FIPS 186-1.
|
| + * PQG parameter generation/verification. Based on FIPS 186-3.
|
| *
|
| - * $Id: pqg.c,v 1.18 2012/04/25 14:49:43 gerv%gerv.net Exp $
|
| + * $Id: pqg.c,v 1.21 2012/06/25 17:30:17 rrelyea%redhat.com Exp $
|
| */
|
| #ifdef FREEBL_NO_DEPEND
|
| #include "stubs.h"
|
| @@ -23,25 +23,230 @@
|
| #include "secmpi.h"
|
|
|
| #define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */
|
| -#define PQG_Q_PRIMALITY_TESTS 18 /* from HAC table 4.4 */
|
| -#define PQG_P_PRIMALITY_TESTS 5 /* from HAC table 4.4 */
|
|
|
| - /* XXX to be replaced by define in blapit.h */
|
| -#define BITS_IN_Q 160
|
| +typedef enum {
|
| + FIPS186_1_TYPE, /* Probablistic */
|
| + FIPS186_3_TYPE, /* Probablistic */
|
| + FIPS186_3_ST_TYPE /* Shawe-Taylor provable */
|
| +} pqgGenType;
|
|
|
| -/* For FIPS-compliance testing.
|
| -** The following array holds the seed defined in FIPS 186-1 appendix 5.
|
| -** This seed is used to generate P and Q according to appendix 2; use of
|
| -** this seed will exactly generate the PQG specified in appendix 2.
|
| -*/
|
| -#ifdef FIPS_186_1_A5_TEST
|
| -static const unsigned char fips_186_1_a5_pqseed[] = {
|
| - 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8,
|
| - 0xb6, 0x21, 0x1b, 0x40, 0x62, 0xba, 0x32, 0x24,
|
| - 0xe0, 0x42, 0x7d, 0xd3
|
| -};
|
| -#endif
|
| +/*
|
| + * These test iterations are quite a bit larger than we previously had.
|
| + * This is because FIPS 186-3 is worried about the primes in PQG generation.
|
| + * It may be possible to purposefully construct composites which more
|
| + * iterations of Miller-Rabin than the for your normal randomly selected
|
| + * numbers.There are 3 ways to counter this: 1) use one of the cool provably
|
| + * prime algorithms (which would require a lot more work than DSA-2 deservers.
|
| + * 2) add a Lucas primality test (which requires coding a Lucas primality test,
|
| + * or 3) use a larger M-R test count. I chose the latter. It increases the time
|
| + * that it takes to prove the selected prime, but it shouldn't increase the
|
| + * overall time to run the algorithm (non-primes should still faile M-R
|
| + * realively quickly). If you want to get that last bit of performance,
|
| + * implement Lucas and adjust these two functions. See FIPS 186-3 Appendix C
|
| + * and F for more information.
|
| + */
|
| +int prime_testcount_p(int L, int N)
|
| +{
|
| + switch (L) {
|
| + case 1024:
|
| + return 40;
|
| + case 2048:
|
| + return 56;
|
| + case 3072:
|
| + return 64;
|
| + default:
|
| + break;
|
| + }
|
| + return 50; /* L = 512-960 */
|
| +}
|
|
|
| +/* The q numbers are different if you run M-R followd by Lucas. I created
|
| + * a separate function so if someone wanted to add the Lucas check, they
|
| + * could do so fairly easily */
|
| +int prime_testcount_q(int L, int N)
|
| +{
|
| + return prime_testcount_p(L,N);
|
| +}
|
| +
|
| +/*
|
| + * generic function to make sure our input matches DSA2 requirements
|
| + * this gives us one place to go if we need to bump the requirements in the
|
| + * future.
|
| + */
|
| +SECStatus static
|
| +pqg_validate_dsa2(unsigned int L, unsigned int N)
|
| +{
|
| +
|
| + switch (L) {
|
| + case 1024:
|
| + if (N != DSA1_Q_BITS) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| + break;
|
| + case 2048:
|
| + if ((N != 224) && (N != 256)) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| + break;
|
| + case 3072:
|
| + if (N != 256) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| + break;
|
| + default:
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| + return SECSuccess;
|
| +}
|
| +
|
| +/*
|
| + * Select the lowest hash algorithm usable
|
| + */
|
| +static HASH_HashType
|
| +getFirstHash(unsigned int L, unsigned int N)
|
| +{
|
| + if (N < 224) {
|
| + return HASH_AlgSHA1;
|
| + }
|
| + if (N < 256) {
|
| + return HASH_AlgSHA224;
|
| + }
|
| + if (N < 384) {
|
| + return HASH_AlgSHA256;
|
| + }
|
| + if (N < 512) {
|
| + return HASH_AlgSHA384;
|
| + }
|
| + return HASH_AlgSHA512;
|
| +}
|
| +
|
| +/*
|
| + * find the next usable hash algorthim
|
| + */
|
| +static HASH_HashType
|
| +getNextHash(HASH_HashType hashtype)
|
| +{
|
| + switch (hashtype) {
|
| + case HASH_AlgSHA1:
|
| + hashtype = HASH_AlgSHA224;
|
| + break;
|
| + case HASH_AlgSHA224:
|
| + hashtype = HASH_AlgSHA256;
|
| + break;
|
| + case HASH_AlgSHA256:
|
| + hashtype = HASH_AlgSHA384;
|
| + break;
|
| + case HASH_AlgSHA384:
|
| + hashtype = HASH_AlgSHA512;
|
| + break;
|
| + case HASH_AlgSHA512:
|
| + default:
|
| + hashtype = HASH_AlgTOTAL;
|
| + break;
|
| + }
|
| + return hashtype;
|
| +}
|
| +
|
| +static unsigned int
|
| +HASH_ResultLen(HASH_HashType type)
|
| +{
|
| + const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
|
| + if (hash_obj == NULL) {
|
| + return 0;
|
| + }
|
| + return hash_obj->length;
|
| +}
|
| +
|
| +static SECStatus
|
| +HASH_HashBuf(HASH_HashType type, unsigned char *dest,
|
| + const unsigned char *src, PRUint32 src_len)
|
| +{
|
| + const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
|
| + void *hashcx = NULL;
|
| + unsigned int dummy;
|
| +
|
| + if (hash_obj == NULL) {
|
| + return SECFailure;
|
| + }
|
| +
|
| + hashcx = hash_obj->create();
|
| + if (hashcx == NULL) {
|
| + return SECFailure;
|
| + }
|
| + hash_obj->begin(hashcx);
|
| + hash_obj->update(hashcx,src,src_len);
|
| + hash_obj->end(hashcx,dest, &dummy, hash_obj->length);
|
| + hash_obj->destroy(hashcx, PR_TRUE);
|
| + return SECSuccess;
|
| +}
|
| +
|
| +unsigned int
|
| +PQG_GetLength(const SECItem *obj)
|
| +{
|
| + unsigned int len = obj->len;
|
| +
|
| + if (obj->data == NULL) {
|
| + return 0;
|
| + }
|
| + if (len > 1 && obj->data[0] == 0) {
|
| + len--;
|
| + }
|
| + return len;
|
| +}
|
| +
|
| +SECStatus
|
| +PQG_Check(const PQGParams *params)
|
| +{
|
| + unsigned int L,N;
|
| + SECStatus rv = SECSuccess;
|
| +
|
| + if (params == NULL) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| +
|
| + L = PQG_GetLength(¶ms->prime)*BITS_PER_BYTE;
|
| + N = PQG_GetLength(¶ms->subPrime)*BITS_PER_BYTE;
|
| +
|
| + if (L < 1024) {
|
| + int j;
|
| +
|
| + /* handle DSA1 pqg parameters with less thatn 1024 bits*/
|
| + if ( N != DSA1_Q_BITS ) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| + j = PQG_PBITS_TO_INDEX(L);
|
| + if ( j >= 0 && j <= 8 ) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + rv = SECFailure;
|
| + }
|
| + } else {
|
| + /* handle DSA2 parameters (includes DSA1, 1024 bits) */
|
| + rv = pqg_validate_dsa2(L, N);
|
| + }
|
| + return rv;
|
| +}
|
| +
|
| +HASH_HashType
|
| +PQG_GetHashType(const PQGParams *params)
|
| +{
|
| + unsigned int L,N;
|
| +
|
| + if (params == NULL) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| +
|
| + L = PQG_GetLength(¶ms->prime)*BITS_PER_BYTE;
|
| + N = PQG_GetLength(¶ms->subPrime)*BITS_PER_BYTE;
|
| + return getFirstHash(L, N);
|
| +}
|
| +
|
| /* Get a seed for generating P and Q. If in testing mode, copy in the
|
| ** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the
|
| ** global random number generator.
|
| @@ -58,10 +263,6 @@
|
| PORT_SetError(SEC_ERROR_NO_MEMORY);
|
| return SECFailure;
|
| }
|
| -#ifdef FIPS_186_1_A5_TEST
|
| - memcpy(seed->data, fips_186_1_a5_pqseed, seed->len);
|
| - return SECSuccess;
|
| -#else
|
| rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len);
|
| /*
|
| * NIST CMVP disallows a sequence of 20 bytes with the most
|
| @@ -71,7 +272,6 @@
|
| */
|
| seed->data[0] |= 0x80;
|
| return rv;
|
| -#endif
|
| }
|
|
|
| /* Generate a candidate h value. If in testing mode, use the h value
|
| @@ -99,17 +299,12 @@
|
| return SECSuccess;
|
| }
|
|
|
| -/* Compute SHA[(SEED + addend) mod 2**g]
|
| -** Result is placed in shaOutBuf.
|
| -** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 .
