OLD | NEW |
1 // Copyright 2012 The Chromium Authors. All rights reserved. | 1 // Copyright 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "cc/math_util.h" | 5 #include "cc/math_util.h" |
6 | 6 |
7 #include <cmath> | 7 #include <cmath> |
8 | 8 |
9 #include "cc/test/geometry_test_utils.h" | 9 #include "cc/test/geometry_test_utils.h" |
10 #include "testing/gmock/include/gmock/gmock.h" | 10 #include "testing/gmock/include/gmock/gmock.h" |
11 #include "testing/gtest/include/gtest/gtest.h" | 11 #include "testing/gtest/include/gtest/gtest.h" |
12 #include "ui/gfx/rect.h" | 12 #include "ui/gfx/rect.h" |
13 #include "ui/gfx/rect_f.h" | 13 #include "ui/gfx/rect_f.h" |
14 #include <public/WebTransformationMatrix.h> | 14 #include "ui/gfx/transform.h" |
15 | 15 |
16 using WebKit::WebTransformationMatrix; | 16 using gfx::Transform; |
17 | 17 |
18 namespace cc { | 18 namespace cc { |
19 namespace { | 19 namespace { |
20 | 20 |
21 TEST(MathUtilTest, verifyBackfaceVisibilityBasicCases) | 21 TEST(MathUtilTest, verifyBackfaceVisibilityBasicCases) |
22 { | 22 { |
23 WebTransformationMatrix transform; | 23 Transform transform; |
24 | 24 |
25 transform.makeIdentity(); | 25 transform.matrix().setIdentity(); |
26 EXPECT_FALSE(transform.isBackFaceVisible()); | 26 EXPECT_FALSE(MathUtil::isBackFaceVisible(transform)); |
27 | 27 |
28 transform.makeIdentity(); | 28 transform.matrix().setIdentity(); |
29 transform.rotate3d(0, 80, 0); | 29 MathUtil::rotateEulerAngles(&transform, 0, 80, 0); |
30 EXPECT_FALSE(transform.isBackFaceVisible()); | 30 EXPECT_FALSE(MathUtil::isBackFaceVisible(transform)); |
31 | 31 |
32 transform.makeIdentity(); | 32 transform.matrix().setIdentity(); |
33 transform.rotate3d(0, 100, 0); | 33 MathUtil::rotateEulerAngles(&transform, 0, 100, 0); |
34 EXPECT_TRUE(transform.isBackFaceVisible()); | 34 EXPECT_TRUE(MathUtil::isBackFaceVisible(transform)); |
35 | 35 |
36 // Edge case, 90 degree rotation should return false. | 36 // Edge case, 90 degree rotation should return false. |
37 transform.makeIdentity(); | 37 transform.matrix().setIdentity(); |
38 transform.rotate3d(0, 90, 0); | 38 MathUtil::rotateEulerAngles(&transform, 0, 90, 0); |
39 EXPECT_FALSE(transform.isBackFaceVisible()); | 39 EXPECT_FALSE(MathUtil::isBackFaceVisible(transform)); |
40 } | 40 } |
41 | 41 |
42 TEST(MathUtilTest, verifyBackfaceVisibilityForPerspective) | 42 TEST(MathUtilTest, verifyBackfaceVisibilityForPerspective) |
43 { | 43 { |
44 WebTransformationMatrix layerSpaceToProjectionPlane; | 44 Transform layerSpaceToProjectionPlane; |
45 | 45 |
46 // This tests if isBackFaceVisible works properly under perspective transfor
ms. | 46 // This tests if isBackFaceVisible works properly under perspective transfor
ms. |
47 // Specifically, layers that may have their back face visible in orthographi
c | 47 // Specifically, layers that may have their back face visible in orthographi
c |
48 // projection, may not actually have back face visible under perspective pro
jection. | 48 // projection, may not actually have back face visible under perspective pro
jection. |
49 | 49 |
50 // Case 1: Layer is rotated by slightly more than 90 degrees, at the center
of the | 50 // Case 1: Layer is rotated by slightly more than 90 degrees, at the center
of the |
51 // prespective projection. In this case, the layer's back-side is vi
sible to | 51 // prespective projection. In this case, the layer's back-side is vi
sible to |
52 // the camera. | 52 // the camera. |
53 layerSpaceToProjectionPlane.makeIdentity(); | 53 layerSpaceToProjectionPlane.matrix().setIdentity(); |
54 layerSpaceToProjectionPlane.applyPerspective(1); | 54 layerSpaceToProjectionPlane.PreconcatPerspectiveDepth(1); |
55 layerSpaceToProjectionPlane.translate3d(0, 0, 0); | 55 layerSpaceToProjectionPlane.PreconcatTranslate3d(0, 0, 0); |
56 layerSpaceToProjectionPlane.rotate3d(0, 100, 0); | 56 MathUtil::rotateEulerAngles(&layerSpaceToProjectionPlane, 0, 100, 0); |
57 EXPECT_TRUE(layerSpaceToProjectionPlane.isBackFaceVisible()); | 57 EXPECT_TRUE(MathUtil::isBackFaceVisible(layerSpaceToProjectionPlane)); |
58 | 58 |
59 // Case 2: Layer is rotated by slightly more than 90 degrees, but shifted of
f to the | 59 // Case 2: Layer is rotated by slightly more than 90 degrees, but shifted of
f to the |
60 // side of the camera. Because of the wide field-of-view, the layer'
s front | 60 // side of the camera. Because of the wide field-of-view, the layer'
s front |
61 // side is still visible. | 61 // side is still visible. |
62 // | 62 // |
63 // |<-- front side of layer is visible to perspective
camera | 63 // |<-- front side of layer is visible to perspective
camera |
64 // \ | / | 64 // \ | / |
65 // \ | / | 65 // \ | / |
66 // \| / | 66 // \| / |
67 // | / | 67 // | / |
68 // |\ /<-- camera field of view | 68 // |\ /<-- camera field of view |
69 // | \ / | 69 // | \ / |
70 // back side of layer -->| \ / | 70 // back side of layer -->| \ / |
71 // \./ <-- camera origin | 71 // \./ <-- camera origin |
72 // | 72 // |
73 layerSpaceToProjectionPlane.makeIdentity(); | 73 layerSpaceToProjectionPlane.matrix().setIdentity(); |
74 layerSpaceToProjectionPlane.applyPerspective(1); | 74 layerSpaceToProjectionPlane.PreconcatPerspectiveDepth(1); |
75 layerSpaceToProjectionPlane.translate3d(-10, 0, 0); | 75 layerSpaceToProjectionPlane.PreconcatTranslate3d(-10, 0, 0); |
76 layerSpaceToProjectionPlane.rotate3d(0, 100, 0); | 76 MathUtil::rotateEulerAngles(&layerSpaceToProjectionPlane, 0, 100, 0); |
77 EXPECT_FALSE(layerSpaceToProjectionPlane.isBackFaceVisible()); | 77 EXPECT_FALSE(MathUtil::isBackFaceVisible(layerSpaceToProjectionPlane)); |
78 | 78 |
79 // Case 3: Additionally rotating the layer by 180 degrees should of course s
how the | 79 // Case 3: Additionally rotating the layer by 180 degrees should of course s
how the |
80 // opposite result of case 2. | 80 // opposite result of case 2. |
81 layerSpaceToProjectionPlane.rotate3d(0, 180, 0); | 81 MathUtil::rotateEulerAngles(&layerSpaceToProjectionPlane, 0, 180, 0); |
82 EXPECT_TRUE(layerSpaceToProjectionPlane.isBackFaceVisible()); | 82 EXPECT_TRUE(MathUtil::isBackFaceVisible(layerSpaceToProjectionPlane)); |
83 } | 83 } |
84 | 84 |
85 TEST(MathUtilTest, verifyProjectionOfPerpendicularPlane) | 85 TEST(MathUtilTest, verifyProjectionOfPerpendicularPlane) |
86 { | 86 { |
87 // In this case, the m33() element of the transform becomes zero, which coul
d cause a | 87 // In this case, the m33() element of the transform becomes zero, which coul
d cause a |
88 // divide-by-zero when projecting points/quads. | 88 // divide-by-zero when projecting points/quads. |
89 | 89 |
90 WebTransformationMatrix transform; | 90 Transform transform; |
91 transform.makeIdentity(); | 91 transform.matrix().setIdentity(); |
92 transform.setM33(0); | 92 transform.matrix().setDouble(2, 2, 0); |
93 | 93 |
94 gfx::RectF rect = gfx::RectF(0, 0, 1, 1); | 94 gfx::RectF rect = gfx::RectF(0, 0, 1, 1); |
