OLD | NEW |
1 // Copyright 2012 The Chromium Authors. All rights reserved. | 1 // Copyright 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "cc/math_util.h" | 5 #include "cc/math_util.h" |
6 | 6 |
7 #include <cmath> | 7 #include <cmath> |
8 #include <limits> | 8 #include <limits> |
9 | 9 |
10 #include "ui/gfx/quad_f.h" | 10 #include "ui/gfx/quad_f.h" |
11 #include "ui/gfx/rect.h" | 11 #include "ui/gfx/rect.h" |
12 #include "ui/gfx/rect_conversions.h" | 12 #include "ui/gfx/rect_conversions.h" |
13 #include "ui/gfx/rect_f.h" | 13 #include "ui/gfx/rect_f.h" |
| 14 #include "ui/gfx/transform.h" |
14 #include "ui/gfx/vector2d_f.h" | 15 #include "ui/gfx/vector2d_f.h" |
15 #include <public/WebTransformationMatrix.h> | |
16 | |
17 using WebKit::WebTransformationMatrix; | |
18 | 16 |
19 namespace cc { | 17 namespace cc { |
20 | 18 |
21 const double MathUtil::PI_DOUBLE = 3.14159265358979323846; | 19 const double MathUtil::PI_DOUBLE = 3.14159265358979323846; |
22 const float MathUtil::PI_FLOAT = 3.14159265358979323846f; | 20 const float MathUtil::PI_FLOAT = 3.14159265358979323846f; |
23 const double MathUtil::EPSILON = 1e-9; | 21 const double MathUtil::EPSILON = 1e-9; |
24 | 22 |
25 static HomogeneousCoordinate projectHomogeneousPoint(const WebTransformationMatr
ix& transform, const gfx::PointF& p) | 23 static HomogeneousCoordinate projectHomogeneousPoint(const gfx::Transform& trans
form, const gfx::PointF& p) |
26 { | 24 { |
27 // In this case, the layer we are trying to project onto is perpendicular to
ray | 25 // In this case, the layer we are trying to project onto is perpendicular to
ray |
28 // (point p and z-axis direction) that we are trying to project. This happen
s when the | 26 // (point p and z-axis direction) that we are trying to project. This happen
s when the |
29 // layer is rotated so that it is infinitesimally thin, or when it is co-pla
nar with | 27 // layer is rotated so that it is infinitesimally thin, or when it is co-pla
nar with |
30 // the camera origin -- i.e. when the layer is invisible anyway. | 28 // the camera origin -- i.e. when the layer is invisible anyway. |
31 if (!transform.m33()) | 29 if (!transform.matrix().getDouble(2, 2)) |
32 return HomogeneousCoordinate(0, 0, 0, 1); | 30 return HomogeneousCoordinate(0, 0, 0, 1); |
33 | 31 |
34 double x = p.x(); | 32 double x = p.x(); |
35 double y = p.y(); | 33 double y = p.y(); |
36 double z = -(transform.m13() * x + transform.m23() * y + transform.m43()) /
transform.m33(); | 34 double z = -(transform.matrix().getDouble(2, 0) * x + transform.matrix().get
Double(2, 1) * y + transform.matrix().getDouble(2, 3)) / transform.matrix().getD
ouble(2, 2); |
37 // implicit definition of w = 1; | 35 // implicit definition of w = 1; |
38 | 36 |
39 double outX = x * transform.m11() + y * transform.m21() + z * transform.m31(
) + transform.m41(); | 37 double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix(
).getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix().
getDouble(0, 3); |
40 double outY = x * transform.m12() + y * transform.m22() + z * transform.m32(
) + transform.m42(); | 38 double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix(
).getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix().
getDouble(1, 3); |
41 double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33(
) + transform.m43(); | 39 double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix(
).getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix().
getDouble(2, 3); |
42 double outW = x * transform.m14() + y * transform.m24() + z * transform.m34(
) + transform.m44(); | 40 double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix(
).getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix().