|
| -*/
|
| static SECStatus
|
| -addToSeedThenSHA(const SECItem * seed,
|
| - unsigned long addend,
|
| - int g,
|
| - unsigned char * shaOutBuf)
|
| +addToSeed(const SECItem * seed,
|
| + unsigned long addend,
|
| + int seedlen, /* g in 186-1 */
|
| + SECItem * seedout)
|
| {
|
| - SECItem str = { 0, 0, 0 };
|
| mp_int s, sum, modulus, tmp;
|
| mp_err err = MP_OKAY;
|
| SECStatus rv = SECSuccess;
|
| @@ -129,16 +324,17 @@
|
| CHECK_MPI_OK( mp_set_ulong(&tmp, addend) );
|
| CHECK_MPI_OK( mp_add(&s, &tmp, &s) );
|
| }
|
| - CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)g, NULL, &sum) );/*sum = s mod 2**g */
|
| - MPINT_TO_SECITEM(&sum, &str, NULL);
|
| - rv = SHA1_HashBuf(shaOutBuf, str.data, str.len); /* SHA1 hash result */
|
| + /*sum = s mod 2**seedlen */
|
| + CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)seedlen, NULL, &sum) );
|
| + if (seedout->data != NULL) {
|
| + SECITEM_ZfreeItem(seedout, PR_FALSE);
|
| + }
|
| + MPINT_TO_SECITEM(&sum, seedout, NULL);
|
| cleanup:
|
| mp_clear(&s);
|
| mp_clear(&sum);
|
| mp_clear(&modulus);
|
| mp_clear(&tmp);
|
| - if (str.data)
|
| - SECITEM_ZfreeItem(&str, PR_FALSE);
|
| if (err) {
|
| MP_TO_SEC_ERROR(err);
|
| return SECFailure;
|
| @@ -146,8 +342,32 @@
|
| return rv;
|
| }
|
|
|
| +/* Compute Hash[(SEED + addend) mod 2**g]
|
| +** Result is placed in shaOutBuf.
|
| +** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 and
|
| +** step 11.2 of FIPS 186-3 Appendix A.1.1.2 .
|
| +*/
|
| +static SECStatus
|
| +addToSeedThenHash( HASH_HashType hashtype,
|
| + const SECItem * seed,
|
| + unsigned long addend,
|
| + int seedlen, /* g in 186-1 */
|
| + unsigned char * hashOutBuf)
|
| +{
|
| + SECItem str = { 0, 0, 0 };
|
| + SECStatus rv;
|
| + rv = addToSeed(seed, addend, seedlen, &str);
|
| + if (rv != SECSuccess) {
|
| + return rv;
|
| + }
|
| + rv = HASH_HashBuf(hashtype, hashOutBuf, str.data, str.len);/* hash result */
|
| + if (str.data)
|
| + SECITEM_ZfreeItem(&str, PR_FALSE);
|
| + return rv;
|
| +}
|
| +
|
| /*
|
| -** Perform steps 2 and 3 of FIPS 186, appendix 2.2.
|
| +** Perform steps 2 and 3 of FIPS 186-1, appendix 2.2.
|
| ** Generate Q from seed.
|
| */
|
| static SECStatus
|
| @@ -167,7 +387,7 @@
|
| ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
|
| **/
|
| CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) );
|
| - CHECK_SEC_OK( addToSeedThenSHA(seed, 1, g, sha2) );
|
| + CHECK_SEC_OK( addToSeedThenHash(HASH_AlgSHA1, seed, 1, g, sha2) );
|
| for (i=0; i<SHA1_LENGTH; ++i)
|
| U[i] = sha1[i] ^ sha2[i];
|
| /* ******************************************************************
|
| @@ -190,22 +410,568 @@
|
| return rv;
|
| }
|
|
|
| -/* Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2.
|
| +/*
|
| +** Perform steps 6 and 7 of FIPS 186-3, appendix A.1.1.2.
|
| +** Generate Q from seed.
|
| +*/
|
| +static SECStatus
|
| +makeQ2fromSeed(
|
| + HASH_HashType hashtype, /* selected Hashing algorithm */
|
| + unsigned int N, /* input. Length of q in bits. */
|
| +const SECItem * seed, /* input. */
|
| + mp_int * Q) /* output. */
|
| +{
|
| + unsigned char U[HASH_LENGTH_MAX];
|
| + SECStatus rv = SECSuccess;
|
| + mp_err err = MP_OKAY;
|
| + int N_bytes = N/BITS_PER_BYTE; /* length of N in bytes rather than bits */
|
| + int hashLen = HASH_ResultLen(hashtype);
|
| + int offset = 0;
|
| +
|
| + /* ******************************************************************
|
| + ** Step 6.
|
| + ** "Compute U = hash[SEED] mod 2**N-1]."
|
| + **/
|
| + CHECK_SEC_OK( HASH_HashBuf(hashtype, U, seed->data, seed->len) );
|
| + /* mod 2**N . Step 7 will explicitly set the top bit to 1, so no need
|
| + * to handle mod 2**N-1 */
|
| + if (hashLen > N_bytes) {
|
| + offset = hashLen - N_bytes;
|
| + }
|
| + /* ******************************************************************
|
| + ** Step 7.
|
| + ** computed_q = 2**(N-1) + U + 1 - (U mod 2)
|
| + **
|
| + ** This is the same as:
|
| + ** computed_q = 2**(N-1) | U | 1;
|
| + */
|
| + U[offset] |= 0x80; /* U is MSB first */
|
| + U[hashLen-1] |= 0x01;
|
| + err = mp_read_unsigned_octets(Q, &U[offset], N_bytes);
|
| +cleanup:
|
| + memset(U, 0, HASH_LENGTH_MAX);
|
| + if (err) {
|
| + MP_TO_SEC_ERROR(err);
|
| + return SECFailure;
|
| + }
|
| + return rv;
|
| +}
|
| +
|
| +/*
|
| +** Perform steps from FIPS 186-3, Appendix A.1.2.1 and Appendix C.6
|
| +**
|
| +** This generates a provable prime from two smaller prime. The resulting
|
| +** prime p will have q0 as a multiple of p-1. q0 can be 1.
|
| +**
|
| +** This implments steps 4 thorough 22 of FIPS 186-3 A.1.2.1 and
|
| +** steps 16 through 34 of FIPS 186-2 C.6
|
| +*/
|
| +#define MAX_ST_SEED_BITS HASH_LENGTH_MAX*BITS_PER_BYTE
|
| +SECStatus
|
| +makePrimefromPrimesShaweTaylor(
|
| + HASH_HashType hashtype, /* selected Hashing algorithm */
|
| + unsigned int length, /* input. Length of prime in bits. */
|
| + mp_int * c0, /* seed prime */
|
| + mp_int * q, /* sub prime, can be 1 */
|
| + mp_int * prime, /* output. */
|
| + SECItem * prime_seed, /* input/output. */
|
| + int * prime_gen_counter) /* input/output. */
|
| +{
|
| + mp_int c;
|
| + mp_int c0_2;
|
| + mp_int t;
|
| + mp_int a;
|
| + mp_int z;
|
| + mp_int two_length_minus_1;
|
| + SECStatus rv = SECFailure;
|
| + int hashlen = HASH_ResultLen(hashtype);
|
| + int outlen = hashlen*BITS_PER_BYTE;
|
| + int offset;
|
| + unsigned char bit, mask;
|
| + /* x needs to hold roundup(L/outlen)*outlen.
|
| + * This can be no larger than L+outlen-1, So we set it's size to
|
| + * our max L + max outlen and know we are safe */
|
| + unsigned char x[DSA_MAX_P_BITS/8+HASH_LENGTH_MAX];
|
| + mp_err err = MP_OKAY;
|
| + int i;
|
| + int iterations;
|
| + int old_counter;
|
| +
|
| + MP_DIGITS(&c) = 0;
|
| + MP_DIGITS(&c0_2) = 0;
|
| + MP_DIGITS(&t) = 0;
|
| + MP_DIGITS(&a) = 0;
|
| + MP_DIGITS(&z) = 0;
|
| + MP_DIGITS(&two_length_minus_1) = 0;
|
| + CHECK_MPI_OK( mp_init(&c) );
|
| + CHECK_MPI_OK( mp_init(&c0_2) );
|
| + CHECK_MPI_OK( mp_init(&t) );
|
| + CHECK_MPI_OK( mp_init(&a) );
|
| + CHECK_MPI_OK( mp_init(&z) );
|
| + CHECK_MPI_OK( mp_init(&two_length_minus_1) );
|
| +
|
| +
|
| + /*
|
| + ** There is a slight mapping of variable names depending on which
|
| + ** FIPS 186 steps are being carried out. The mapping is as follows:
|
| + ** variable A.1.2.1 C.6
|
| + ** c0 p0 c0
|
| + ** q q 1
|
| + ** c p c
|
| + ** c0_2 2*p0*q 2*c0
|
| + ** length L length
|
| + ** prime_seed pseed prime_seed
|
| + ** prime_gen_counter pgen_counter prime_gen_counter
|
| + **
|
| + ** Also note: or iterations variable is actually iterations+1, since
|
| + ** iterations+1 works better in C.
|
| + */
|
| +
|
| + /* Step 4/16 iterations = ceiling(length/outlen)-1 */
|
| + iterations = (length+outlen-1)/outlen; /* NOTE: iterations +1 */
|
| + /* Step 5/17 old_counter = prime_gen_counter */
|
| + old_counter = *prime_gen_counter;
|
| + /*
|
| + ** Comment: Generate a pseudorandom integer x in the interval
|
| + ** [2**(lenght-1), 2**length].