95 gfx::RectF projectedRect = MathUtil::projectClippedRect(transform, rect); | 95 gfx::RectF projectedRect = MathUtil::projectClippedRect(transform, rect); |
96 | 96 |
97 EXPECT_EQ(0, projectedRect.x()); | 97 EXPECT_EQ(0, projectedRect.x()); |
98 EXPECT_EQ(0, projectedRect.y()); | 98 EXPECT_EQ(0, projectedRect.y()); |
99 EXPECT_TRUE(projectedRect.IsEmpty()); | 99 EXPECT_TRUE(projectedRect.IsEmpty()); |
100 } | 100 } |
101 | 101 |
102 TEST(MathUtilTest, verifyEnclosingClippedRectUsesCorrectInitialBounds) | 102 TEST(MathUtilTest, verifyEnclosingClippedRectUsesCorrectInitialBounds) |
(...skipping 183 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
286 EXPECT_ROW4_EQ(33, 37, 41, 45, (*transform)); | 286 EXPECT_ROW4_EQ(33, 37, 41, 45, (*transform)); |
287 } | 287 } |
288 | 288 |
289 TEST(MathUtilGfxTransformTest, verifyDefaultConstructorCreatesIdentityMatrix) | 289 TEST(MathUtilGfxTransformTest, verifyDefaultConstructorCreatesIdentityMatrix) |
290 { | 290 { |
291 gfx::Transform A; | 291 gfx::Transform A; |
292 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 292 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
293 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 293 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
294 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 294 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
295 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 295 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
296 EXPECT_TRUE(MathUtil::isIdentity(A)); | 296 EXPECT_TRUE(A.IsIdentity()); |
297 } | 297 } |
298 | 298 |
299 TEST(MathUtilGfxTransformTest, verifyCreateGfxTransformFor2dElements) | 299 TEST(MathUtilGfxTransformTest, verifyCreateGfxTransformFor2dElements) |
300 { | 300 { |
301 gfx::Transform A = MathUtil::createGfxTransform(1, 2, 3, 4, 5, 6); | 301 gfx::Transform A = MathUtil::createGfxTransform(1, 2, 3, 4, 5, 6); |
302 EXPECT_ROW1_EQ(1, 3, 0, 5, A); | 302 EXPECT_ROW1_EQ(1, 3, 0, 5, A); |
303 EXPECT_ROW2_EQ(2, 4, 0, 6, A); | 303 EXPECT_ROW2_EQ(2, 4, 0, 6, A); |
304 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 304 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
305 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 305 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
306 } | 306 } |
(...skipping 18 matching lines...) Expand all Loading... |
325 EXPECT_ROW2_EQ(11, 15, 19, 23, B); | 325 EXPECT_ROW2_EQ(11, 15, 19, 23, B); |
326 EXPECT_ROW3_EQ(12, 16, 20, 24, B); | 326 EXPECT_ROW3_EQ(12, 16, 20, 24, B); |
327 EXPECT_ROW4_EQ(13, 17, 21, 25, B); | 327 EXPECT_ROW4_EQ(13, 17, 21, 25, B); |
328 } | 328 } |
329 | 329 |
330 TEST(MathUtilGfxTransformTest, verifyMatrixInversion) | 330 TEST(MathUtilGfxTransformTest, verifyMatrixInversion) |
331 { | 331 { |
332 // Invert a translation | 332 // Invert a translation |
333 gfx::Transform translation; | 333 gfx::Transform translation; |
334 translation.PreconcatTranslate3d(2, 3, 4); | 334 translation.PreconcatTranslate3d(2, 3, 4); |
335 EXPECT_TRUE(MathUtil::isInvertible(translation)); | 335 EXPECT_TRUE(translation.IsInvertible()); |
336 | 336 |
337 gfx::Transform inverseTranslation = MathUtil::inverse(translation); | 337 gfx::Transform inverseTranslation = MathUtil::inverse(translation); |
338 EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation); | 338 EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation); |
339 EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation); | 339 EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation); |
340 EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation); | 340 EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation); |
341 EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation); | 341 EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation); |
342 | 342 |
343 // Note that inversion should not have changed the original matrix. | 343 // Note that inversion should not have changed the original matrix. |
344 EXPECT_ROW1_EQ(1, 0, 0, 2, translation); | 344 EXPECT_ROW1_EQ(1, 0, 0, 2, translation); |
345 EXPECT_ROW2_EQ(0, 1, 0, 3, translation); | 345 EXPECT_ROW2_EQ(0, 1, 0, 3, translation); |
346 EXPECT_ROW3_EQ(0, 0, 1, 4, translation); | 346 EXPECT_ROW3_EQ(0, 0, 1, 4, translation); |
347 EXPECT_ROW4_EQ(0, 0, 0, 1, translation); | 347 EXPECT_ROW4_EQ(0, 0, 0, 1, translation); |
348 | 348 |
349 // Invert a non-uniform scale | 349 // Invert a non-uniform scale |
350 gfx::Transform scale; | 350 gfx::Transform scale; |
351 scale.PreconcatScale3d(4, 10, 100); | 351 scale.PreconcatScale3d(4, 10, 100); |
352 EXPECT_TRUE(MathUtil::isInvertible(scale)); | 352 EXPECT_TRUE(scale.IsInvertible()); |
353 | 353 |
354 gfx::Transform inverseScale = MathUtil::inverse(scale); | 354 gfx::Transform inverseScale = MathUtil::inverse(scale); |
355 EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale); | 355 EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale); |
356 EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale); | 356 EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale); |
357 EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale); | 357 EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale); |
358 EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale); | 358 EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale); |
359 | 359 |
360 // Try to invert a matrix that is not invertible. | 360 // Try to invert a matrix that is not invertible. |
361 // The inverse() function should simply return an identity matrix. | 361 // The inverse() function should simply return an identity matrix. |
362 gfx::Transform notInvertible; | 362 gfx::Transform notInvertible; |
363 notInvertible.matrix().setDouble(0, 0, 0); | 363 notInvertible.matrix().setDouble(0, 0, 0); |
364 notInvertible.matrix().setDouble(1, 1, 0); | 364 notInvertible.matrix().setDouble(1, 1, 0); |
365 notInvertible.matrix().setDouble(2, 2, 0); | 365 notInvertible.matrix().setDouble(2, 2, 0); |
366 notInvertible.matrix().setDouble(3, 3, 0); | 366 notInvertible.matrix().setDouble(3, 3, 0); |
367 EXPECT_FALSE(MathUtil::isInvertible(notInvertible)); | 367 EXPECT_FALSE(notInvertible.IsInvertible()); |
368 | 368 |
369 gfx::Transform inverseOfNotInvertible; | 369 gfx::Transform inverseOfNotInvertible; |
370 initializeTestMatrix(&inverseOfNotInvertible); // initialize this to somethi
ng non-identity, to make sure that assignment below actually took place. | 370 initializeTestMatrix(&inverseOfNotInvertible); // initialize this to somethi
ng non-identity, to make sure that assignment below actually took place. |
371 inverseOfNotInvertible = MathUtil::inverse(notInvertible); | 371 inverseOfNotInvertible = MathUtil::inverse(notInvertible); |
372 EXPECT_TRUE(MathUtil::isIdentity(inverseOfNotInvertible)); | 372 EXPECT_TRUE(inverseOfNotInvertible.IsIdentity()); |
373 } | 373 } |
374 | 374 |
375 TEST(MathUtilGfxTransformTest, verifyTo2DTransform) | 375 TEST(MathUtilGfxTransformTest, verifyTo2DTransform) |
376 { | 376 { |
377 gfx::Transform A; | 377 gfx::Transform A; |
