| OLD | NEW |
| 1 // Copyright 2012 The Chromium Authors. All rights reserved. | 1 // Copyright 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "cc/math_util.h" | 5 #include "cc/math_util.h" |
| 6 | 6 |
| 7 #include <cmath> | 7 #include <cmath> |
| 8 | 8 |
| 9 #include "cc/test/geometry_test_utils.h" | 9 #include "cc/test/geometry_test_utils.h" |
| 10 #include "testing/gmock/include/gmock/gmock.h" | 10 #include "testing/gmock/include/gmock/gmock.h" |
| 11 #include "testing/gtest/include/gtest/gtest.h" | 11 #include "testing/gtest/include/gtest/gtest.h" |
| 12 #include "ui/gfx/rect.h" | 12 #include "ui/gfx/rect.h" |
| 13 #include "ui/gfx/rect_f.h" | 13 #include "ui/gfx/rect_f.h" |
| 14 #include <public/WebTransformationMatrix.h> | 14 #include "ui/gfx/transform.h" |
| 15 | 15 |
| 16 using WebKit::WebTransformationMatrix; | 16 using gfx::Transform; |
| 17 | 17 |
| 18 namespace cc { | 18 namespace cc { |
| 19 namespace { | 19 namespace { |
| 20 | 20 |
| 21 TEST(MathUtilTest, verifyBackfaceVisibilityBasicCases) | 21 TEST(MathUtilTest, verifyBackfaceVisibilityBasicCases) |
| 22 { | 22 { |
| 23 WebTransformationMatrix transform; | 23 Transform transform; |
| 24 | 24 |
| 25 transform.makeIdentity(); | 25 transform.matrix().setIdentity(); |
| 26 EXPECT_FALSE(transform.isBackFaceVisible()); | 26 EXPECT_FALSE(MathUtil::isBackFaceVisible(transform)); |
| 27 | 27 |
| 28 transform.makeIdentity(); | 28 transform.matrix().setIdentity(); |
| 29 transform.rotate3d(0, 80, 0); | 29 MathUtil::rotateEulerAngles(&transform, 0, 80, 0); |
| 30 EXPECT_FALSE(transform.isBackFaceVisible()); | 30 EXPECT_FALSE(MathUtil::isBackFaceVisible(transform)); |
| 31 | 31 |
| 32 transform.makeIdentity(); | 32 transform.matrix().setIdentity(); |
| 33 transform.rotate3d(0, 100, 0); | 33 MathUtil::rotateEulerAngles(&transform, 0, 100, 0); |
| 34 EXPECT_TRUE(transform.isBackFaceVisible()); | 34 EXPECT_TRUE(MathUtil::isBackFaceVisible(transform)); |
| 35 | 35 |
| 36 // Edge case, 90 degree rotation should return false. | 36 // Edge case, 90 degree rotation should return false. |
| 37 transform.makeIdentity(); | 37 transform.matrix().setIdentity(); |
| 38 transform.rotate3d(0, 90, 0); | 38 MathUtil::rotateEulerAngles(&transform, 0, 90, 0); |
| 39 EXPECT_FALSE(transform.isBackFaceVisible()); | 39 EXPECT_FALSE(MathUtil::isBackFaceVisible(transform)); |
| 40 } | 40 } |
| 41 | 41 |
| 42 TEST(MathUtilTest, verifyBackfaceVisibilityForPerspective) | 42 TEST(MathUtilTest, verifyBackfaceVisibilityForPerspective) |
| 43 { | 43 { |
| 44 WebTransformationMatrix layerSpaceToProjectionPlane; | 44 Transform layerSpaceToProjectionPlane; |
| 45 | 45 |
| 46 // This tests if isBackFaceVisible works properly under perspective transfor
ms. | 46 // This tests if isBackFaceVisible works properly under perspective transfor
ms. |
| 47 // Specifically, layers that may have their back face visible in orthographi
c | 47 // Specifically, layers that may have their back face visible in orthographi
c |
| 48 // projection, may not actually have back face visible under perspective pro
jection. | 48 // projection, may not actually have back face visible under perspective pro
jection. |
| 49 | 49 |
| 50 // Case 1: Layer is rotated by slightly more than 90 degrees, at the center
of the | 50 // Case 1: Layer is rotated by slightly more than 90 degrees, at the center
of the |
| 51 // prespective projection. In this case, the layer's back-side is vi
sible to | 51 // prespective projection. In this case, the layer's back-side is vi