|
| + **
|
| + ** Step 6/18 x = 0
|
| + */
|
| + PORT_Memset(x, 0, sizeof(x));
|
| + /*
|
| + ** Step 7/19 for i = 0 to iterations do
|
| + ** x = x + (HASH(prime_seed + i) * 2^(i*outlen))
|
| + */
|
| + for (i=0; i < iterations; i++) {
|
| + /* is bigger than prime_seed should get to */
|
| + CHECK_SEC_OK( addToSeedThenHash(hashtype, prime_seed, i,
|
| + MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen]));
|
| + }
|
| + /* Step 8/20 prime_seed = prime_seed + iterations + 1 */
|
| + CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS,
|
| + prime_seed));
|
| + /*
|
| + ** Step 9/21 x = 2 ** (length-1) + x mod 2 ** (length-1)
|
| + **
|
| + ** This step mathematically sets the high bit and clears out
|
| + ** all the other bits higher than length. 'x' is stored
|
| + ** in the x array, MSB first. The above formula gives us an 'x'
|
| + ** which is length bytes long and has the high bit set. We also know
|
| + ** that length <= iterations*outlen since
|
| + ** iterations=ceiling(length/outlen). First we find the offset in
|
| + ** bytes into the array where the high bit is.
|
| + */
|
| + offset = (outlen*iterations - length)/BITS_PER_BYTE;
|
| + /* now we want to set the 'high bit', since length may not be a
|
| + * multiple of 8,*/
|
| + bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */
|
| + /* we need to zero out the rest of the bits in the byte above */
|
| + mask = (bit-1);
|
| + /* now we set it */
|
| + x[offset] = (mask & x[offset]) | bit;
|
| + /*
|
| + ** Comment: Generate a candidate prime c in the interval
|
| + ** [2**(lenght-1), 2**length].
|
| + **
|
| + ** Step 10 t = ceiling(x/(2q(p0)))
|
| + ** Step 22 t = ceiling(x/(2(c0)))
|
| + */
|
| + CHECK_MPI_OK( mp_read_unsigned_octets(&t, &x[offset],
|
| + hashlen*iterations - offset ) ); /* t = x */
|
| + CHECK_MPI_OK( mp_mul(c0, q, &c0_2) ); /* c0_2 is now c0*q */
|
| + CHECK_MPI_OK( mp_add(&c0_2, &c0_2, &c0_2) ); /* c0_2 is now 2*q*c0 */
|
| + CHECK_MPI_OK( mp_add(&t, &c0_2, &t) ); /* t = x+2*q*c0 */
|
| + CHECK_MPI_OK( mp_sub_d(&t, (mp_digit) 1, &t) ); /* t = x+2*q*c0 -1 */
|
| + /* t = floor((x+2qc0-1)/2qc0) = ceil(x/2qc0) */
|
| + CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) );
|
| + /*
|
| + ** step 11: if (2tqp0 +1 > 2**length), then t = ceiling(2**(length-1)/2qp0)
|
| + ** step 12: t = 2tqp0 +1.
|
| + **
|
| + ** step 23: if (2tc0 +1 > 2**length), then t = ceiling(2**(length-1)/2c0)
|
| + ** step 24: t = 2tc0 +1.
|
| + */
|
| + CHECK_MPI_OK( mp_2expt(&two_length_minus_1, length-1) );
|
| +step_23:
|
| + CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); /* c = t*2qc0 */
|
| + CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/
|
| + if (mpl_significant_bits(&c) > length) { /* if c > 2**length */
|
| + CHECK_MPI_OK( mp_sub_d(&c0_2, (mp_digit) 1, &t) ); /* t = 2qc0-1 */
|
| + /* t = 2**(length-1) + 2qc0 -1 */
|
| + CHECK_MPI_OK( mp_add(&two_length_minus_1,&t, &t) );
|
| + /* t = floor((2**(length-1)+2qc0 -1)/2qco)
|
| + * = ceil(2**(lenght-2)/2qc0) */
|
| + CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) );
|
| + CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) );
|
| + CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/
|
| + }
|
| + /* Step 13/25 prime_gen_counter = prime_gen_counter + 1*/
|
| + (*prime_gen_counter)++;
|
| + /*
|
| + ** Comment: Test the candidate prime c for primality; first pick an
|
| + ** integer a between 2 and c-2.
|
| + **
|
| + ** Step 14/26 a=0
|
| + */
|
| + PORT_Memset(x, 0, sizeof(x)); /* use x for a */
|
| + /*
|
| + ** Step 15/27 for i = 0 to iterations do
|
| + ** a = a + (HASH(prime_seed + i) * 2^(i*outlen))
|
| + **
|
| + ** NOTE: we reuse the x array for 'a' initially.
|
| + */
|
| + for (i=0; i < iterations; i++) {
|
| + /* MAX_ST_SEED_BITS is bigger than prime_seed should get to */
|
| + CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i,
|
| + MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen]));
|
| + }
|
| + /* Step 16/28 prime_seed = prime_seed + iterations + 1 */
|
| + CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS,
|
| + prime_seed));
|
| + /* Step 17/29 a = 2 + (a mod (c-3)). */
|
| + CHECK_MPI_OK( mp_read_unsigned_octets(&a, x, iterations*hashlen) );
|
| + CHECK_MPI_OK( mp_sub_d(&c, (mp_digit) 3, &z) ); /* z = c -3 */
|
| + CHECK_MPI_OK( mp_mod(&a, &z, &a) ); /* a = a mod c -3 */
|
| + CHECK_MPI_OK( mp_add_d(&a, (mp_digit) 2, &a) ); /* a = 2 + a mod c -3 */
|
| + /*
|
| + ** Step 18 z = a**(2tq) mod p.
|
| + ** Step 30 z = a**(2t) mod c.
|
| + */
|
| + CHECK_MPI_OK( mp_mul(&t, q, &z) ); /* z = tq */
|
| + CHECK_MPI_OK( mp_add(&z, &z, &z) ); /* z = 2tq */
|
| + CHECK_MPI_OK( mp_exptmod(&a, &z, &c, &z) ); /* z = a**(2tq) mod c */
|
| + /*
|
| + ** Step 19 if (( 1 == GCD(z-1,p)) and ( 1 == z**p0 mod p )), then
|
| + ** Step 31 if (( 1 == GCD(z-1,c)) and ( 1 == z**c0 mod c )), then
|
| + */
|
| + CHECK_MPI_OK( mp_sub_d(&z, (mp_digit) 1, &a) );
|
| + CHECK_MPI_OK( mp_gcd(&a,&c,&a ));
|
| + if (mp_cmp_d(&a, (mp_digit)1) == 0) {
|
| + CHECK_MPI_OK( mp_exptmod(&z, c0, &c, &a) );
|
| + if (mp_cmp_d(&a, (mp_digit)1) == 0) {
|
| + /* Step 31.1 prime = c */
|
| + CHECK_MPI_OK( mp_copy(&c, prime) );
|
| + /*
|
| + ** Step 31.2 return Success, prime, prime_seed,
|
| + ** prime_gen_counter
|
| + */
|
| + rv = SECSuccess;
|
| + goto cleanup;
|
| + }
|
| + }
|
| + /*
|
| + ** Step 20/32 If (prime_gen_counter > 4 * length + old_counter then
|
| + ** return (FAILURE, 0, 0, 0).
|
| + ** NOTE: the test is reversed, so we fall through on failure to the
|
| + ** cleanup routine
|
| + */
|
| + if (*prime_gen_counter < (4*length + old_counter)) {
|
| + /* Step 21/33 t = t + 1 */
|
| + CHECK_MPI_OK( mp_add_d(&t, (mp_digit) 1, &t) );
|
| + /* Step 22/34 Go to step 23/11 */
|
| + goto step_23;
|
| + }
|
| +
|
| + /* if (prime_gencont > (4*length + old_counter), fall through to failure */
|
| + rv = SECFailure; /* really is already set, but paranoia is good */
|
| +
|
| +cleanup:
|
| + mp_clear(&c);
|
| + mp_clear(&c0_2);
|
| + mp_clear(&t);
|
| + mp_clear(&a);
|
| + mp_clear(&z);
|
| + mp_clear(&two_length_minus_1);
|
| + if (err) {
|
| + MP_TO_SEC_ERROR(err);
|
| + rv = SECFailure;
|
| + }
|
| + if (rv == SECFailure) {
|
| + mp_zero(prime);
|
| + if (prime_seed->data) {
|
| + SECITEM_FreeItem(prime_seed, PR_FALSE);
|
| + }
|
| + *prime_gen_counter = 0;
|
| + }
|
| + return rv;
|
| +}
|
| +
|
| +/*
|
| +** Perform steps from FIPS 186-3, Appendix C.6
|
| +**
|
| +** This generates a provable prime from a seed
|
| +*/
|
| +SECStatus
|
| +makePrimefromSeedShaweTaylor(
|
| + HASH_HashType hashtype, /* selected Hashing algorithm */
|
| + unsigned int length, /* input. Length of prime in bits. */
|
| +const SECItem * input_seed, /* input. */
|
| + mp_int * prime, /* output. */
|
| + SECItem * prime_seed, /* output. */
|
| + int * prime_gen_counter) /* output. */
|
| +{
|
| + mp_int c;
|
| + mp_int c0;
|
| + mp_int one;
|
| + SECStatus rv = SECFailure;
|
| + int hashlen = HASH_ResultLen(hashtype);
|
| + int outlen = hashlen*BITS_PER_BYTE;
|
| + int offset;
|
| + unsigned char bit, mask;
|
| + unsigned char x[HASH_LENGTH_MAX*2];
|
| + mp_digit dummy;
|
| + mp_err err = MP_OKAY;
|
| + int i;
|
| +
|
| + MP_DIGITS(&c) = 0;
|
| + MP_DIGITS(&c0) = 0;
|
| + MP_DIGITS(&one) = 0;
|
| + CHECK_MPI_OK( mp_init(&c) );
|
| + CHECK_MPI_OK( mp_init(&c0) );
|
| + CHECK_MPI_OK( mp_init(&one) );
|
| +
|
| + /* Step 1. if length < 2 then return (FAILURE, 0, 0, 0) */
|
| + if (length < 2) {
|
| + rv = SECFailure;
|
| + goto cleanup;
|
| + }
|
| + /* Step 2. if length >= 33 then goto step 14 */
|
| + if (length >= 33) {
|
| + mp_zero(&one);
|
| + CHECK_MPI_OK( mp_add_d(&one, (mp_digit) 1, &one) );
|
| +
|
| + /* Step 14 (status, c0, prime_seed, prime_gen_counter) =
|
| + ** (ST_Random_Prime((ceil(length/2)+1, input_seed)
|
| + */
|
| + rv = makePrimefromSeedShaweTaylor(hashtype, (length+1)/2+1,
|
| + input_seed, &c0, prime_seed, prime_gen_counter);
|
| + /* Step 15 if FAILURE is returned, return (FAILURE, 0, 0, 0). */
|
| + if (rv != SECSuccess) {
|
| + goto cleanup;
|
| + }
|
| + /* Steps 16-34 */
|
| + rv = makePrimefromPrimesShaweTaylor(hashtype,length, &c0, &one,
|
| + prime, prime_seed, prime_gen_counter);
|
| + goto cleanup; /* we're done, one way or the other */
|
| + }
|
| + /* Step 3 prime_seed = input_seed */
|
| + CHECK_SEC_OK(SECITEM_CopyItem(NULL, prime_seed, input_seed));
|
| + /* Step 4 prime_gen_count = 0 */
|
| + *prime_gen_counter = 0;
|
| +
|
| +step_5:
|
| + /* Step 5 c = Hash(prime_seed) xor Hash(prime_seed+1). */
|
| + CHECK_SEC_OK(HASH_HashBuf(hashtype, x, prime_seed->data, prime_seed->len) );
|
| + CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, 1,
|
| + MAX_ST_SEED_BITS, &x[hashlen]) );
|
| + for (i=0; i < hashlen; i++) {
|
| + x[i] = x[i] ^ x[i+hashlen];
|
| + }
|
| + /* Step 6 c = 2**length-1 + c mod 2**length-1 */
|
| + /* This step mathematically sets the high bit and clears out
|
| + ** all the other bits higher than length. Right now c is stored
|
| + ** in the x array, MSB first. The above formula gives us a c which
|
| + ** is length bytes long and has the high bit set. We also know that
|
| + ** length < outlen since the smallest outlen is 160 bits and the largest
|
| + ** length at this point is 32 bits. So first we find the offset in bytes
|
| + ** into the array where the high bit is.