378 initializeTestMatrix(&A); | 378 initializeTestMatrix(&A); |
379 | 379 |
380 gfx::Transform B = MathUtil::to2dTransform(A); | 380 gfx::Transform B = MathUtil::to2dTransform(A); |
381 | 381 |
382 EXPECT_ROW1_EQ(10, 14, 0, 22, B); | 382 EXPECT_ROW1_EQ(10, 14, 0, 22, B); |
(...skipping 141 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
524 EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A); | 524 EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A); |
525 EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A); | 525 EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A); |
526 EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A); | 526 EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A); |
527 EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A); | 527 EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A); |
528 } | 528 } |
529 | 529 |
530 TEST(MathUtilGfxTransformTest, verifyMakeIdentiy) | 530 TEST(MathUtilGfxTransformTest, verifyMakeIdentiy) |
531 { | 531 { |
532 gfx::Transform A; | 532 gfx::Transform A; |
533 initializeTestMatrix(&A); | 533 initializeTestMatrix(&A); |
534 MathUtil::makeIdentity(&A); | 534 A.matrix().setIdentity(); |
535 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 535 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
536 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 536 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
537 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 537 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
538 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 538 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
539 EXPECT_TRUE(MathUtil::isIdentity(A)); | 539 EXPECT_TRUE(A.IsIdentity()); |
540 } | 540 } |
541 | 541 |
542 TEST(MathUtilGfxTransformTest, verifyTranslate) | 542 TEST(MathUtilGfxTransformTest, verifyTranslate) |
543 { | 543 { |
544 gfx::Transform A; | 544 gfx::Transform A; |
545 A.PreconcatTranslate(2, 3); | 545 A.PreconcatTranslate(2, 3); |
546 EXPECT_ROW1_EQ(1, 0, 0, 2, A); | 546 EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
547 EXPECT_ROW2_EQ(0, 1, 0, 3, A); | 547 EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
548 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 548 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
549 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 549 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
550 | 550 |
551 // Verify that PreconcatTranslate() post-multiplies the existing matrix. | 551 // Verify that PreconcatTranslate() post-multiplies the existing matrix. |
552 MathUtil::makeIdentity(&A); | 552 A.matrix().setIdentity(); |
553 A.PreconcatScale(5, 5); | 553 A.PreconcatScale(5, 5); |
554 A.PreconcatTranslate(2, 3); | 554 A.PreconcatTranslate(2, 3); |
555 EXPECT_ROW1_EQ(5, 0, 0, 10, A); | 555 EXPECT_ROW1_EQ(5, 0, 0, 10, A); |
556 EXPECT_ROW2_EQ(0, 5, 0, 15, A); | 556 EXPECT_ROW2_EQ(0, 5, 0, 15, A); |
557 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 557 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
558 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 558 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
559 } | 559 } |
560 | 560 |
561 TEST(MathUtilGfxTransformTest, verifyTranslate3d) | 561 TEST(MathUtilGfxTransformTest, verifyTranslate3d) |
562 { | 562 { |
563 gfx::Transform A; | 563 gfx::Transform A; |
564 A.PreconcatTranslate3d(2, 3, 4); | 564 A.PreconcatTranslate3d(2, 3, 4); |
565 EXPECT_ROW1_EQ(1, 0, 0, 2, A); | 565 EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
566 EXPECT_ROW2_EQ(0, 1, 0, 3, A); | 566 EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
567 EXPECT_ROW3_EQ(0, 0, 1, 4, A); | 567 EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
568 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 568 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
569 | 569 |
570 // Verify that PreconcatTranslate3d() post-multiplies the existing matrix. | 570 // Verify that PreconcatTranslate3d() post-multiplies the existing matrix. |
571 MathUtil::makeIdentity(&A); | 571 A.matrix().setIdentity(); |
572 A.PreconcatScale3d(6, 7, 8); | 572 A.PreconcatScale3d(6, 7, 8); |
573 A.PreconcatTranslate3d(2, 3, 4); | 573 A.PreconcatTranslate3d(2, 3, 4); |
574 EXPECT_ROW1_EQ(6, 0, 0, 12, A); | 574 EXPECT_ROW1_EQ(6, 0, 0, 12, A); |
575 EXPECT_ROW2_EQ(0, 7, 0, 21, A); | 575 EXPECT_ROW2_EQ(0, 7, 0, 21, A); |
576 EXPECT_ROW3_EQ(0, 0, 8, 32, A); | 576 EXPECT_ROW3_EQ(0, 0, 8, 32, A); |
577 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 577 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
578 } | 578 } |
579 | 579 |
580 TEST(MathUtilGfxTransformTest, verifyScale) | 580 TEST(MathUtilGfxTransformTest, verifyScale) |
581 { | 581 { |
582 gfx::Transform A; | 582 gfx::Transform A; |
583 A.PreconcatScale(6, 7); | 583 A.PreconcatScale(6, 7); |
584 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | 584 EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
585 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | 585 EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
586 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 586 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
587 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 587 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
588 | 588 |
589 // Verify that PreconcatScale() post-multiplies the existing matrix. | 589 // Verify that PreconcatScale() post-multiplies the existing matrix. |
590 MathUtil::makeIdentity(&A); | 590 A.matrix().setIdentity(); |
591 A.PreconcatTranslate3d(2, 3, 4); | 591 A.PreconcatTranslate3d(2, 3, 4); |
592 A.PreconcatScale(6, 7); | 592 A.PreconcatScale(6, 7); |
593 EXPECT_ROW1_EQ(6, 0, 0, 2, A); | 593 EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
594 EXPECT_ROW2_EQ(0, 7, 0, 3, A); | 594 EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
595 EXPECT_ROW3_EQ(0, 0, 1, 4, A); | 595 EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
596 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 596 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
597 } | 597 } |
598 | 598 |
599 TEST(MathUtilGfxTransformTest, verifyScale3d) | 599 TEST(MathUtilGfxTransformTest, verifyScale3d) |
600 { | 600 { |
601 gfx::Transform A; | 601 gfx::Transform A; |
602 A.PreconcatScale3d(6, 7, 8); | 602 A.PreconcatScale3d(6, 7, 8); |
603 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | 603 EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
604 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | 604 EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
605 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 605 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
606 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 606 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
607 | 607 |
608 // Verify that scale3d() post-multiplies the existing matrix. | 608 // Verify that scale3d() post-multiplies the existing matrix. |