getDouble(3, 3); |
43 | 41 |
44 return HomogeneousCoordinate(outX, outY, outZ, outW); | 42 return HomogeneousCoordinate(outX, outY, outZ, outW); |
45 } | 43 } |
46 | 44 |
47 static HomogeneousCoordinate mapHomogeneousPoint(const WebTransformationMatrix&
transform, const gfx::Point3F& p) | 45 static HomogeneousCoordinate mapHomogeneousPoint(const gfx::Transform& transform
, const gfx::Point3F& p) |
48 { | 46 { |
49 double x = p.x(); | 47 double x = p.x(); |
50 double y = p.y(); | 48 double y = p.y(); |
51 double z = p.z(); | 49 double z = p.z(); |
52 // implicit definition of w = 1; | 50 // implicit definition of w = 1; |
53 | 51 |
54 double outX = x * transform.m11() + y * transform.m21() + z * transform.m31(
) + transform.m41(); | 52 double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix(
).getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix().
getDouble(0, 3); |
55 double outY = x * transform.m12() + y * transform.m22() + z * transform.m32(
) + transform.m42(); | 53 double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix(
).getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix().
getDouble(1, 3); |
56 double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33(
) + transform.m43(); | 54 double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix(
).getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix().
getDouble(2, 3); |
57 double outW = x * transform.m14() + y * transform.m24() + z * transform.m34(
) + transform.m44(); | 55 double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix(
).getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix().
getDouble(3, 3); |
58 | 56 |
59 return HomogeneousCoordinate(outX, outY, outZ, outW); | 57 return HomogeneousCoordinate(outX, outY, outZ, outW); |
60 } | 58 } |
61 | 59 |
62 static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordin
ate& h1, const HomogeneousCoordinate& h2) | 60 static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordin
ate& h1, const HomogeneousCoordinate& h2) |
63 { | 61 { |
64 // Points h1 and h2 form a line in 4d, and any point on that line can be rep
resented | 62 // Points h1 and h2 form a line in 4d, and any point on that line can be rep
resented |
65 // as an interpolation between h1 and h2: | 63 // as an interpolation between h1 and h2: |
66 // p = (1-t) h1 + (t) h2 | 64 // p = (1-t) h1 + (t) h2 |
67 // | 65 // |
(...skipping 27 matching lines...) Expand all Loading... |
95 ymin = std::min(p.y(), ymin); | 93 ymin = std::min(p.y(), ymin); |
96 ymax = std::max(p.y(), ymax); | 94 ymax = std::max(p.y(), ymax); |
97 } | 95 } |
98 | 96 |
99 static inline void addVertexToClippedQuad(const gfx::PointF& newVertex, gfx::Poi
ntF clippedQuad[8], int& numVerticesInClippedQuad) | 97 static inline void addVertexToClippedQuad(const gfx::PointF& newVertex, gfx::Poi
ntF clippedQuad[8], int& numVerticesInClippedQuad) |
100 { | 98 { |
101 clippedQuad[numVerticesInClippedQuad] = newVertex; | 99 clippedQuad[numVerticesInClippedQuad] = newVertex; |
102 numVerticesInClippedQuad++; | 100 numVerticesInClippedQuad++; |
103 } | 101 } |
104 | 102 |
105 gfx::Rect MathUtil::mapClippedRect(const WebTransformationMatrix& transform, con
st gfx::Rect& srcRect) | 103 gfx::Rect MathUtil::mapClippedRect(const gfx::Transform& transform, const gfx::R
ect& srcRect) |
106 { | 104 { |
107 return gfx::ToEnclosingRect(mapClippedRect(transform, gfx::RectF(srcRect))); | 105 return gfx::ToEnclosingRect(mapClippedRect(transform, gfx::RectF(srcRect))); |
108 } | 106 } |
109 | 107 |
110 gfx::RectF MathUtil::mapClippedRect(const WebTransformationMatrix& transform, co
nst gfx::RectF& srcRect) | 108 gfx::RectF MathUtil::mapClippedRect(const gfx::Transform& transform, const gfx::
RectF& srcRect) |
111 { | 109 { |
112 if (transform.isIdentityOrTranslation()) | 110 if (MathUtil::isIdentityOrTranslation(transform)) |
113 return srcRect + gfx::Vector2dF(static_cast<float>(transform.m41()), sta