|
| + */
|
| + offset = (outlen - length)/BITS_PER_BYTE;
|
| + /* now we want to set the 'high bit'. We have to calculate this since
|
| + * length may not be a multiple of 8.*/
|
| + bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */
|
| + /* we need to zero out the rest of the bits in the byte above */
|
| + mask = (bit-1);
|
| + /* now we set it */
|
| + x[offset] = (mask & x[offset]) | bit;
|
| + /* Step 7 c = c*floor(c/2) + 1 */
|
| + /* set the low bit. much easier to find (the end of the array) */
|
| + x[hashlen-1] |= 1;
|
| + /* now that we've set our bits, we can create our candidate "c" */
|
| + CHECK_MPI_OK( mp_read_unsigned_octets(&c, &x[offset], hashlen-offset) );
|
| + /* Step 8 prime_gen_counter = prime_gen_counter + 1 */
|
| + (*prime_gen_counter)++;
|
| + /* Step 9 prime_seed = prime_seed + 2 */
|
| + CHECK_SEC_OK(addToSeed(prime_seed, 2, MAX_ST_SEED_BITS, prime_seed));
|
| + /* Step 10 Perform deterministic primality test on c. For example, since
|
| + ** c is small, it's primality can be tested by trial division, See
|
| + ** See Appendic C.7.
|
| + **
|
| + ** We in fact test with trial division. mpi has a built int trial divider
|
| + ** that divides all divisors up to 2^16.
|
| + */
|
| + if (prime_tab[prime_tab_size-1] < 0xFFF1) {
|
| + /* we aren't testing all the primes between 0 and 2^16, we really
|
| + * can't use this construction. Just fail. */
|
| + rv = SECFailure;
|
| + goto cleanup;
|
| + }
|
| + dummy = prime_tab_size;
|
| + err = mpp_divis_primes(&c, &dummy);
|
| + /* Step 11 if c is prime then */
|
| + if (err == MP_NO) {
|
| + /* Step 11.1 prime = c */
|
| + CHECK_MPI_OK( mp_copy(&c, prime) );
|
| + /* Step 11.2 return SUCCESS prime, prime_seed, prime_gen_counter */
|
| + err = MP_OKAY;
|
| + rv = SECSuccess;
|
| + goto cleanup;
|
| + } else if (err != MP_YES) {
|
| + goto cleanup; /* function failed, bail out */
|
| + } else {
|
| + /* reset mp_err */
|
| + err = MP_OKAY;
|
| + }
|
| + /*
|
| + ** Step 12 if (prime_gen_counter > (4*len))
|
| + ** then return (FAILURE, 0, 0, 0))
|
| + ** Step 13 goto step 5
|
| + */
|
| + if (*prime_gen_counter <= (4*length)) {
|
| + goto step_5;
|
| + }
|
| + /* if (prime_gencont > 4*length), fall through to failure */
|
| + rv = SECFailure; /* really is already set, but paranoia is good */
|
| +
|
| +cleanup:
|
| + mp_clear(&c);
|
| + mp_clear(&c0);
|
| + mp_clear(&one);
|
| + if (err) {
|
| + MP_TO_SEC_ERROR(err);
|
| + rv = SECFailure;
|
| + }
|
| + if (rv == SECFailure) {
|
| + mp_zero(prime);
|
| + if (prime_seed->data) {
|
| + SECITEM_FreeItem(prime_seed, PR_FALSE);
|
| + }
|
| + *prime_gen_counter = 0;
|
| + }
|
| + return rv;
|
| +}
|
| +
|
| +
|
| +/*
|
| + * Find a Q and algorithm from Seed.
|
| + */
|
| +static SECStatus
|
| +findQfromSeed(
|
| + unsigned int L, /* input. Length of p in bits. */
|
| + unsigned int N, /* input. Length of q in bits. */
|
| + unsigned int g, /* input. Length of seed in bits. */
|
| +const SECItem * seed, /* input. */
|
| + mp_int * Q, /* input. */
|
| + mp_int * Q_, /* output. */
|
| + int * qseed_len, /* output */
|
| + HASH_HashType *hashtypePtr, /* output. Hash uses */
|
| + pqgGenType *typePtr) /* output. Generation Type used */
|
| +{
|
| + HASH_HashType hashtype;
|
| + SECItem firstseed = { 0, 0, 0 };
|
| + SECItem qseed = { 0, 0, 0 };
|
| + SECStatus rv;
|
| +
|
| + *qseed_len = 0; /* only set if FIPS186_3_ST_TYPE */
|
| +
|
| + /* handle legacy small DSA first can only be FIPS186_1_TYPE */
|
| + if (L < 1024) {
|
| + rv =makeQfromSeed(g,seed,Q_);
|
| + if ((rv == SECSuccess) && (mp_cmp(Q,Q_) == 0)) {
|
| + *hashtypePtr = HASH_AlgSHA1;
|
| + *typePtr = FIPS186_1_TYPE;
|
| + return SECSuccess;
|
| + }
|
| + return SECFailure;
|
| + }
|
| + /* 1024 could use FIPS186_1 or FIPS186_3 algorithms, we need to try
|
| + * them both */
|
| + if (L == 1024) {
|
| + rv = makeQfromSeed(g,seed,Q_);
|
| + if (rv == SECSuccess) {
|
| + if (mp_cmp(Q,Q_) == 0) {
|
| + *hashtypePtr = HASH_AlgSHA1;
|
| + *typePtr = FIPS186_1_TYPE;
|
| + return SECSuccess;
|
| + }
|
| + }
|
| + /* fall through for FIPS186_3 types */
|
| + }
|
| + /* at this point we know we aren't using FIPS186_1, start trying FIPS186_3
|
| + * with appropriate hash types */
|
| + for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL;
|
| + hashtype=getNextHash(hashtype)) {
|
| + rv = makeQ2fromSeed(hashtype, N, seed, Q_);
|
| + if (rv != SECSuccess) {
|
| + continue;
|
| + }
|
| + if (mp_cmp(Q,Q_) == 0) {
|
| + *hashtypePtr = hashtype;
|
| + *typePtr = FIPS186_3_TYPE;
|
| + return SECSuccess;
|
| + }
|
| + }
|
| + /*
|
| + * OK finally try FIPS186_3 Shawe-Taylor
|
| + */
|
| + firstseed = *seed;
|
| + firstseed.len = seed->len/3;
|
| + for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL;
|
| + hashtype=getNextHash(hashtype)) {
|
| + int count;
|
| +
|
| + rv = makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, Q_,
|
| + &qseed, &count);
|
| + if (rv != SECSuccess) {
|
| + continue;
|
| + }
|
| + if (mp_cmp(Q,Q_) == 0) {
|
| + /* check qseed as well... */
|
| + int offset = seed->len - qseed.len;
|
| + if ((offset < 0) ||
|
| + (PORT_Memcmp(&seed->data[offset],qseed.data,qseed.len) != 0)) {
|
| + /* we found q, but the seeds don't match. This isn't an
|
| + * accident, someone has been tweeking with the seeds, just
|
| + * fail a this point. */
|
| + SECITEM_FreeItem(&qseed,PR_FALSE);
|
| + return SECFailure;
|
| + }
|
| + *qseed_len = qseed.len;
|
| + *hashtypePtr = hashtype;
|
| + *typePtr = FIPS186_3_ST_TYPE;
|
| + SECITEM_FreeItem(&qseed, PR_FALSE);
|
| + return SECSuccess;
|
| + }
|
| + SECITEM_FreeItem(&qseed, PR_FALSE);
|
| + }
|
| + /* no hash algorithms found which match seed to Q, fail */
|
| + return SECFailure;
|
| +}
|
| +
|
| +
|
| +
|
| +/*
|
| +** Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2.