609 MathUtil::makeIdentity(&A); | 609 A.matrix().setIdentity(); |
610 A.PreconcatTranslate3d(2, 3, 4); | 610 A.PreconcatTranslate3d(2, 3, 4); |
611 A.PreconcatScale3d(6, 7, 8); | 611 A.PreconcatScale3d(6, 7, 8); |
612 EXPECT_ROW1_EQ(6, 0, 0, 2, A); | 612 EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
613 EXPECT_ROW2_EQ(0, 7, 0, 3, A); | 613 EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
614 EXPECT_ROW3_EQ(0, 0, 8, 4, A); | 614 EXPECT_ROW3_EQ(0, 0, 8, 4, A); |
615 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 615 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
616 } | 616 } |
617 | 617 |
618 TEST(MathUtilGfxTransformTest, verifyRotate) | 618 TEST(MathUtilGfxTransformTest, verifyRotate) |
619 { | 619 { |
620 gfx::Transform A; | 620 gfx::Transform A; |
621 A.PreconcatRotate(90); | 621 A.PreconcatRotate(90); |
622 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | 622 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
623 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | 623 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
624 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 624 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
625 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 625 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
626 | 626 |
627 // Verify that PreconcatRotate() post-multiplies the existing matrix. | 627 // Verify that PreconcatRotate() post-multiplies the existing matrix. |
628 MathUtil::makeIdentity(&A); | 628 A.matrix().setIdentity(); |
629 A.PreconcatScale3d(6, 7, 8); | 629 A.PreconcatScale3d(6, 7, 8); |
630 A.PreconcatRotate(90); | 630 A.PreconcatRotate(90); |
631 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | 631 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
632 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | 632 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
633 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 633 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
634 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 634 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
635 } | 635 } |
636 | 636 |
637 TEST(MathUtilGfxTransformTest, verifyRotateEulerAngles) | 637 TEST(MathUtilGfxTransformTest, verifyRotateEulerAngles) |
638 { | 638 { |
639 gfx::Transform A; | 639 gfx::Transform A; |
640 | 640 |
641 // Check rotation about z-axis | 641 // Check rotation about z-axis |
642 MathUtil::makeIdentity(&A); | 642 A.matrix().setIdentity(); |
643 MathUtil::rotateEulerAngles(&A, 0, 0, 90); | 643 MathUtil::rotateEulerAngles(&A, 0, 0, 90); |
644 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | 644 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
645 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | 645 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
646 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 646 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
647 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 647 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
648 | 648 |
649 // Check rotation about x-axis | 649 // Check rotation about x-axis |
650 MathUtil::makeIdentity(&A); | 650 A.matrix().setIdentity(); |
651 MathUtil::rotateEulerAngles(&A, 90, 0, 0); | 651 MathUtil::rotateEulerAngles(&A, 90, 0, 0); |
652 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 652 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
653 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); | 653 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); |
654 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); | 654 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); |
655 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 655 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
656 | 656 |
657 // Check rotation about y-axis. | 657 // Check rotation about y-axis. |
658 // Note carefully, the expected pattern is inverted compared to rotating abo
ut x axis or z axis. | 658 // Note carefully, the expected pattern is inverted compared to rotating abo
ut x axis or z axis. |
659 MathUtil::makeIdentity(&A); | 659 A.matrix().setIdentity(); |
660 MathUtil::rotateEulerAngles(&A, 0, 90, 0); | 660 MathUtil::rotateEulerAngles(&A, 0, 90, 0); |
661 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); | 661 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); |
662 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 662 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
663 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); | 663 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); |
664 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 664 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
665 | 665 |
666 // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix. | 666 // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix. |
667 MathUtil::makeIdentity(&A); | 667 A.matrix().setIdentity(); |
668 A.PreconcatScale3d(6, 7, 8); | 668 A.PreconcatScale3d(6, 7, 8); |
669 MathUtil::rotateEulerAngles(&A, 0, 0, 90); | 669 MathUtil::rotateEulerAngles(&A, 0, 0, 90); |
670 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | 670 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
671 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | 671 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
672 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 672 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
673 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 673 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
674 } | 674 } |
675 | 675 |
676 TEST(MathUtilGfxTransformTest, verifyRotateEulerAnglesOrderOfCompositeRotations) | 676 TEST(MathUtilGfxTransformTest, verifyRotateEulerAnglesOrderOfCompositeRotations) |
677 { | 677 { |
678 // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform co
nsiting of | 678 // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform co
nsiting of |
679 // three primitive rotations. This test verifies that the ordering of those
three | 679 // three primitive rotations. This test verifies that the ordering of those
three |
680 // transforms is the intended ordering. | 680 // transforms is the intended ordering. |
681 // | 681 // |
682 // The correct ordering for this test case should be: | 682 // The correct ordering for this test case should be: |
683 // 1. rotate by 30 degrees about z-axis | 683 // 1. rotate by 30 degrees about z-axis |
684 // 2. rotate by 20 degrees about y-axis | 684 // 2. rotate by 20 degrees about y-axis |
685 // 3. rotate by 10 degrees about x-axis | 685 // 3. rotate by 10 degrees about x-axis |
686 // | 686 // |
687 // Note: there are 6 possible orderings of 3 transforms. For the specific tr
ansforms | 687 // Note: there are 6 possible orderings of 3 transforms. For the specific tr
ansforms |
688 // used in this test, all 6 combinations produce a unique matrix that is dif
ferent | 688 // used in this test, all 6 combinations produce a unique matrix that is dif