sible to |
| 52 // the camera. | 52 // the camera. |
| 53 layerSpaceToProjectionPlane.makeIdentity(); | 53 layerSpaceToProjectionPlane.matrix().setIdentity(); |
| 54 layerSpaceToProjectionPlane.applyPerspective(1); | 54 layerSpaceToProjectionPlane.PreconcatPerspectiveDepth(1); |
| 55 layerSpaceToProjectionPlane.translate3d(0, 0, 0); | 55 layerSpaceToProjectionPlane.PreconcatTranslate3d(0, 0, 0); |
| 56 layerSpaceToProjectionPlane.rotate3d(0, 100, 0); | 56 MathUtil::rotateEulerAngles(&layerSpaceToProjectionPlane, 0, 100, 0); |
| 57 EXPECT_TRUE(layerSpaceToProjectionPlane.isBackFaceVisible()); | 57 EXPECT_TRUE(MathUtil::isBackFaceVisible(layerSpaceToProjectionPlane)); |
| 58 | 58 |
| 59 // Case 2: Layer is rotated by slightly more than 90 degrees, but shifted of
f to the | 59 // Case 2: Layer is rotated by slightly more than 90 degrees, but shifted of
f to the |
| 60 // side of the camera. Because of the wide field-of-view, the layer'
s front | 60 // side of the camera. Because of the wide field-of-view, the layer'
s front |
| 61 // side is still visible. | 61 // side is still visible. |
| 62 // | 62 // |
| 63 // |<-- front side of layer is visible to perspective
camera | 63 // |<-- front side of layer is visible to perspective
camera |
| 64 // \ | / | 64 // \ | / |
| 65 // \ | / | 65 // \ | / |
| 66 // \| / | 66 // \| / |
| 67 // | / | 67 // | / |
| 68 // |\ /<-- camera field of view | 68 // |\ /<-- camera field of view |
| 69 // | \ / | 69 // | \ / |
| 70 // back side of layer -->| \ / | 70 // back side of layer -->| \ / |
| 71 // \./ <-- camera origin | 71 // \./ <-- camera origin |
| 72 // | 72 // |
| 73 layerSpaceToProjectionPlane.makeIdentity(); | 73 layerSpaceToProjectionPlane.matrix().setIdentity(); |
| 74 layerSpaceToProjectionPlane.applyPerspective(1); | 74 layerSpaceToProjectionPlane.PreconcatPerspectiveDepth(1); |
| 75 layerSpaceToProjectionPlane.translate3d(-10, 0, 0); | 75 layerSpaceToProjectionPlane.PreconcatTranslate3d(-10, 0, 0); |
| 76 layerSpaceToProjectionPlane.rotate3d(0, 100, 0); | 76 MathUtil::rotateEulerAngles(&layerSpaceToProjectionPlane, 0, 100, 0); |
| 77 EXPECT_FALSE(layerSpaceToProjectionPlane.isBackFaceVisible()); | 77 EXPECT_FALSE(MathUtil::isBackFaceVisible(layerSpaceToProjectionPlane)); |
| 78 | 78 |
| 79 // Case 3: Additionally rotating the layer by 180 degrees should of course s
how the | 79 // Case 3: Additionally rotating the layer by 180 degrees should of course s
how the |
| 80 // opposite result of case 2. | 80 // opposite result of case 2. |
| 81 layerSpaceToProjectionPlane.rotate3d(0, 180, 0); | 81 MathUtil::rotateEulerAngles(&layerSpaceToProjectionPlane, 0, 180, 0); |
| 82 EXPECT_TRUE(layerSpaceToProjectionPlane.isBackFaceVisible()); | 82 EXPECT_TRUE(MathUtil::isBackFaceVisible(layerSpaceToProjectionPlane)); |
| 83 } | 83 } |
| 84 | 84 |
| 85 TEST(MathUtilTest, verifyProjectionOfPerpendicularPlane) | 85 TEST(MathUtilTest, verifyProjectionOfPerpendicularPlane) |
| 86 { | 86 { |
| 87 // In this case, the m33() element of the transform becomes zero, which coul
d cause a | 87 // In this case, the m33() element of the transform becomes zero, which coul
d cause a |
| 88 // divide-by-zero when projecting points/quads. | 88 // divide-by-zero when projecting points/quads. |
| 89 | 89 |
| 90 WebTransformationMatrix transform; | 90 Transform transform; |
| 91 transform.makeIdentity(); | 91 transform.matrix().setIdentity(); |
| 92 transform.setM33(0); | 92 transform.matrix().setDouble(2, 2, 0); |
| 93 | 93 |