|
| +** which are the same as steps 11.1-11.5 of FIPS 186-2, App A.1.1.2
|
| ** Generate P from Q, seed, L, and offset.
|
| */
|
| static SECStatus
|
| makePfromQandSeed(
|
| + HASH_HashType hashtype, /* selected Hashing algorithm */
|
| unsigned int L, /* Length of P in bits. Per FIPS 186. */
|
| - unsigned int offset, /* Per FIPS 186, appendix 2.2. */
|
| - unsigned int g, /* input. Length of seed in bits. */
|
| + unsigned int N, /* Length of Q in bits. Per FIPS 186. */
|
| + unsigned int offset, /* Per FIPS 186, App 2.2. & 186-3 App A.1.1.2 */
|
| + unsigned int seedlen, /* input. Length of seed in bits. (g in 186-1)*/
|
| const SECItem * seed, /* input. */
|
| const mp_int * Q, /* input. */
|
| mp_int * P) /* output. */
|
| {
|
| - unsigned int k; /* Per FIPS 186, appendix 2.2. */
|
| + unsigned int j; /* Per FIPS 186-3 App. A.1.1.2 (k in 186-1)*/
|
| unsigned int n; /* Per FIPS 186, appendix 2.2. */
|
| mp_digit b; /* Per FIPS 186, appendix 2.2. */
|
| - unsigned char V_k[SHA1_LENGTH];
|
| + unsigned int outlen; /* Per FIPS 186-3 App. A.1.1.2 */
|
| + unsigned int hashlen; /* outlen in bytes */
|
| + unsigned char V_j[HASH_LENGTH_MAX];
|
| mp_int W, X, c, twoQ, V_n, tmp;
|
| mp_err err = MP_OKAY;
|
| SECStatus rv = SECSuccess;
|
| @@ -222,52 +988,60 @@
|
| CHECK_MPI_OK( mp_init(&twoQ) );
|
| CHECK_MPI_OK( mp_init(&tmp) );
|
| CHECK_MPI_OK( mp_init(&V_n) );
|
| - /* L - 1 = n*160 + b */
|
| - n = (L - 1) / BITS_IN_Q;
|
| - b = (L - 1) % BITS_IN_Q;
|
| +
|
| + hashlen = HASH_ResultLen(hashtype);
|
| + outlen = hashlen*BITS_PER_BYTE;
|
| +
|
| + /* L - 1 = n*outlen + b */
|
| + n = (L - 1) / outlen;
|
| + b = (L - 1) % outlen;
|
| +
|
| /* ******************************************************************
|
| - ** Step 7.
|
| - ** "for k = 0 ... n let
|
| - ** V_k = SHA[(SEED + offset + k) mod 2**g]."
|
| + ** Step 11.1 (Step 7 in 186-1)
|
| + ** "for j = 0 ... n let
|
| + ** V_j = SHA[(SEED + offset + j) mod 2**seedlen]."
|
| **
|
| - ** Step 8.
|
| - ** "Let W be the integer
|
| - ** W = V_0 + (V_1 * 2**160) + ... + (V_n-1 * 2**((n-1)*160))
|
| - ** + ((V_n mod 2**b) * 2**(n*160))
|
| + ** Step 11.2 (Step 8 in 186-1)
|
| + ** "W = V_0 + (V_1 * 2**outlen) + ... + (V_n-1 * 2**((n-1)*outlen))
|
| + ** + ((V_n mod 2**b) * 2**(n*outlen))
|
| */
|
| - for (k=0; k<n; ++k) { /* Do the first n terms of V_k */
|
| - /* Do step 7 for iteration k.
|
| - ** V_k = SHA[(seed + offset + k) mod 2**g]
|
| + for (j=0; j<n; ++j) { /* Do the first n terms of V_j */
|
| + /* Do step 11.1 for iteration j.
|
| + ** V_j = HASH[(seed + offset + j) mod 2**g]
|
| */
|
| - CHECK_SEC_OK( addToSeedThenSHA(seed, offset + k, g, V_k) );
|
| - /* Do step 8 for iteration k.
|
| - ** W += V_k * 2**(k*160)
|
| + CHECK_SEC_OK( addToSeedThenHash(hashtype,seed,offset+j, seedlen, V_j) );
|
| + /* Do step 11.2 for iteration j.
|
| + ** W += V_j * 2**(j*outlen)
|
| */
|
| - OCTETS_TO_MPINT(V_k, &tmp, SHA1_LENGTH); /* get bignum V_k */
|
| - CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, k*160) ); /* tmp = V_k << k*160 */
|
| + OCTETS_TO_MPINT(V_j, &tmp, hashlen); /* get bignum V_j */
|
| + CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, j*outlen) );/* tmp=V_j << j*outlen */
|
| CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
|
| }
|
| - /* Step 8, continued.
|
| - ** [W += ((V_n mod 2**b) * 2**(n*160))]
|
| + /* Step 11.2, continued.
|
| + ** [W += ((V_n mod 2**b) * 2**(n*outlen))]
|
| */
|
| - CHECK_SEC_OK( addToSeedThenSHA(seed, offset + n, g, V_k) );
|
| - OCTETS_TO_MPINT(V_k, &V_n, SHA1_LENGTH); /* get bignum V_n */
|
| - CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */
|
| - CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*160) ); /* tmp = tmp << n*160 */
|
| - CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
|
| - /* Step 8, continued.
|
| - ** "and let X = W + 2**(L-1).
|
| + CHECK_SEC_OK( addToSeedThenHash(hashtype, seed, offset + n, seedlen, V_j) );
|
| + OCTETS_TO_MPINT(V_j, &V_n, hashlen); /* get bignum V_n */
|
| + CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */
|
| + CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*outlen) ); /* tmp = tmp << n*outlen */
|
| + CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
|
| + /* Step 11.3, (Step 8 in 186-1)
|
| + ** "X = W + 2**(L-1).
|
| ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
|
| */
|
| CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */
|
| CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */
|
| /*************************************************************
|
| - ** Step 9.
|
| - ** "Let c = X mod 2q and set p = X - (c - 1).
|
| - ** Note that p is congruent to 1 mod 2q."
|
| + ** Step 11.4. (Step 9 in 186-1)
|
| + ** "c = X mod 2q"
|
| */
|
| CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */
|
| CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */
|
| + /*************************************************************
|
| + ** Step 11.5. (Step 9 in 186-1)
|
| + ** "p = X - (c - 1).
|
| + ** Note that p is congruent to 1 mod 2q."
|
| + */
|
| CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */
|
| CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */
|
| cleanup:
|
| @@ -333,37 +1107,117 @@
|
| return rv;
|
| }
|
|
|
| -SECStatus
|
| -PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy)
|
| +/*
|
| +** Generate G from seed, index, P, and Q.
|
| +*/
|
| +static SECStatus
|
| +makeGfromIndex(HASH_HashType hashtype,
|
| + const mp_int *P, /* input. */
|
| + const mp_int *Q, /* input. */
|
| + const SECItem *seed, /* input. */
|
| + unsigned char index, /* input. */
|
| + mp_int *G) /* input/output */
|
| {
|
| - unsigned int L; /* Length of P in bits. Per FIPS 186. */
|
| - unsigned int seedBytes;
|
| + mp_int e, pm1, W;
|
| + unsigned int count;
|
| + unsigned char data[HASH_LENGTH_MAX];
|
| + unsigned int len;
|
| + mp_err err = MP_OKAY;
|
| + SECStatus rv = SECSuccess;
|
| + const SECHashObject *hashobj;
|
| + void *hashcx = NULL;
|
|
|
| - if (j > 8 || !pParams || !pVfy) {
|
| - PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| - return SECFailure;
|
| + MP_DIGITS(&e) = 0;
|
| + MP_DIGITS(&pm1) = 0;
|
| + MP_DIGITS(&W) = 0;
|
| + CHECK_MPI_OK( mp_init(&e) );
|
| + CHECK_MPI_OK( mp_init(&pm1) );
|
| + CHECK_MPI_OK( mp_init(&W) );
|
| +
|
| + /* initialize our hash stuff */
|
| + hashobj = HASH_GetRawHashObject(hashtype);
|
| + if (hashobj == NULL) {
|
| + /* shouldn't happen */
|
| + PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
| + rv = SECFailure;
|
| + goto cleanup;
|
| }
|
| - L = 512 + (j * 64); /* bits in P */
|
| - seedBytes = L/8;
|
| - return PQG_ParamGenSeedLen(j, seedBytes, pParams, pVfy);
|
| + hashcx = hashobj->create();
|
| + if (hashcx == NULL) {
|
| + rv = SECFailure;
|
| + goto cleanup;
|
| + }
|
| +
|
| + CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */
|
| + /* Step 3 e = (p-1)/q */
|
| + CHECK_MPI_OK( mp_div(&pm1, Q, &e, NULL) ); /* e = (P-1)/Q */
|
| + /* Steps 4, 5, and 6 */
|
| + /* count is a 16 bit value in the spec. We actually represent count
|
| + * as more than 16 bits so we can easily detect the 16 bit overflow */
|
| +#define MAX_COUNT 0x10000
|
| + for (count = 1; count < MAX_COUNT; count++) {
|
| + /* step 7
|
| + * U = domain_param_seed || "ggen" || index || count
|
| + * step 8
|
| + * W = HASH(U)
|
| + */
|
| + hashobj->begin(hashcx);
|
| + hashobj->update(hashcx,seed->data,seed->len);
|
| + hashobj->update(hashcx, (unsigned char *)"ggen", 4);
|
| + hashobj->update(hashcx,&index, 1);
|
| + data[0] = (count >> 8) & 0xff;
|
| + data[1] = count & 0xff;
|
| + hashobj->update(hashcx, data, 2);
|
| + hashobj->end(hashcx, data, &len, sizeof(data));
|
| + OCTETS_TO_MPINT(data, &W, len);
|
| + /* step 9. g = W**e mod p */
|
| + CHECK_MPI_OK( mp_exptmod(&W, &e, P, G) );
|
| + /* step 10. if (g < 2) then goto step 5 */
|
| + /* NOTE: this weird construct is to keep the flow according to the spec.