ferent |
689 // from the other orderings. That way, this test verifies the exact ordering
. | 689 // from the other orderings. That way, this test verifies the exact ordering
. |
690 | 690 |
691 gfx::Transform A; | 691 gfx::Transform A; |
692 MathUtil::makeIdentity(&A); | 692 A.matrix().setIdentity(); |
693 MathUtil::rotateEulerAngles(&A, 10, 20, 30); | 693 MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
694 | 694 |
695 EXPECT_ROW1_NEAR(0.8137976813493738026394908, | 695 EXPECT_ROW1_NEAR(0.8137976813493738026394908, |
696 -0.4409696105298823720630708, | 696 -0.4409696105298823720630708, |
697 0.3785223063697923939763257, | 697 0.3785223063697923939763257, |
698 0, A, ERROR_THRESHOLD); | 698 0, A, ERROR_THRESHOLD); |
699 EXPECT_ROW2_NEAR(0.4698463103929541584413698, | 699 EXPECT_ROW2_NEAR(0.4698463103929541584413698, |
700 0.8825641192593856043657752, | 700 0.8825641192593856043657752, |
701 0.0180283112362972230968694, | 701 0.0180283112362972230968694, |
702 0, A, ERROR_THRESHOLD); | 702 0, A, ERROR_THRESHOLD); |
703 EXPECT_ROW3_NEAR(-0.3420201433256686573969318, | 703 EXPECT_ROW3_NEAR(-0.3420201433256686573969318, |
704 0.1631759111665348205288950, | 704 0.1631759111665348205288950, |
705 0.9254165783983233639631294, | 705 0.9254165783983233639631294, |
706 0, A, ERROR_THRESHOLD); | 706 0, A, ERROR_THRESHOLD); |
707 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 707 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
708 } | 708 } |
709 | 709 |
710 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForAlignedAxes) | 710 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForAlignedAxes) |
711 { | 711 { |
712 gfx::Transform A; | 712 gfx::Transform A; |
713 | 713 |
714 // Check rotation about z-axis | 714 // Check rotation about z-axis |
715 MathUtil::makeIdentity(&A); | 715 A.matrix().setIdentity(); |
716 MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); | 716 MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); |
717 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | 717 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
718 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | 718 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
719 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 719 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
720 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 720 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
721 | 721 |
722 // Check rotation about x-axis | 722 // Check rotation about x-axis |
723 MathUtil::makeIdentity(&A); | 723 A.matrix().setIdentity(); |
724 MathUtil::rotateAxisAngle(&A, 1, 0, 0, 90); | 724 MathUtil::rotateAxisAngle(&A, 1, 0, 0, 90); |
725 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 725 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
726 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); | 726 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); |
727 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); | 727 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); |
728 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 728 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
729 | 729 |
730 // Check rotation about y-axis. | 730 // Check rotation about y-axis. |
731 // Note carefully, the expected pattern is inverted compared to rotating abo
ut x axis or z axis. | 731 // Note carefully, the expected pattern is inverted compared to rotating abo
ut x axis or z axis. |
732 MathUtil::makeIdentity(&A); | 732 A.matrix().setIdentity(); |
733 MathUtil::rotateAxisAngle(&A, 0, 1, 0, 90); | 733 MathUtil::rotateAxisAngle(&A, 0, 1, 0, 90); |
734 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); | 734 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); |
735 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 735 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
736 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); | 736 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); |
737 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 737 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
738 | 738 |
739 // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. | 739 // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. |
740 MathUtil::makeIdentity(&A); | 740 A.matrix().setIdentity(); |
741 A.PreconcatScale3d(6, 7, 8); | 741 A.PreconcatScale3d(6, 7, 8); |
742 MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); | 742 MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); |
743 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | 743 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
744 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | 744 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
745 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 745 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
746 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 746 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
747 } | 747 } |
748 | 748 |
749 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForArbitraryAxis) | 749 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForArbitraryAxis) |
750 { | 750 { |
(...skipping 16 matching lines...) Expand all Loading... |
767 } | 767 } |
768 | 768 |
769 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForDegenerateAxis) | 769 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForDegenerateAxis) |
770 { | 770 { |
771 // Check rotation about a degenerate zero vector. | 771 // Check rotation about a degenerate zero vector. |
772 // It is expected to skip applying the rotation. | 772 // It is expected to skip applying the rotation. |
773 gfx::Transform A; | 773 gfx::Transform A; |
774 | 774 |
775 MathUtil::rotateAxisAngle(&A, 0, 0, 0, 45); | 775 MathUtil::rotateAxisAngle(&A, 0, 0, 0, 45); |
776 // Verify that A remains unchanged. | 776 // Verify that A remains unchanged. |
777 EXPECT_TRUE(MathUtil::isIdentity(A)); | 777 EXPECT_TRUE(A.IsIdentity()); |
778 | 778 |
779 initializeTestMatrix(&A); | 779 initializeTestMatrix(&A); |
780 MathUtil::rotateAxisAngle(&A, 0, 0, 0, 35); | 780 MathUtil::rotateAxisAngle(&A, 0, 0, 0, 35); |
781 | 781 |
782 // Verify that A remains unchanged. | 782 // Verify that A remains unchanged. |
783 EXPECT_ROW1_EQ(10, 14, 18, 22, A); | 783 EXPECT_ROW1_EQ(10, 14, 18, 22, A); |
784 EXPECT_ROW2_EQ(11, 15, 19, 23, A); | 784 EXPECT_ROW2_EQ(11, 15, 19, 23, A); |
785 EXPECT_ROW3_EQ(12, 16, 20, 24, A); | 785 EXPECT_ROW3_EQ(12, 16, 20, 24, A); |
786 EXPECT_ROW4_EQ(13, 17, 21, 25, A); | 786 EXPECT_ROW4_EQ(13, 17, 21, 25, A); |
787 } | 787 } |
788 | 788 |
789 TEST(MathUtilGfxTransformTest, verifySkewX) | 789 TEST(MathUtilGfxTransformTest, verifySkewX) |
790 { | 790 { |
791 gfx::Transform A; | 791 gfx::Transform A; |
792 A.PreconcatSkewX(45); | 792 A.PreconcatSkewX(45); |
793 EXPECT_ROW1_EQ(1, 1, 0, 0, A); | 793 EXPECT_ROW1_EQ(1, 1, 0, 0, A); |