tic_cast<float>(transform.m42())); | 111 return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().ge
tDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
114 | 112 |
115 // Apply the transform, but retain the result in homogeneous coordinates. | 113 // Apply the transform, but retain the result in homogeneous coordinates. |
116 gfx::QuadF q = gfx::QuadF(srcRect); | 114 gfx::QuadF q = gfx::QuadF(srcRect); |
117 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1(
))); | 115 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1(
))); |
118 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2(
))); | 116 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2(
))); |
119 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3(
))); | 117 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3(
))); |
120 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4(
))); | 118 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4(
))); |
121 | 119 |
122 return computeEnclosingClippedRect(h1, h2, h3, h4); | 120 return computeEnclosingClippedRect(h1, h2, h3, h4); |
123 } | 121 } |
124 | 122 |
125 gfx::RectF MathUtil::projectClippedRect(const WebTransformationMatrix& transform
, const gfx::RectF& srcRect) | 123 gfx::RectF MathUtil::projectClippedRect(const gfx::Transform& transform, const g
fx::RectF& srcRect) |
126 { | 124 { |
127 if (transform.isIdentityOrTranslation()) | 125 if (MathUtil::isIdentityOrTranslation(transform)) |
128 return srcRect + gfx::Vector2dF(static_cast<float>(transform.m41()), sta
tic_cast<float>(transform.m42())); | 126 return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().ge
tDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
129 | 127 |
130 // Perform the projection, but retain the result in homogeneous coordinates. | 128 // Perform the projection, but retain the result in homogeneous coordinates. |
131 gfx::QuadF q = gfx::QuadF(srcRect); | 129 gfx::QuadF q = gfx::QuadF(srcRect); |
132 HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1()); | 130 HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1()); |
133 HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2()); | 131 HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2()); |
134 HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3()); | 132 HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3()); |
135 HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4()); | 133 HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4()); |
136 | 134 |
137 return computeEnclosingClippedRect(h1, h2, h3, h4); | 135 return computeEnclosingClippedRect(h1, h2, h3, h4); |
138 } | 136 } |
139 | 137 |
140 void MathUtil::mapClippedQuad(const WebTransformationMatrix& transform, const gf
x::QuadF& srcQuad, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad) | 138 void MathUtil::mapClippedQuad(const gfx::Transform& transform, const gfx::QuadF&
srcQuad, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad) |
141 { | 139 { |
142 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p1())); | 140 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p1())); |
143 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p2())); | 141 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p2())); |
144 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p3())); | 142 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p3())); |
145 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p4())); | 143 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p4())); |
146 | 144 |
147 // The order of adding the vertices to the array is chosen so that clockwise
/ counter-clockwise orientation is retained. | 145 // The order of adding the vertices to the array is chosen so that clockwise
/ counter-clockwise orientation is retained. |
148 | 146 |
149 numVerticesInClippedQuad = 0; | 147 numVerticesInClippedQuad = 0; |
150 | 148 |
(...skipping 83 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