|
| + * the continue puts us back to step 5 of the for loop */
|
| + if (mp_cmp_d(G, 2) < 0) {
|
| + continue;
|
| + }
|
| + break; /* step 11 follows step 10 if the test condition is false */
|
| + }
|
| + if (count >= MAX_COUNT) {
|
| + rv = SECFailure; /* last part of step 6 */
|
| + }
|
| + /* step 11.
|
| + * return valid G */
|
| +cleanup:
|
| + PORT_Memset(data, 0, sizeof(data));
|
| + if (hashcx) {
|
| + hashobj->destroy(hashcx, PR_TRUE);
|
| + }
|
| + mp_clear(&e);
|
| + mp_clear(&pm1);
|
| + mp_clear(&W);
|
| + if (err) {
|
| + MP_TO_SEC_ERROR(err);
|
| + rv = SECFailure;
|
| + }
|
| + return rv;
|
| }
|
|
|
| /* This code uses labels and gotos, so that it can follow the numbered
|
| -** steps in the algorithms from FIPS 186 appendix 2.2 very closely,
|
| +** steps in the algorithms from FIPS 186-3 appendix A.1.1.2 very closely,
|
| ** and so that the correctness of this code can be easily verified.
|
| ** So, please forgive the ugly c code.
|
| **/
|
| -SECStatus
|
| -PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes,
|
| - PQGParams **pParams, PQGVerify **pVfy)
|
| +static SECStatus
|
| +pqg_ParamGen(unsigned int L, unsigned int N, pqgGenType type,
|
| + unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy)
|
| {
|
| - unsigned int L; /* Length of P in bits. Per FIPS 186. */
|
| - unsigned int n; /* Per FIPS 186, appendix 2.2. */
|
| - unsigned int b; /* Per FIPS 186, appendix 2.2. */
|
| - unsigned int g; /* Per FIPS 186, appendix 2.2. */
|
| - unsigned int counter; /* Per FIPS 186, appendix 2.2. */
|
| - unsigned int offset; /* Per FIPS 186, appendix 2.2. */
|
| - SECItem *seed; /* Per FIPS 186, appendix 2.2. */
|
| + unsigned int n; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
| + unsigned int b; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
| + unsigned int seedlen; /* Per FIPS 186-3 app A.1.1.2 (was 'g' 186-1)*/
|
| + unsigned int counter; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
| + unsigned int offset; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
| + unsigned int outlen; /* Per FIPS 186-3, appendix A.1.1.2. */
|
| + unsigned int maxCount;
|
| + HASH_HashType hashtype;
|
| + SECItem *seed; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
|
| PRArenaPool *arena = NULL;
|
| PQGParams *params = NULL;
|
| PQGVerify *verify = NULL;
|
| @@ -373,7 +1227,11 @@
|
| mp_err err = MP_OKAY;
|
| SECStatus rv = SECFailure;
|
| int iterations = 0;
|
| - if (j > 8 || seedBytes < 20 || !pParams || !pVfy) {
|
| +
|
| +
|
| + /* Step 1. L and N already checked by caller*/
|
| + /* Step 2. if (seedlen < N) return INVALID; */
|
| + if (seedBytes < N/BITS_PER_BYTE || !pParams || !pVfy) {
|
| PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| return SECFailure;
|
| }
|
| @@ -418,15 +1276,22 @@
|
| CHECK_MPI_OK( mp_init(&G) );
|
| CHECK_MPI_OK( mp_init(&H) );
|
| CHECK_MPI_OK( mp_init(&l) );
|
| - /* Compute lengths. */
|
| - L = 512 + (j * 64); /* bits in P */
|
| - n = (L - 1) / BITS_IN_Q; /* BITS_IN_Q is 160 */
|
| - b = (L - 1) % BITS_IN_Q;
|
| - g = seedBytes * BITS_PER_BYTE; /* bits in seed, NOT G of PQG. */
|
| -step_1:
|
| +
|
| + /* Select Hash and Compute lengths. */
|
| + /* getFirstHash gives us the smallest acceptable hash for this key
|
| + * strength */
|
| + hashtype = getFirstHash(L,N);
|
| + outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE;
|
| +
|
| + /* Step 3: n = Ceil(L/outlen)-1; (same as n = Floor((L-1)/outlen)) */
|
| + n = (L - 1) / outlen;
|
| + /* Step 4: b = L -1 - (n*outlen); (same as n = (L-1) mod outlen) */
|
| + b = (L - 1) % outlen;
|
| + seedlen = seedBytes * BITS_PER_BYTE; /* bits in seed */
|
| +step_5:
|
| /* ******************************************************************
|
| - ** Step 1.
|
| - ** "Choose an abitrary sequence of at least 160 bits and call it SEED.
|
| + ** Step 5. (Step 1 in 186-1)
|
| + ** "Choose an abitrary sequence of at least N bits and call it SEED.
|
| ** Let g be the length of SEED in bits."
|
| */
|
| if (++iterations > MAX_ITERATIONS) { /* give up after a while */
|
| @@ -436,101 +1301,136 @@
|
| seed->len = seedBytes;
|
| CHECK_SEC_OK( getPQseed(seed, verify->arena) );
|
| /* ******************************************************************
|
| - ** Step 2.
|
| - ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
|
| + ** Step 6. (Step 2 in 186-1)
|
| **
|
| - ** Step 3.
|
| + ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]. (186-1)"
|
| + ** "Compute U = HASH[SEED] 2**(N-1). (186-3)"
|
| + **
|
| + ** Step 7. (Step 3 in 186-1)
|
| ** "Form Q from U by setting the most signficant bit (the 2**159 bit)
|
| ** and the least signficant bit to 1. In terms of boolean operations,
|
| - ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160."
|
| + ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160. (186-1)"
|
| + **
|
| + ** "q = 2**(N-1) + U + 1 - (U mod 2) (186-3)
|
| + **
|
| + ** Note: Both formulations are the same for U < 2**(N-1) and N=160
|
| */
|
| - CHECK_SEC_OK( makeQfromSeed(g, seed, &Q) );
|
| + if (type == FIPS186_1_TYPE) {
|
| + CHECK_SEC_OK( makeQfromSeed(seedlen, seed, &Q) );
|
| + } else {
|
| + CHECK_SEC_OK( makeQ2fromSeed(hashtype, N, seed, &Q) );
|
| + }
|
| /* ******************************************************************
|
| - ** Step 4.
|
| + ** Step 8. (Step 4 in 186-1)
|
| ** "Use a robust primality testing algorithm to test whether q is prime."
|
| **
|
| ** Appendix 2.1 states that a Rabin test with at least 50 iterations
|
| ** "will give an acceptable probability of error."
|
| */
|
| /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/
|
| - err = mpp_pprime(&Q, PQG_Q_PRIMALITY_TESTS);
|
| + err = mpp_pprime(&Q, prime_testcount_q(L,N));
|
| passed = (err == MP_YES) ? SECSuccess : SECFailure;
|
| /* ******************************************************************
|
| - ** Step 5. "If q is not prime, goto step 1."
|
| + ** Step 9. (Step 5 in 186-1) "If q is not prime, goto step 5 (1 in 186-1)."
|
| */
|
| if (passed != SECSuccess)
|
| - goto step_1;
|
| + goto step_5;
|
| /* ******************************************************************
|
| - ** Step 6. "Let counter = 0 and offset = 2."
|
| + ** Step 10.
|
| + ** offset = 1;
|
| + **( Step 6b 186-1)"Let counter = 0 and offset = 2."
|
| */
|
| - counter = 0;
|
| - offset = 2;
|
| -step_7:
|
| - /* ******************************************************************
|
| - ** Step 7.
|
| - ** "for k = 0 ... n let
|
| - ** V_k = SHA[(SEED + offset + k) mod 2**g]."
|
| + offset = (type == FIPS186_1_TYPE) ? 2 : 1;
|
| + /*
|
| + ** Step 11. (Step 6a,13a,14 in 186-1)
|
| + ** For counter - 0 to (4L-1) do
|
| **
|
| - ** Step 8.
|
| - ** "Let W be the sum of (V_k * 2**(k*160)) for k = 0 ... n
|
| - ** and let X = W + 2**(L-1).
|
| - ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
|
| - **
|
| - ** Step 9.
|
| - ** "Let c = X mod 2q and set p = X - (c - 1).
|
| - ** Note that p is congruent to 1 mod 2q."
|
| */
|
| - CHECK_SEC_OK( makePfromQandSeed(L, offset, g, seed, &Q, &P) );
|
| - /*************************************************************
|
| - ** Step 10.
|
| - ** "if p < 2**(L-1), then goto step 13."
|
| - */
|
| - CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */
|
| - if (mp_cmp(&P, &l) < 0)
|
| - goto step_13;
|
| - /************************************************************
|
| - ** Step 11.
|
| - ** "Perform a robust primality test on p."
|
| - */
|
| - /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/
|
| - err = mpp_pprime(&P, PQG_P_PRIMALITY_TESTS);
|
| - passed = (err == MP_YES) ? SECSuccess : SECFailure;
|
| + maxCount = L >= 1024 ? (4*L - 1) : 4095;
|
| + for (counter = 0; counter <= maxCount; counter++) {
|
| + /* ******************************************************************
|
| + ** Step 11.1 (Step 7 in 186-1)
|
| + ** "for j = 0 ... n let
|
| + ** V_j = HASH[(SEED + offset + j) mod 2**seedlen]."