794 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 794 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
795 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 795 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
796 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 796 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
797 | 797 |
798 // Verify that skewX() post-multiplies the existing matrix. | 798 // Verify that skewX() post-multiplies the existing matrix. |
799 // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-mu
ltiplied instead of post-multiplied. | 799 // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-mu
ltiplied instead of post-multiplied. |
800 MathUtil::makeIdentity(&A); | 800 A.matrix().setIdentity(); |
801 A.PreconcatScale3d(6, 7, 8); | 801 A.PreconcatScale3d(6, 7, 8); |
802 A.PreconcatSkewX(45); | 802 A.PreconcatSkewX(45); |
803 EXPECT_ROW1_EQ(6, 6, 0, 0, A); | 803 EXPECT_ROW1_EQ(6, 6, 0, 0, A); |
804 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | 804 EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
805 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 805 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
806 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 806 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
807 } | 807 } |
808 | 808 |
809 TEST(MathUtilGfxTransformTest, verifySkewY) | 809 TEST(MathUtilGfxTransformTest, verifySkewY) |
810 { | 810 { |
811 gfx::Transform A; | 811 gfx::Transform A; |
812 A.PreconcatSkewY(45); | 812 A.PreconcatSkewY(45); |
813 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 813 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
814 EXPECT_ROW2_EQ(1, 1, 0, 0, A); | 814 EXPECT_ROW2_EQ(1, 1, 0, 0, A); |
815 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 815 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
816 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 816 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
817 | 817 |
818 // Verify that skewY() post-multiplies the existing matrix. | 818 // Verify that skewY() post-multiplies the existing matrix. |
819 // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-mu
ltiplied instead of post-multiplied. | 819 // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-mu
ltiplied instead of post-multiplied. |
820 MathUtil::makeIdentity(&A); | 820 A.matrix().setIdentity(); |
821 A.PreconcatScale3d(6, 7, 8); | 821 A.PreconcatScale3d(6, 7, 8); |
822 A.PreconcatSkewY(45); | 822 A.PreconcatSkewY(45); |
823 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | 823 EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
824 EXPECT_ROW2_EQ(7, 7, 0, 0, A); | 824 EXPECT_ROW2_EQ(7, 7, 0, 0, A); |
825 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 825 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
826 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 826 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
827 } | 827 } |
828 | 828 |
829 TEST(MathUtilGfxTransformTest, verifyPerspectiveDepth) | 829 TEST(MathUtilGfxTransformTest, verifyPerspectiveDepth) |
830 { | 830 { |
831 gfx::Transform A; | 831 gfx::Transform A; |
832 A.PreconcatPerspectiveDepth(1); | 832 A.PreconcatPerspectiveDepth(1); |
833 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 833 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
834 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 834 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
835 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 835 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
836 EXPECT_ROW4_EQ(0, 0, -1, 1, A); | 836 EXPECT_ROW4_EQ(0, 0, -1, 1, A); |
837 | 837 |
838 // Verify that PreconcatPerspectiveDepth() post-multiplies the existing matr
ix. | 838 // Verify that PreconcatPerspectiveDepth() post-multiplies the existing matr
ix. |
839 MathUtil::makeIdentity(&A); | 839 A.matrix().setIdentity(); |
840 A.PreconcatTranslate3d(2, 3, 4); | 840 A.PreconcatTranslate3d(2, 3, 4); |
841 A.PreconcatPerspectiveDepth(1); | 841 A.PreconcatPerspectiveDepth(1); |
842 EXPECT_ROW1_EQ(1, 0, -2, 2, A); | 842 EXPECT_ROW1_EQ(1, 0, -2, 2, A); |
843 EXPECT_ROW2_EQ(0, 1, -3, 3, A); | 843 EXPECT_ROW2_EQ(0, 1, -3, 3, A); |
844 EXPECT_ROW3_EQ(0, 0, -3, 4, A); | 844 EXPECT_ROW3_EQ(0, 0, -3, 4, A); |
845 EXPECT_ROW4_EQ(0, 0, -1, 1, A); | 845 EXPECT_ROW4_EQ(0, 0, -1, 1, A); |
846 } | 846 } |
847 | 847 |
848 TEST(MathUtilGfxTransformTest, verifyHasPerspective) | 848 TEST(MathUtilGfxTransformTest, verifyHasPerspective) |
849 { | 849 { |
850 gfx::Transform A; | 850 gfx::Transform A; |
851 A.PreconcatPerspectiveDepth(1); | 851 A.PreconcatPerspectiveDepth(1); |
852 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 852 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
853 | 853 |
854 MathUtil::makeIdentity(&A); | 854 A.matrix().setIdentity(); |
855 A.PreconcatPerspectiveDepth(0); | 855 A.PreconcatPerspectiveDepth(0); |
856 EXPECT_FALSE(MathUtil::hasPerspective(A)); | 856 EXPECT_FALSE(MathUtil::hasPerspective(A)); |
857 | 857 |
858 MathUtil::makeIdentity(&A); | 858 A.matrix().setIdentity(); |
859 A.matrix().setDouble(3, 0, -1); | 859 A.matrix().setDouble(3, 0, -1); |
860 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 860 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
861 | 861 |
862 MathUtil::makeIdentity(&A); | 862 A.matrix().setIdentity(); |
863 A.matrix().setDouble(3, 1, -1); | 863 A.matrix().setDouble(3, 1, -1); |
864 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 864 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
865 | 865 |
866 MathUtil::makeIdentity(&A); | 866 A.matrix().setIdentity(); |
867 A.matrix().setDouble(3, 2, -0.3); | 867 A.matrix().setDouble(3, 2, -0.3); |
868 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 868 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
869 | 869 |
870 MathUtil::makeIdentity(&A); | 870 A.matrix().setIdentity(); |
871 A.matrix().setDouble(3, 3, 0.5); | 871 A.matrix().setDouble(3, 3, 0.5); |
872 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 872 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
873 | 873 |
874 MathUtil::makeIdentity(&A); | 874 A.matrix().setIdentity(); |
875 A.matrix().setDouble(3, 3, 0); | 875 A.matrix().setDouble(3, 3, 0); |
876 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 876 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
877 } | 877 } |
878 | 878 |
879 TEST(MathUtilGfxTransformTest, verifyIsInvertible) | 879 TEST(MathUtilGfxTransformTest, verifyIsInvertible) |
880 { | 880 { |
881 gfx::Transform A; | 881 gfx::Transform A; |
882 | 882 |
883 // Translations, rotations, scales, skews and arbitrary combinations of them
are invertible. | 883 // Translations, rotations, scales, skews and arbitrary combinations of them
are invertible. |
884 MathUtil::makeIdentity(&A); | 884 A.matrix().setIdentity(); |
885 EXPECT_TRUE(MathUtil::isInvertible(A)); | 885 EXPECT_TRUE(A.IsInvertible()); |
886 | 886 |
887 MathUtil::makeIdentity(&A); | 887 A.matrix().setIdentity(); |