234 | 232 |
235 if (!h4.shouldBeClipped()) | 233 if (!h4.shouldBeClipped()) |
236 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d()
); | 234 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d()
); |
237 | 235 |
238 if (h4.shouldBeClipped() ^ h1.shouldBeClipped()) | 236 if (h4.shouldBeClipped() ^ h1.shouldBeClipped()) |
239 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo
rEdge(h4, h1).cartesianPoint2d()); | 237 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo
rEdge(h4, h1).cartesianPoint2d()); |
240 | 238 |
241 return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ym
in)); | 239 return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ym
in)); |
242 } | 240 } |
243 | 241 |
244 gfx::QuadF MathUtil::mapQuad(const WebTransformationMatrix& transform, const gfx
::QuadF& q, bool& clipped) | 242 gfx::QuadF MathUtil::mapQuad(const gfx::Transform& transform, const gfx::QuadF&
q, bool& clipped) |
245 { | 243 { |
246 if (transform.isIdentityOrTranslation()) { | 244 if (MathUtil::isIdentityOrTranslation(transform)) { |
247 gfx::QuadF mappedQuad(q); | 245 gfx::QuadF mappedQuad(q); |
248 mappedQuad += gfx::Vector2dF(static_cast<float>(transform.m41()), static
_cast<float>(transform.m42())); | 246 mappedQuad += gfx::Vector2dF(static_cast<float>(transform.matrix().getDo
uble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
249 clipped = false; | 247 clipped = false; |
250 return mappedQuad; | 248 return mappedQuad; |
251 } | 249 } |
252 | 250 |
253 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1(
))); | 251 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1(
))); |
254 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2(
))); | 252 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2(
))); |
255 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3(
))); | 253 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3(
))); |
256 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4(
))); | 254 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4(
))); |
257 | 255 |
258 clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped
() || h4.shouldBeClipped(); | 256 clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped
() || h4.shouldBeClipped(); |
259 | 257 |
260 // Result will be invalid if clipped == true. But, compute it anyway just in
case, to emulate existing behavior. | 258 // Result will be invalid if clipped == true. But, compute it anyway just in
case, to emulate existing behavior. |
261 return gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesian
Point2d(), h4.cartesianPoint2d()); | 259 return gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesian
Point2d(), h4.cartesianPoint2d()); |
262 } | 260 } |
263 | 261 |
264 gfx::PointF MathUtil::mapPoint(const WebTransformationMatrix& transform, const g
fx::PointF& p, bool& clipped) | 262 gfx::PointF MathUtil::mapPoint(const gfx::Transform& transform, const gfx::Point
F& p, bool& clipped) |
265 { | 263 { |
266 HomogeneousCoordinate h = mapHomogeneousPoint(transform, gfx::Point3F(p)); | 264 HomogeneousCoordinate h = mapHomogeneousPoint(transform, gfx::Point3F(p)); |
267 | 265 |
268 if (h.w > 0) { | 266 if (h.w > 0) { |
269 clipped = false; | 267 clipped = false; |
270 return h.cartesianPoint2d(); | 268 return h.cartesianPoint2d(); |
271 } | 269 } |
272 | 270 |
273 // The cartesian coordinates will be invalid after dividing by w. | 271 // The cartesian coordinates will be invalid after dividing by w. |
274 clipped = true; | 272 clipped = true; |
275 | 273 |
276 // Avoid dividing by w if w == 0. | 274 // Avoid dividing by w if w == 0. |
277 if (!h.w) | 275 if (!h.w) |
278 return gfx::PointF(); | 276 return gfx::PointF(); |
279 | 277 |
280 // This return value will be invalid because clipped == true, but (1) users
of this | 278 // This return value will be invalid because clipped == true, but (1) users
of this |