|
| + **
|
| + ** Step 11.2 (Step 8 in 186-1)
|
| + ** "W = V_0 + V_1*2**outlen+...+ V_n-1 * 2**((n-1)*outlen) +
|
| + ** ((Vn* mod 2**b)*2**(n*outlen))"
|
| + ** Step 11.3 (Step 8 in 186-1)
|
| + ** "X = W + 2**(L-1)
|
| + ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
|
| + **
|
| + ** Step 11.4 (Step 9 in 186-1).
|
| + ** "c = X mod 2q"
|
| + **
|
| + ** Step 11.5 (Step 9 in 186-1).
|
| + ** " p = X - (c - 1).
|
| + ** Note that p is congruent to 1 mod 2q."
|
| + */
|
| + CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, seedlen,
|
| + seed, &Q, &P) );
|
| + /*************************************************************
|
| + ** Step 11.6. (Step 10 in 186-1)
|
| + ** "if p < 2**(L-1), then goto step 11.9. (step 13 in 186-1)"
|
| + */
|
| + CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */
|
| + if (mp_cmp(&P, &l) < 0)
|
| + goto step_11_9;
|
| + /************************************************************
|
| + ** Step 11.7 (step 11 in 186-1)
|
| + ** "Perform a robust primality test on p."
|
| + */
|
| + /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/
|
| + err = mpp_pprime(&P, prime_testcount_p(L, N));
|
| + passed = (err == MP_YES) ? SECSuccess : SECFailure;
|
| + /* ******************************************************************
|
| + ** Step 11.8. "If p is determined to be primed return VALID
|
| + ** values of p, q, seed and counter."
|
| + */
|
| + if (passed == SECSuccess)
|
| + break;
|
| +step_11_9:
|
| + /* ******************************************************************
|
| + ** Step 11.9. "offset = offset + n + 1."
|
| + */
|
| + offset += n + 1;
|
| + }
|
| /* ******************************************************************
|
| - ** Step 12. "If p passes the test performed in step 11, go to step 15."
|
| + ** Step 12. "goto step 5."
|
| + **
|
| + ** NOTE: if counter <= maxCount, then we exited the loop at Step 11.8
|
| + ** and now need to return p,q, seed, and counter.
|
| */
|
| - if (passed == SECSuccess)
|
| - goto step_15;
|
| -step_13:
|
| + if (counter > maxCount)
|
| + goto step_5;
|
| /* ******************************************************************
|
| - ** Step 13. "Let counter = counter + 1 and offset = offset + n + 1."
|
| + ** returning p, q, seed and counter
|
| */
|
| - counter++;
|
| - offset += n + 1;
|
| - /* ******************************************************************
|
| - ** Step 14. "If counter >= 4096 goto step 1, otherwise go to step 7."
|
| - */
|
| - if (counter >= 4096)
|
| - goto step_1;
|
| - goto step_7;
|
| -step_15:
|
| - /* ******************************************************************
|
| - ** Step 15.
|
| - ** "Save the value of SEED and the value of counter for use
|
| - ** in certifying the proper generation of p and q."
|
| - */
|
| - /* Generate h. */
|
| - SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */
|
| - if (!hit.data) goto cleanup;
|
| - do {
|
| - /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */
|
| - CHECK_SEC_OK( generate_h_candidate(&hit, &H) );
|
| - CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) );
|
| - } while (passed != PR_TRUE);
|
| + if (type == FIPS186_1_TYPE) {
|
| + /* Generate g, This is called the "Unverifiable Generation of g
|
| + * in FIPA186-3 Appedix A.2.1. For compatibility we maintain
|
| + * this version of the code */
|
| + SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */
|
| + if (!hit.data) goto cleanup;
|
| + do {
|
| + /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */
|
| + CHECK_SEC_OK( generate_h_candidate(&hit, &H) );
|
| + CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) );
|
| + } while (passed != PR_TRUE);
|
| + MPINT_TO_SECITEM(&H, &verify->h, verify->arena);
|
| + } else {
|
| + unsigned char index = 1; /* default to 1 */
|
| + verify->h.data = (unsigned char *)PORT_ArenaZAlloc(verify->arena, 1);
|
| + if (verify->h.data == NULL) { goto cleanup; }
|
| + verify->h.len = 1;
|
| + verify->h.data[0] = index;
|
| + /* Generate g, using the FIPS 186-3 Appendix A.23 */
|
| + CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, seed, index, &G) );
|
| + }
|
| /* All generation is done. Now, save the PQG params. */
|
| MPINT_TO_SECITEM(&P, ¶ms->prime, params->arena);
|
| MPINT_TO_SECITEM(&Q, ¶ms->subPrime, params->arena);
|
| MPINT_TO_SECITEM(&G, ¶ms->base, params->arena);
|
| - MPINT_TO_SECITEM(&H, &verify->h, verify->arena);
|
| verify->counter = counter;
|
| *pParams = params;
|
| *pVfy = verify;
|
| @@ -554,16 +1454,69 @@
|
| return rv;
|
| }
|
|
|
| +SECStatus
|
| +PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy)
|
| +{
|
| + unsigned int L; /* Length of P in bits. Per FIPS 186. */
|
| + unsigned int seedBytes;
|
| +
|
| + if (j > 8 || !pParams || !pVfy) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| + L = 512 + (j * 64); /* bits in P */
|
| + seedBytes = L/8;
|
| + return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
|
| + pParams, pVfy);
|
| +}
|
| +
|
| +SECStatus
|
| +PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes,
|
| + PQGParams **pParams, PQGVerify **pVfy)
|
| +{
|
| + unsigned int L; /* Length of P in bits. Per FIPS 186. */
|
| +
|
| + if (j > 8 || !pParams || !pVfy) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| + L = 512 + (j * 64); /* bits in P */
|
| + return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
|
| + pParams, pVfy);
|
| +}
|
| +
|
| +SECStatus
|
| +PQG_ParamGenV2(unsigned int L, unsigned int N, unsigned int seedBytes,
|
| + PQGParams **pParams, PQGVerify **pVfy)
|
| +{
|
| + if (pqg_validate_dsa2(L,N) != SECSuccess) {
|
| + /* error code already set */
|
| + return SECFailure;
|
| + }
|
| + return pqg_ParamGen(L, N, FIPS186_3_TYPE, seedBytes, pParams, pVfy);
|
| +}
|
| +
|
| +
|
| +/*
|
| + * verify can use vfy structures returned from either FIPS186-1 or
|
| + * FIPS186-2, and can handle differences in selected Hash functions to
|
| + * generate the parameters.
|
| + */
|
| SECStatus
|
| PQG_VerifyParams(const PQGParams *params,
|
| const PQGVerify *vfy, SECStatus *result)
|
| {
|
| SECStatus rv = SECSuccess;
|
| - int passed;
|
| - unsigned int g, n, L, offset;
|
| - mp_int P, Q, G, P_, Q_, G_, r, h;
|
| + unsigned int g, n, L, N, offset, outlen;
|
| + mp_int p0, P, Q, G, P_, Q_, G_, r, h;
|
| mp_err err = MP_OKAY;
|
| int j;
|
| + unsigned int counter_max = 0; /* handle legacy L < 1024 */
|
| + int qseed_len;
|
| + SECItem pseed_ = {0, 0, 0};
|
| + HASH_HashType hashtype;
|
| + pqgGenType type;
|
| +
|
| #define CHECKPARAM(cond) \
|
| if (!(cond)) { \
|
| *result = SECFailure; \
|
| @@ -573,6 +1526,20 @@
|
| PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| return SECFailure;
|
| }
|
| + /* always need at least p, q, and seed for any meaningful check */
|
| + if ((params->prime.len == 0) || (params->subPrime.len == 0) ||
|
| + (vfy->seed.len == 0)) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| + /* we want to either check PQ or G or both. If we don't have G, make
|
| + * sure we have count so we can check P. */
|
| + if ((params->base.len == 0) && (vfy->counter == -1)) {
|
| + PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
| + return SECFailure;
|
| + }
|
| +
|
| + MP_DIGITS(&p0) = 0;
|
| MP_DIGITS(&P) = 0;
|
| MP_DIGITS(&Q) = 0;
|
| MP_DIGITS(&G) = 0;
|
| @@ -581,6 +1548,7 @@
|
| MP_DIGITS(&G_) = 0;
|
| MP_DIGITS(&r) = 0;
|
| MP_DIGITS(&h) = 0;
|
| + CHECK_MPI_OK( mp_init(&p0) );
|
| CHECK_MPI_OK( mp_init(&P) );
|
| CHECK_MPI_OK( mp_init(&Q) );
|
| CHECK_MPI_OK( mp_init(&G) );
|
| @@ -592,47 +1560,161 @@
|
| *result = SECSuccess;
|
| SECITEM_TO_MPINT(params->prime, &P);
|
| SECITEM_TO_MPINT(params->subPrime, &Q);
|
| - SECITEM_TO_MPINT(params->base, &G);
|
| - /* 1. Q is 160 bits long. */
|
| - CHECKPARAM( mpl_significant_bits(&Q) == 160 );
|
| - /* 2. P is one of the 9 valid lengths. */
|
| + /* if G isn't specified, just check P and Q */
|
| + if (params->base.len != 0) {
|
| + SECITEM_TO_MPINT(params->base, &G);