888 A.PreconcatTranslate3d(2, 3, 4); | 888 A.PreconcatTranslate3d(2, 3, 4); |
889 EXPECT_TRUE(MathUtil::isInvertible(A)); | 889 EXPECT_TRUE(A.IsInvertible()); |
890 | 890 |
891 MathUtil::makeIdentity(&A); | 891 A.matrix().setIdentity(); |
892 A.PreconcatScale3d(6, 7, 8); | 892 A.PreconcatScale3d(6, 7, 8); |
893 EXPECT_TRUE(MathUtil::isInvertible(A)); | 893 EXPECT_TRUE(A.IsInvertible()); |
894 | 894 |
895 MathUtil::makeIdentity(&A); | 895 A.matrix().setIdentity(); |
896 MathUtil::rotateEulerAngles(&A, 10, 20, 30); | 896 MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
897 EXPECT_TRUE(MathUtil::isInvertible(A)); | 897 EXPECT_TRUE(A.IsInvertible()); |
898 | 898 |
899 MathUtil::makeIdentity(&A); | 899 A.matrix().setIdentity(); |
900 A.PreconcatSkewX(45); | 900 A.PreconcatSkewX(45); |
901 EXPECT_TRUE(MathUtil::isInvertible(A)); | 901 EXPECT_TRUE(A.IsInvertible()); |
902 | 902 |
903 // A perspective matrix (projection plane at z=0) is invertible. The intuiti
ve | 903 // A perspective matrix (projection plane at z=0) is invertible. The intuiti
ve |
904 // explanation is that perspective is eqivalent to a skew of the w-axis; ske
ws are | 904 // explanation is that perspective is eqivalent to a skew of the w-axis; ske
ws are |
905 // invertible. | 905 // invertible. |
906 MathUtil::makeIdentity(&A); | 906 A.matrix().setIdentity(); |
907 A.PreconcatPerspectiveDepth(1); | 907 A.PreconcatPerspectiveDepth(1); |
908 EXPECT_TRUE(MathUtil::isInvertible(A)); | 908 EXPECT_TRUE(A.IsInvertible()); |
909 | 909 |
910 // A "pure" perspective matrix derived by similar triangles, with m44() set
to zero | 910 // A "pure" perspective matrix derived by similar triangles, with m44() set
to zero |
911 // (i.e. camera positioned at the origin), is not invertible. | 911 // (i.e. camera positioned at the origin), is not invertible. |
912 MathUtil::makeIdentity(&A); | 912 A.matrix().setIdentity(); |
913 A.PreconcatPerspectiveDepth(1); | 913 A.PreconcatPerspectiveDepth(1); |
914 A.matrix().setDouble(3, 3, 0); | 914 A.matrix().setDouble(3, 3, 0); |
915 EXPECT_FALSE(MathUtil::isInvertible(A)); | 915 EXPECT_FALSE(A.IsInvertible()); |
916 | 916 |
917 // Adding more to a non-invertible matrix will not make it invertible in the
general case. | 917 // Adding more to a non-invertible matrix will not make it invertible in the
general case. |
918 MathUtil::makeIdentity(&A); | 918 A.matrix().setIdentity(); |
919 A.PreconcatPerspectiveDepth(1); | 919 A.PreconcatPerspectiveDepth(1); |
920 A.matrix().setDouble(3, 3, 0); | 920 A.matrix().setDouble(3, 3, 0); |
921 A.PreconcatScale3d(6, 7, 8); | 921 A.PreconcatScale3d(6, 7, 8); |
922 MathUtil::rotateEulerAngles(&A, 10, 20, 30); | 922 MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
923 A.PreconcatTranslate3d(6, 7, 8); | 923 A.PreconcatTranslate3d(6, 7, 8); |
924 EXPECT_FALSE(MathUtil::isInvertible(A)); | 924 EXPECT_FALSE(A.IsInvertible()); |
925 | 925 |
926 // A degenerate matrix of all zeros is not invertible. | 926 // A degenerate matrix of all zeros is not invertible. |
927 MathUtil::makeIdentity(&A); | 927 A.matrix().setIdentity(); |
928 A.matrix().setDouble(0, 0, 0); | 928 A.matrix().setDouble(0, 0, 0); |
929 A.matrix().setDouble(1, 1, 0); | 929 A.matrix().setDouble(1, 1, 0); |
930 A.matrix().setDouble(2, 2, 0); | 930 A.matrix().setDouble(2, 2, 0); |
931 A.matrix().setDouble(3, 3, 0); | 931 A.matrix().setDouble(3, 3, 0); |
932 EXPECT_FALSE(MathUtil::isInvertible(A)); | 932 EXPECT_FALSE(A.IsInvertible()); |
933 } | 933 } |
934 | 934 |
935 TEST(MathUtilGfxTransformTest, verifyIsIdentity) | 935 TEST(MathUtilGfxTransformTest, verifyIsIdentity) |
936 { | 936 { |
937 gfx::Transform A; | 937 gfx::Transform A; |
938 | 938 |
939 initializeTestMatrix(&A); | 939 initializeTestMatrix(&A); |
940 EXPECT_FALSE(MathUtil::isIdentity(A)); | 940 EXPECT_FALSE(A.IsIdentity()); |
941 | 941 |
942 MathUtil::makeIdentity(&A); | 942 A.matrix().setIdentity(); |
943 EXPECT_TRUE(MathUtil::isIdentity(A)); | 943 EXPECT_TRUE(A.IsIdentity()); |
944 | 944 |
945 // Modifying any one individual element should cause the matrix to no longer
be identity. | 945 // Modifying any one individual element should cause the matrix to no longer
be identity. |
946 MathUtil::makeIdentity(&A); | 946 A.matrix().setIdentity(); |
947 A.matrix().setDouble(0, 0, 2); | 947 A.matrix().setDouble(0, 0, 2); |
948 EXPECT_FALSE(MathUtil::isIdentity(A)); | 948 EXPECT_FALSE(A.IsIdentity()); |
949 | 949 |
950 MathUtil::makeIdentity(&A); | 950 A.matrix().setIdentity(); |
951 A.matrix().setDouble(1, 0, 2); | 951 A.matrix().setDouble(1, 0, 2); |
952 EXPECT_FALSE(MathUtil::isIdentity(A)); | 952 EXPECT_FALSE(A.IsIdentity()); |
953 | 953 |
954 MathUtil::makeIdentity(&A); | 954 A.matrix().setIdentity(); |
955 A.matrix().setDouble(2, 0, 2); | 955 A.matrix().setDouble(2, 0, 2); |
956 EXPECT_FALSE(MathUtil::isIdentity(A)); | 956 EXPECT_FALSE(A.IsIdentity()); |
957 | 957 |
958 MathUtil::makeIdentity(&A); | 958 A.matrix().setIdentity(); |
959 A.matrix().setDouble(3, 0, 2); | 959 A.matrix().setDouble(3, 0, 2); |
960 EXPECT_FALSE(MathUtil::isIdentity(A)); | 960 EXPECT_FALSE(A.IsIdentity()); |
961 | 961 |
962 MathUtil::makeIdentity(&A); | 962 A.matrix().setIdentity(); |
963 A.matrix().setDouble(0, 1, 2); | 963 A.matrix().setDouble(0, 1, 2); |
964 EXPECT_FALSE(MathUtil::isIdentity(A)); | 964 EXPECT_FALSE(A.IsIdentity()); |
965 | 965 |
966 MathUtil::makeIdentity(&A); | 966 A.matrix().setIdentity(); |
967 A.matrix().setDouble(1, 1, 2); | 967 A.matrix().setDouble(1, 1, 2); |
968 EXPECT_FALSE(MathUtil::isIdentity(A)); | 968 EXPECT_FALSE(A.IsIdentity()); |
969 | 969 |
970 MathUtil::makeIdentity(&A); | 970 A.matrix().setIdentity(); |
971 A.matrix().setDouble(2, 1, 2); | 971 A.matrix().setDouble(2, 1, 2); |
972 EXPECT_FALSE(MathUtil::isIdentity(A)); | 972 EXPECT_FALSE(A.IsIdentity()); |
973 | 973 |
974 MathUtil::makeIdentity(&A); | 974 A.matrix().setIdentity(); |
975 A.matrix().setDouble(3, 1, 2); | 975 A.matrix().setDouble(3, 1, 2); |
976 EXPECT_FALSE(MathUtil::isIdentity(A)); | 976 EXPECT_FALSE(A.IsIdentity()); |
977 | 977 |
978 MathUtil::makeIdentity(&A); | 978 A.matrix().setIdentity(); |
979 A.matrix().setDouble(0, 2, 2); | 979 A.matrix().setDouble(0, 2, 2); |
980 EXPECT_FALSE(MathUtil::isIdentity(A)); | 980 EXPECT_FALSE(A.IsIdentity()); |
981 | 981 |
982 MathUtil::makeIdentity(&A); | 982 A.matrix().setIdentity(); |
983 A.matrix().setDouble(1, 2, 2); | 983 A.matrix().setDouble(1, 2, 2); |
984 EXPECT_FALSE(MathUtil::isIdentity(A)); | 984 EXPECT_FALSE(A.IsIdentity()); |
985 | 985 |
986 MathUtil::makeIdentity(&A); | 986 A.matrix().setIdentity(); |
987 A.matrix().setDouble(2, 2, 2); | 987 A.matrix().setDouble(2, 2, 2); |
988 EXPECT_FALSE(MathUtil::isIdentity(A)); | 988 EXPECT_FALSE(A.IsIdentity()); |
989 | 989 |
990 MathUtil::makeIdentity(&A); | 990 A.matrix().setIdentity(); |
991 A.matrix().setDouble(3, 2, 2); | 991 A.matrix().setDouble(3, 2, 2); |
992 EXPECT_FALSE(MathUtil::isIdentity(A)); | 992 EXPECT_FALSE(A.IsIdentity()); |