281 // code should be ignoring the return value when clipped == true anyway, and
(2) this | 279 // code should be ignoring the return value when clipped == true anyway, and
(2) this |
282 // behavior is more consistent with existing behavior of WebKit transforms i
f the user | 280 // behavior is more consistent with existing behavior of WebKit transforms i
f the user |
283 // really does not ignore the return value. | 281 // really does not ignore the return value. |
284 return h.cartesianPoint2d(); | 282 return h.cartesianPoint2d(); |
285 } | 283 } |
286 | 284 |
287 gfx::Point3F MathUtil::mapPoint(const WebTransformationMatrix& transform, const
gfx::Point3F& p, bool& clipped) | 285 gfx::Point3F MathUtil::mapPoint(const gfx::Transform& transform, const gfx::Poin
t3F& p, bool& clipped) |
288 { | 286 { |
289 HomogeneousCoordinate h = mapHomogeneousPoint(transform, p); | 287 HomogeneousCoordinate h = mapHomogeneousPoint(transform, p); |
290 | 288 |
291 if (h.w > 0) { | 289 if (h.w > 0) { |
292 clipped = false; | 290 clipped = false; |
293 return h.cartesianPoint3d(); | 291 return h.cartesianPoint3d(); |
294 } | 292 } |
295 | 293 |
296 // The cartesian coordinates will be invalid after dividing by w. | 294 // The cartesian coordinates will be invalid after dividing by w. |
297 clipped = true; | 295 clipped = true; |
298 | 296 |
299 // Avoid dividing by w if w == 0. | 297 // Avoid dividing by w if w == 0. |
300 if (!h.w) | 298 if (!h.w) |
301 return gfx::Point3F(); | 299 return gfx::Point3F(); |
302 | 300 |
303 // This return value will be invalid because clipped == true, but (1) users
of this | 301 // This return value will be invalid because clipped == true, but (1) users
of this |
304 // code should be ignoring the return value when clipped == true anyway, and
(2) this | 302 // code should be ignoring the return value when clipped == true anyway, and
(2) this |
305 // behavior is more consistent with existing behavior of WebKit transforms i
f the user | 303 // behavior is more consistent with existing behavior of WebKit transforms i
f the user |
306 // really does not ignore the return value. | 304 // really does not ignore the return value. |
307 return h.cartesianPoint3d(); | 305 return h.cartesianPoint3d(); |
308 } | 306 } |
309 | 307 |
310 gfx::QuadF MathUtil::projectQuad(const WebTransformationMatrix& transform, const
gfx::QuadF& q, bool& clipped) | 308 gfx::QuadF MathUtil::projectQuad(const gfx::Transform& transform, const gfx::Qua
dF& q, bool& clipped) |
311 { | 309 { |
312 gfx::QuadF projectedQuad; | 310 gfx::QuadF projectedQuad; |
313 bool clippedPoint; | 311 bool clippedPoint; |
314 projectedQuad.set_p1(projectPoint(transform, q.p1(), clippedPoint)); | 312 projectedQuad.set_p1(projectPoint(transform, q.p1(), clippedPoint)); |
315 clipped = clippedPoint; | 313 clipped = clippedPoint; |
316 projectedQuad.set_p2(projectPoint(transform, q.p2(), clippedPoint)); | 314 projectedQuad.set_p2(projectPoint(transform, q.p2(), clippedPoint)); |
317 clipped |= clippedPoint; | 315 clipped |= clippedPoint; |
318 projectedQuad.set_p3(projectPoint(transform, q.p3(), clippedPoint)); | 316 projectedQuad.set_p3(projectPoint(transform, q.p3(), clippedPoint)); |
319 clipped |= clippedPoint; | 317 clipped |= clippedPoint; |
320 projectedQuad.set_p4(projectPoint(transform, q.p4(), clippedPoint)); | 318 projectedQuad.set_p4(projectPoint(transform, q.p4(), clippedPoint)); |
321 clipped |= clippedPoint; | 319 clipped |= clippedPoint; |
322 | 320 |
323 return projectedQuad; | 321 return projectedQuad; |
324 } | 322 } |
325 | 323 |
326 gfx::PointF MathUtil::projectPoint(const WebTransformationMatrix& transform, con
st gfx::PointF& p, bool& clipped) | 324 gfx::PointF MathUtil::projectPoint(const gfx::Transform& transform, const gfx::P
ointF& p, bool& clipped) |
327 { | 325 { |
328 HomogeneousCoordinate h = projectHomogeneousPoint(transform, p); | 326 HomogeneousCoordinate h = projectHomogeneousPoint(transform, p); |