|
| + }
|
| + /* 1. Check (L,N) pair */
|
| + N = mpl_significant_bits(&Q);
|
| L = mpl_significant_bits(&P);
|
| - j = PQG_PBITS_TO_INDEX(L);
|
| - CHECKPARAM( j >= 0 && j <= 8 );
|
| + if (L < 1024) {
|
| + /* handle DSA1 pqg parameters with less thatn 1024 bits*/
|
| + CHECKPARAM( N == DSA1_Q_BITS );
|
| + j = PQG_PBITS_TO_INDEX(L);
|
| + CHECKPARAM( j >= 0 && j <= 8 );
|
| + counter_max = 4096;
|
| + } else {
|
| + /* handle DSA2 parameters (includes DSA1, 1024 bits) */
|
| + CHECKPARAM(pqg_validate_dsa2(L, N) == SECSuccess);
|
| + counter_max = 4*L;
|
| + }
|
| /* 3. G < P */
|
| - CHECKPARAM( mp_cmp(&G, &P) < 0 );
|
| + if (params->base.len != 0) {
|
| + CHECKPARAM( mp_cmp(&G, &P) < 0 );
|
| + }
|
| /* 4. P % Q == 1 */
|
| CHECK_MPI_OK( mp_mod(&P, &Q, &r) );
|
| CHECKPARAM( mp_cmp_d(&r, 1) == 0 );
|
| /* 5. Q is prime */
|
| - CHECKPARAM( mpp_pprime(&Q, PQG_Q_PRIMALITY_TESTS) == MP_YES );
|
| + CHECKPARAM( mpp_pprime(&Q, prime_testcount_q(L,N)) == MP_YES );
|
| /* 6. P is prime */
|
| - CHECKPARAM( mpp_pprime(&P, PQG_P_PRIMALITY_TESTS) == MP_YES );
|
| + CHECKPARAM( mpp_pprime(&P, prime_testcount_p(L,N)) == MP_YES );
|
| /* Steps 7-12 are done only if the optional PQGVerify is supplied. */
|
| - /* 7. counter < 4096 */
|
| - CHECKPARAM( vfy->counter < 4096 );
|
| - /* 8. g >= 160 and g < 2048 (g is length of seed in bits) */
|
| + /* continue processing P */
|
| + /* 7. counter < 4*L */
|
| + CHECKPARAM( (vfy->counter == -1) || (vfy->counter < counter_max) );
|
| + /* 8. g >= N and g < 2*L (g is length of seed in bits) */
|
| g = vfy->seed.len * 8;
|
| - CHECKPARAM( g >= 160 && g < 2048 );
|
| + CHECKPARAM( g >= N && g < counter_max/2 );
|
| /* 9. Q generated from SEED matches Q in PQGParams. */
|
| - CHECK_SEC_OK( makeQfromSeed(g, &vfy->seed, &Q_) );
|
| + /* This function checks all possible hash and generation types to
|
| + * find a Q_ which matches Q. */
|
| + CHECKPARAM( findQfromSeed(L, N, g, &vfy->seed, &Q, &Q_, &qseed_len,
|
| + &hashtype, &type) == SECSuccess );
|
| CHECKPARAM( mp_cmp(&Q, &Q_) == 0 );
|
| - /* 10. P generated from (L, counter, g, SEED, Q) matches P in PQGParams. */
|
| - n = (L - 1) / BITS_IN_Q;
|
| - offset = vfy->counter * (n + 1) + 2;
|
| - CHECK_SEC_OK( makePfromQandSeed(L, offset, g, &vfy->seed, &Q, &P_) );
|
| - CHECKPARAM( mp_cmp(&P, &P_) == 0 );
|
| - /* Next two are optional: if h == 0 ignore */
|
| - if (vfy->h.len == 0) goto cleanup;
|
| - /* 11. 1 < h < P-1 */
|
| - SECITEM_TO_MPINT(vfy->h, &h);
|
| - CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); /* P is prime, p-1 == zero 1st bit */
|
| - CHECKPARAM( mp_cmp_d(&h, 1) > 0 && mp_cmp(&h, &P) );
|
| + if (type == FIPS186_3_ST_TYPE) {
|
| + SECItem qseed = { 0, 0, 0 };
|
| + SECItem pseed = { 0, 0, 0 };
|
| + int first_seed_len;
|
| + int pgen_counter = 0;
|
| +
|
| + /* extract pseed and qseed from domain_parameter_seed, which is
|
| + * first_seed || pseed || qseed. qseed is first_seed + small_integer
|
| + * pseed is qseed + small_integer. This means most of the time
|
| + * first_seed.len == qseed.len == pseed.len. Rarely qseed.len and/or
|
| + * pseed.len will be one greater than first_seed.len, so we can
|
| + * depend on the fact that
|
| + * first_seed.len = floor(domain_parameter_seed.len/3).
|
| + * findQfromSeed returned qseed.len, so we can calculate pseed.len as
|
| + * pseed.len = domain_parameter_seed.len - first_seed.len - qseed.len
|
| + * this is probably over kill, since 99.999% of the time they will all
|
| + * be equal.
|
| + *
|
| + * With the lengths, we can now find the offsets;
|
| + * first_seed.data = domain_parameter_seed.data + 0
|
| + * pseed.data = domain_parameter_seed.data + first_seed.len
|
| + * qseed.data = domain_parameter_seed.data
|
| + * + domain_paramter_seed.len - qseed.len
|
| + *
|
| + */
|
| + first_seed_len = vfy->seed.len/3;
|
| + CHECKPARAM(qseed_len < vfy->seed.len);
|
| + CHECKPARAM(first_seed_len*8 > N-1);
|
| + CHECKPARAM(first_seed_len+qseed_len < vfy->seed.len);
|
| + qseed.len = qseed_len;
|
| + qseed.data = vfy->seed.data + vfy->seed.len - qseed.len;
|
| + pseed.len = vfy->seed.len - (first_seed_len+qseed_len);
|
| + pseed.data = vfy->seed.data + first_seed_len;
|
| +
|
| + /*
|
| + * now complete FIPS 186-3 A.1.2.1.2. Step 1 was completed
|
| + * above in our initial checks, Step 2 was completed by
|
| + * findQfromSeed */
|
| +
|
| + /* Step 3 (status, c0, prime_seed, prime_gen_counter) =
|
| + ** (ST_Random_Prime((ceil(length/2)+1, input_seed)
|
| + */
|
| + CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1,
|
| + &qseed, &p0, &pseed_, &pgen_counter) );
|
| + /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */
|
| + CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L,
|
| + &p0, &Q_, &P_, &pseed_, &pgen_counter) );
|
| + CHECKPARAM( mp_cmp(&P, &P_) == 0 );
|
| + /* make sure pseed wasn't tampered with (since it is part of
|
| + * calculating G) */
|
| + CHECKPARAM( SECITEM_CompareItem(&pseed, &pseed_) == SECEqual );
|
| + } else if (vfy->counter == -1) {
|
| + /* If counter is set to -1, we are really only verifying G, skip
|
| + * the remainder of the checks for P */
|
| + CHECKPARAM(type != FIPS186_1_TYPE); /* we only do this for DSA2 */
|
| + } else {
|
| + /* 10. P generated from (L, counter, g, SEED, Q) matches P
|
| + * in PQGParams. */
|
| + outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE;
|
| + n = (L - 1) / outlen;
|
| + offset = vfy->counter * (n + 1) + ((type == FIPS186_1_TYPE) ? 2 : 1);
|
| + CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, g, &vfy->seed,
|
| + &Q, &P_) );
|
| + CHECKPARAM( mp_cmp(&P, &P_) == 0 );
|
| + }
|
| +
|
| + /* now check G, skip if don't have a g */
|
| + if (params->base.len == 0) goto cleanup;
|
| +
|
| + /* first Always check that G is OK FIPS186-3 A.2.2 & A.2.4*/
|
| + /* 1. 2 < G < P-1 */
|
| + /* P is prime, p-1 == zero 1st bit */
|
| + CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) );
|
| + CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) < 0 );
|
| CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
|
| - /* 12. G generated from h matches G in PQGParams. */
|
| - CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) );
|
| - CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 );
|
| + /* 2. verify g**q mod p == 1 */
|
| + CHECK_MPI_OK( mp_exptmod(&G, &Q, &P, &h) ); /* h = G ** Q mod P */
|
| + CHECKPARAM(mp_cmp_d(&h, 1) == 0);
|
| +
|
| + /* no h, the above is the best we can do */
|
| + if (vfy->h.len == 0) {
|
| + if (type != FIPS186_1_TYPE) {
|
| + *result = SECWouldBlock;
|
| + }
|
| + goto cleanup;
|
| + }
|
| +
|
| + /*
|
| + * If h is one byte and FIPS186-3 was used to generate Q (we've verified
|
| + * Q was generated from seed already, then we assume that FIPS 186-3
|
| + * appendix A.2.3 was used to generate G. Otherwise we assume A.2.1 was
|
| + * used to generate G.
|
| + */
|
| + if ((vfy->h.len == 1) && (type != FIPS186_1_TYPE)) {
|
| + /* A.2.3 */
|
| + CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &vfy->seed,
|
| + vfy->h.data[0], &G_) );
|
| + CHECKPARAM( mp_cmp(&G, &G_) == 0 );
|
| + } else {
|
| + int passed;
|
| + /* A.2.1 */
|
| + SECITEM_TO_MPINT(vfy->h, &h);
|
| + /* 11. 1 < h < P-1 */
|
| + /* P is prime, p-1 == zero 1st bit */
|
| + CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) );
|
| + CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) );
|
| + CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
|
| + /* 12. G generated from h matches G in PQGParams. */
|
| + CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) );
|
| + CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 );
|
| + }
|
| cleanup:
|
| + mp_clear(&p0);
|
| mp_clear(&P);
|
| mp_clear(&Q);
|
| mp_clear(&G);
|
| @@ -641,6 +1723,9 @@
|
| mp_clear(&G_);
|
| mp_clear(&r);
|
| mp_clear(&h);
|
| + if (pseed_.data) {
|
| + SECITEM_FreeItem(&pseed_,PR_FALSE);
|
| + }
|
| if (err) {
|
| MP_TO_SEC_ERROR(err);
|
| rv = SECFailure;
|
|
|