993 | 993 |
994 MathUtil::makeIdentity(&A); | 994 A.matrix().setIdentity(); |
995 A.matrix().setDouble(0, 3, 2); | 995 A.matrix().setDouble(0, 3, 2); |
996 EXPECT_FALSE(MathUtil::isIdentity(A)); | 996 EXPECT_FALSE(A.IsIdentity()); |
997 | 997 |
998 MathUtil::makeIdentity(&A); | 998 A.matrix().setIdentity(); |
999 A.matrix().setDouble(1, 3, 2); | 999 A.matrix().setDouble(1, 3, 2); |
1000 EXPECT_FALSE(MathUtil::isIdentity(A)); | 1000 EXPECT_FALSE(A.IsIdentity()); |
1001 | 1001 |
1002 MathUtil::makeIdentity(&A); | 1002 A.matrix().setIdentity(); |
1003 A.matrix().setDouble(2, 3, 2); | 1003 A.matrix().setDouble(2, 3, 2); |
1004 EXPECT_FALSE(MathUtil::isIdentity(A)); | 1004 EXPECT_FALSE(A.IsIdentity()); |
1005 | 1005 |
1006 MathUtil::makeIdentity(&A); | 1006 A.matrix().setIdentity(); |
1007 A.matrix().setDouble(3, 3, 2); | 1007 A.matrix().setDouble(3, 3, 2); |
1008 EXPECT_FALSE(MathUtil::isIdentity(A)); | 1008 EXPECT_FALSE(A.IsIdentity()); |
1009 } | 1009 } |
1010 | 1010 |
1011 TEST(MathUtilGfxTransformTest, verifyIsIdentityOrTranslation) | 1011 TEST(MathUtilGfxTransformTest, verifyIsIdentityOrTranslation) |
1012 { | 1012 { |
1013 gfx::Transform A; | 1013 gfx::Transform A; |
1014 | 1014 |
1015 initializeTestMatrix(&A); | 1015 initializeTestMatrix(&A); |
1016 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1016 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1017 | 1017 |
1018 MathUtil::makeIdentity(&A); | 1018 A.matrix().setIdentity(); |
1019 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); | 1019 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
1020 | 1020 |
1021 // Modifying any non-translation components should cause isIdentityOrTransla
tion() to | 1021 // Modifying any non-translation components should cause isIdentityOrTransla
tion() to |
1022 // return false. NOTE: (0, 3), (1, 3), and (2, 3) are the translation compon
ents, so | 1022 // return false. NOTE: (0, 3), (1, 3), and (2, 3) are the translation compon
ents, so |
1023 // modifying them should still return true for isIdentityOrTranslation(). | 1023 // modifying them should still return true for isIdentityOrTranslation(). |
1024 MathUtil::makeIdentity(&A); | 1024 A.matrix().setIdentity(); |
1025 A.matrix().setDouble(0, 0, 2); | 1025 A.matrix().setDouble(0, 0, 2); |
1026 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1026 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1027 | 1027 |
1028 MathUtil::makeIdentity(&A); | 1028 A.matrix().setIdentity(); |
1029 A.matrix().setDouble(1, 0, 2); | 1029 A.matrix().setDouble(1, 0, 2); |
1030 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1030 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1031 | 1031 |
1032 MathUtil::makeIdentity(&A); | 1032 A.matrix().setIdentity(); |
1033 A.matrix().setDouble(2, 0, 2); | 1033 A.matrix().setDouble(2, 0, 2); |
1034 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1034 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1035 | 1035 |
1036 MathUtil::makeIdentity(&A); | 1036 A.matrix().setIdentity(); |
1037 A.matrix().setDouble(3, 0, 2); | 1037 A.matrix().setDouble(3, 0, 2); |
1038 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1038 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1039 | 1039 |
1040 MathUtil::makeIdentity(&A); | 1040 A.matrix().setIdentity(); |
1041 A.matrix().setDouble(0, 0, 2); | 1041 A.matrix().setDouble(0, 0, 2); |
1042 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1042 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1043 | 1043 |
1044 MathUtil::makeIdentity(&A); | 1044 A.matrix().setIdentity(); |
1045 A.matrix().setDouble(1, 1, 2); | 1045 A.matrix().setDouble(1, 1, 2); |
1046 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1046 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1047 | 1047 |
1048 MathUtil::makeIdentity(&A); | 1048 A.matrix().setIdentity(); |
1049 A.matrix().setDouble(2, 1, 2); | 1049 A.matrix().setDouble(2, 1, 2); |
1050 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1050 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1051 | 1051 |
1052 MathUtil::makeIdentity(&A); | 1052 A.matrix().setIdentity(); |
1053 A.matrix().setDouble(3, 1, 2); | 1053 A.matrix().setDouble(3, 1, 2); |
1054 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1054 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1055 | 1055 |
1056 MathUtil::makeIdentity(&A); | 1056 A.matrix().setIdentity(); |
1057 A.matrix().setDouble(0, 2, 2); | 1057 A.matrix().setDouble(0, 2, 2); |
1058 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1058 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1059 | 1059 |
1060 MathUtil::makeIdentity(&A); | 1060 A.matrix().setIdentity(); |
1061 A.matrix().setDouble(1, 2, 2); | 1061 A.matrix().setDouble(1, 2, 2); |
1062 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1062 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1063 | 1063 |
1064 MathUtil::makeIdentity(&A); | 1064 A.matrix().setIdentity(); |
1065 A.matrix().setDouble(2, 2, 2); | 1065 A.matrix().setDouble(2, 2, 2); |
1066 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1066 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1067 | 1067 |
1068 MathUtil::makeIdentity(&A); | 1068 A.matrix().setIdentity(); |
1069 A.matrix().setDouble(3, 2, 2); | 1069 A.matrix().setDouble(3, 2, 2); |
1070 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1070 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1071 | 1071 |
1072 // Note carefully - expecting true here. | 1072 // Note carefully - expecting true here. |
1073 MathUtil::makeIdentity(&A); | 1073 A.matrix().setIdentity(); |
1074 A.matrix().setDouble(0, 3, 2); | 1074 A.matrix().setDouble(0, 3, 2); |
1075 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); | 1075 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
1076 | 1076 |
1077 // Note carefully - expecting true here. | 1077 // Note carefully - expecting true here. |
1078 MathUtil::makeIdentity(&A); | 1078 A.matrix().setIdentity(); |
1079 A.matrix().setDouble(1, 3, 2); | 1079 A.matrix().setDouble(1, 3, 2); |
1080 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); | 1080 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
1081 | 1081 |
1082 // Note carefully - expecting true here. | 1082 // Note carefully - expecting true here. |
1083 MathUtil::makeIdentity(&A); | 1083 A.matrix().setIdentity(); |
1084 A.matrix().setDouble(2, 3, 2); | 1084 A.matrix().setDouble(2, 3, 2); |
1085 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); | 1085 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
1086 | 1086 |
1087 MathUtil::makeIdentity(&A); | 1087 A.matrix().setIdentity(); |
1088 A.matrix().setDouble(3, 3, 2); | 1088 A.matrix().setDouble(3, 3, 2); |
1089 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1089 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
1090 } | 1090 } |
1091 | 1091 |
1092 } // namespace | 1092 } // namespace |
1093 } // namespace cc | 1093 } // namespace cc |
OLD | NEW |