329 | 327 |
330 if (h.w > 0) { | 328 if (h.w > 0) { |
331 // The cartesian coordinates will be valid in this case. | 329 // The cartesian coordinates will be valid in this case. |
332 clipped = false; | 330 clipped = false; |
333 return h.cartesianPoint2d(); | 331 return h.cartesianPoint2d(); |
334 } | 332 } |
335 | 333 |
336 // The cartesian coordinates will be invalid after dividing by w. | 334 // The cartesian coordinates will be invalid after dividing by w. |
337 clipped = true; | 335 clipped = true; |
338 | 336 |
339 // Avoid dividing by w if w == 0. | 337 // Avoid dividing by w if w == 0. |
340 if (!h.w) | 338 if (!h.w) |
341 return gfx::PointF(); | 339 return gfx::PointF(); |
342 | 340 |
343 // This return value will be invalid because clipped == true, but (1) users
of this | 341 // This return value will be invalid because clipped == true, but (1) users
of this |
344 // code should be ignoring the return value when clipped == true anyway, and
(2) this | 342 // code should be ignoring the return value when clipped == true anyway, and
(2) this |
345 // behavior is more consistent with existing behavior of WebKit transforms i
f the user | 343 // behavior is more consistent with existing behavior of WebKit transforms i
f the user |
346 // really does not ignore the return value. | 344 // really does not ignore the return value. |
347 return h.cartesianPoint2d(); | 345 return h.cartesianPoint2d(); |
348 } | 346 } |
349 | 347 |
350 void MathUtil::flattenTransformTo2d(WebTransformationMatrix& transform) | 348 void MathUtil::flattenTransformTo2d(gfx::Transform& transform) |
351 { | 349 { |
352 // Set both the 3rd row and 3rd column to (0, 0, 1, 0). | 350 // Set both the 3rd row and 3rd column to (0, 0, 1, 0). |
353 // | 351 // |
354 // One useful interpretation of doing this operation: | 352 // One useful interpretation of doing this operation: |
355 // - For x and y values, the new transform behaves effectively like an orth
ographic | 353 // - For x and y values, the new transform behaves effectively like an orth
ographic |
356 // projection was added to the matrix sequence. | 354 // projection was added to the matrix sequence. |
357 // - For z values, the new transform overrides any effect that the transfor
m had on | 355 // - For z values, the new transform overrides any effect that the transfor
m had on |
358 // z, and instead it preserves the z value for any points that are transf
ormed. | 356 // z, and instead it preserves the z value for any points that are transf
ormed. |
359 // - Because of linearity of transforms, this flattened transform also pres
erves the | 357 // - Because of linearity of transforms, this flattened transform also pres
erves the |
360 // effect that any subsequent (post-multiplied) transforms would have on
z values. | 358 // effect that any subsequent (post-multiplied) transforms would have on
z values. |
361 // | 359 // |
362 transform.setM13(0); | 360 transform.matrix().setDouble(2, 0, 0); |
363 transform.setM23(0); | 361 transform.matrix().setDouble(2, 1, 0); |
364 transform.setM31(0); | 362 transform.matrix().setDouble(0, 2, 0); |
365 transform.setM32(0); | 363 transform.matrix().setDouble(1, 2, 0); |
366 transform.setM33(1); | 364 transform.matrix().setDouble(2, 2, 1); |
367 transform.setM34(0); | 365 transform.matrix().setDouble(3, 2, 0); |
368 transform.setM43(0); | 366 transform.matrix().setDouble(2, 3, 0); |
369 } | 367 } |
370 | 368 |
371 static inline float scaleOnAxis(double a, double b, double c) | 369 static inline float scaleOnAxis(double a, double b, double c) |
372 { | 370 { |
373 return std::sqrt(a * a + b * b + c * c); | 371 return std::sqrt(a * a + b * b + c * c); |
374 } | 372 } |
375 | 373 |
376 gfx::Vector2dF MathUtil::computeTransform2dScaleComponents(const WebTransformati
onMatrix& transform) | 374 gfx::Vector2dF MathUtil::computeTransform2dScaleComponents(const gfx::Transform&
transform) |
377 { | 375 { |
378 if (transform.hasPerspective()) | 376 if (hasPerspective(transform)) |
379 return gfx::Vector2dF(1, 1); | 377 return gfx::Vector2dF(1, 1); |
380 float xScale = scaleOnAxis(transform.m11(), transform.m12(), transform.m13()
); | 378 float xScale = scaleOnAxis(transform.matrix().getDouble(0, 0), transform.mat
rix().getDouble(1, 0), transform.matrix().getDouble(2, 0)); |
381 float yScale = scaleOnAxis(transform.m21(), transform.m22(), transform.m23()
); | 379 float yScale = scaleOnAxis(transform.matrix().getDouble(0, 1), transform.mat
rix().getDouble(1, 1), transform.matrix().getDouble(2, 1)); |
382 return gfx::Vector2dF(xScale, yScale); | 380 return gfx::Vector2dF(xScale, yScale); |
383 } | 381 } |
384 | 382 |
385 float MathUtil::smallestAngleBetweenVectors(gfx::Vector2dF v1, gfx::Vector2dF v2
) | 383 float MathUtil::smallestAngleBetweenVectors(gfx::Vector2dF v1, gfx::Vector2dF v2
) |
386 { | 384 { |
387 double dotProduct = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); | 385 double dotProduct = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); |
388 // Clamp to compensate for rounding errors. | 386 // Clamp to compensate for rounding errors. |
389 dotProduct = std::max(-1.0, std::min(1.0, dotProduct)); | 387 dotProduct = std::max(-1.0, std::min(1.0, dotProduct)); |
390 return static_cast<float>(Rad2Deg(std::acos(dotProduct))); | 388 return static_cast<float>(Rad2Deg(std::acos(dotProduct))); |
391 } | 389 } |
392 | 390 |
393 gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF des
tination) | 391 gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF des
tination) |
394 { | 392 { |
395 float projectedLength = gfx::DotProduct(source, destination) / destination.L
engthSquared(); | 393 float projectedLength = gfx::DotProduct(source, destination) / destination.L
engthSquared(); |
396 return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * d
estination.y()); | 394 return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * d
estination.y()); |
397 } | 395 } |
398 | 396 |
399 bool MathUtil::isInvertible(const gfx::Transform& transform) | 397 bool MathUtil::isBackFaceVisible(const gfx::Transform& transform) |
400 { | 398 { |
401 const SkMatrix44& matrix = transform.matrix(); | 399 // Compute whether a layer with a forward-facing normal of (0, 0, 1) would |
402 double determinant = matrix.determinant(); | 400 // have its back face visible after applying the transform. |
403 return abs(determinant) > EPSILON; | 401 // |
404 } | 402 // This is done by transforming the normal and seeing if the resulting z |
| 403 // value is positive or negative. However, note that transforming a normal |
| 404 // actually requires using the inverse-transpose of the original transform. |
405 | 405 |
406 bool MathUtil::isBackFaceVisible(const gfx::Transform&) | 406 // TODO (shawnsingh) make this perform more efficiently - we do not |
407 { | 407 // actually need to instantiate/invert/transpose any matrices, exploiting th
e |
408 // TODO (shawnsingh): to be implemented in a follow up patch very soon. | 408 // fact that we only need to transform (0, 0, 1, 0). |
409 NOTREACHED(); | 409 gfx::Transform inverseTransform = MathUtil::inverse(transform); |
410 return false; | 410 const SkMatrix44& mInv = inverseTransform.matrix(); |
411 } | |
412 | 411 |
413 bool MathUtil::isIdentity(const gfx::Transform& transform) | 412 return mInv.getDouble(2, 2) < 0; |
414 { | |
415 return transform.matrix().isIdentity(); | |
416 } | 413 } |
417 | 414 |
418 bool MathUtil::isIdentityOrTranslation(const gfx::Transform& transform) | 415 bool MathUtil::isIdentityOrTranslation(const gfx::Transform& transform) |
419 { | 416 { |
420 const SkMatrix44& matrix = transform.matrix(); | 417 const SkMatrix44& matrix = transform.matrix(); |
421 | 418 |
422 bool hasNoPerspective = !matrix.getDouble(3, 0) && !matrix.getDouble(3, 1) &
& !matrix.getDouble(3, 2) && (matrix.getDouble(3, 3) == 1); | 419 bool hasNoPerspective = !matrix.getDouble(3, 0) && !matrix.getDouble(3, 1) &
& !matrix.getDouble(3, 2) && (matrix.getDouble(3, 3) == 1); |
423 bool hasNoRotationOrSkew = !matrix.getDouble(0, 1) && !matrix.getDouble(0, 2
) && !matrix.getDouble(1, 0) && | 420 bool hasNoRotationOrSkew = !matrix.getDouble(0, 1) && !matrix.getDouble(0, 2
) && !matrix.getDouble(1, 0) && |
424 !matrix.getDouble(1, 2) && !matrix.getDouble(2, 0) && !matrix.getDouble(
2, 1); | 421 !matrix.getDouble(1, 2) && !matrix.getDouble(2, 0) && !matrix.getDouble(
2, 1); |
425 bool hasNoScale = matrix.getDouble(0, 0) == 1 && matrix.getDouble(1, 1) == 1
&& matrix.getDouble(2, 2) == 1; | 422 bool hasNoScale = matrix.getDouble(0, 0) == 1 && matrix.getDouble(1, 1) == 1
&& matrix.getDouble(2, 2) == 1; |
426 | 423 |
427 return hasNoPerspective && hasNoRotationOrSkew && hasNoScale; | 424 return hasNoPerspective && hasNoRotationOrSkew && hasNoScale; |
428 } | 425 } |
429 | 426 |
430 bool MathUtil::hasPerspective(const gfx::Transform& transform) | 427 bool MathUtil::hasPerspective(const gfx::Transform& transform) |
431 { | 428 { |
432 // Mathematically it is a bit too strict to expect the 4th element to be | 429 // Mathematically it is a bit too strict to expect the 4th element to be |
433 // equal to 1. However, the only non-perspective case where this element | 430 // equal to 1. However, the only non-perspective case where this element |
434 // becomes non-1 is when it was explicitly initialized. In that case it | 431 // becomes non-1 is when it was explicitly initialized. In that case it |
435 // still causes us to have a nontrivial divide-by-w, so we count it as | 432 // still causes us to have a nontrivial divide-by-w, so we count it as |
436 // being perspective here. | 433 // being perspective here. |
437 const SkMatrix44& matrix = transform.matrix(); | 434 const SkMatrix44& matrix = transform.matrix(); |
438 return matrix.getDouble(3, 0) || matrix.getDouble(3, 1) || matrix.getDouble(
3, 2) || (matrix.getDouble(3, 3) != 1); | 435 return matrix.getDouble(3, 0) || matrix.getDouble(3, 1) || matrix.getDouble(
3, 2) || (matrix.getDouble(3, 3) != 1); |
439 } | 436 } |
440 | 437 |
441 void MathUtil::makeIdentity(gfx::Transform* transform) | |
442 { | |
443 transform->matrix().setIdentity(); | |
444 } | |
445 | |
446 void MathUtil::rotateEulerAngles(gfx::Transform* transform, double eulerX, doubl
e eulerY, double eulerZ) | 438 void MathUtil::rotateEulerAngles(gfx::Transform* transform, double eulerX, doubl
e eulerY, double eulerZ) |
447 { | 439 { |
448 // TODO (shawnsingh): make this implementation faster and more accurate by | 440 // TODO (shawnsingh): make this implementation faster and more accurate by |
449 // hard-coding each matrix instead of calling rotateAxisAngle(). | 441 // hard-coding each matrix instead of calling rotateAxisAngle(). |
450 gfx::Transform rotationAboutX; | 442 gfx::Transform rotationAboutX; |
451 gfx::Transform rotationAboutY; | 443 gfx::Transform rotationAboutY; |
452 gfx::Transform rotationAboutZ; | 444 gfx::Transform rotationAboutZ; |
453 | 445 |
454 MathUtil::rotateAxisAngle(&rotationAboutX, 1, 0, 0, eulerX); | 446 MathUtil::rotateAxisAngle(&rotationAboutX, 1, 0, 0, eulerX); |
455 MathUtil::rotateAxisAngle(&rotationAboutY, 0, 1, 0, eulerY); | 447 MathUtil::rotateAxisAngle(&rotationAboutY, 0, 1, 0, eulerY); |
(...skipping 81 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
537 matrix.setDouble(1, 0, b); | 529 matrix.setDouble(1, 0, b); |
538 matrix.setDouble(0, 1, c); | 530 matrix.setDouble(0, 1, c); |
539 matrix.setDouble(1, 1, d); | 531 matrix.setDouble(1, 1, d); |
540 matrix.setDouble(0, 3, e); | 532 matrix.setDouble(0, 3, e); |
541 matrix.setDouble(1, 3, f); | 533 matrix.setDouble(1, 3, f); |
542 | 534 |
543 return result; | 535 return result; |
544 } | 536 } |
545 | 537 |
546 } // namespace cc | 538 } // namespace cc |
OLD | NEW |