| 94 gfx::RectF rect = gfx::RectF(0, 0, 1, 1); | 94 gfx::RectF rect = gfx::RectF(0, 0, 1, 1); |
| 95 gfx::RectF projectedRect = MathUtil::projectClippedRect(transform, rect); | 95 gfx::RectF projectedRect = MathUtil::projectClippedRect(transform, rect); |
| 96 | 96 |
| 97 EXPECT_EQ(0, projectedRect.x()); | 97 EXPECT_EQ(0, projectedRect.x()); |
| 98 EXPECT_EQ(0, projectedRect.y()); | 98 EXPECT_EQ(0, projectedRect.y()); |
| 99 EXPECT_TRUE(projectedRect.IsEmpty()); | 99 EXPECT_TRUE(projectedRect.IsEmpty()); |
| 100 } | 100 } |
| 101 | 101 |
| 102 TEST(MathUtilTest, verifyEnclosingClippedRectUsesCorrectInitialBounds) | 102 TEST(MathUtilTest, verifyEnclosingClippedRectUsesCorrectInitialBounds) |
| (...skipping 183 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 286 EXPECT_ROW4_EQ(33, 37, 41, 45, (*transform)); | 286 EXPECT_ROW4_EQ(33, 37, 41, 45, (*transform)); |
| 287 } | 287 } |
| 288 | 288 |
| 289 TEST(MathUtilGfxTransformTest, verifyDefaultConstructorCreatesIdentityMatrix) | 289 TEST(MathUtilGfxTransformTest, verifyDefaultConstructorCreatesIdentityMatrix) |
| 290 { | 290 { |
| 291 gfx::Transform A; | 291 gfx::Transform A; |
| 292 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 292 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
| 293 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 293 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
| 294 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 294 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 295 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 295 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 296 EXPECT_TRUE(MathUtil::isIdentity(A)); | 296 EXPECT_TRUE(A.IsIdentity()); |
| 297 } | 297 } |
| 298 | 298 |
| 299 TEST(MathUtilGfxTransformTest, verifyCreateGfxTransformFor2dElements) | 299 TEST(MathUtilGfxTransformTest, verifyCreateGfxTransformFor2dElements) |
| 300 { | 300 { |
| 301 gfx::Transform A = MathUtil::createGfxTransform(1, 2, 3, 4, 5, 6); | 301 gfx::Transform A = MathUtil::createGfxTransform(1, 2, 3, 4, 5, 6); |
| 302 EXPECT_ROW1_EQ(1, 3, 0, 5, A); | 302 EXPECT_ROW1_EQ(1, 3, 0, 5, A); |
| 303 EXPECT_ROW2_EQ(2, 4, 0, 6, A); | 303 EXPECT_ROW2_EQ(2, 4, 0, 6, A); |
| 304 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 304 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 305 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 305 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 306 } | 306 } |
| (...skipping 18 matching lines...) Expand all Loading... |
| 325 EXPECT_ROW2_EQ(11, 15, 19, 23, B); | 325 EXPECT_ROW2_EQ(11, 15, 19, 23, B); |
| 326 EXPECT_ROW3_EQ(12, 16, 20, 24, B); | 326 EXPECT_ROW3_EQ(12, 16, 20, 24, B); |
| 327 EXPECT_ROW4_EQ(13, 17, 21, 25, B); | 327 EXPECT_ROW4_EQ(13, 17, 21, 25, B); |
| 328 } | 328 } |
| 329 | 329 |
| 330 TEST(MathUtilGfxTransformTest, verifyMatrixInversion) | 330 TEST(MathUtilGfxTransformTest, verifyMatrixInversion) |
| 331 { | 331 { |
| 332 // Invert a translation | 332 // Invert a translation |
| 333 gfx::Transform translation; | 333 gfx::Transform translation; |
| 334 translation.PreconcatTranslate3d(2, 3, 4); | 334 translation.PreconcatTranslate3d(2, 3, 4); |
| 335 EXPECT_TRUE(MathUtil::isInvertible(translation)); | 335 EXPECT_TRUE(translation.IsInvertible()); |
| 336 | 336 |
| 337 gfx::Transform inverseTranslation = MathUtil::inverse(translation); | 337 gfx::Transform inverseTranslation = MathUtil::inverse(translation); |
| 338 EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation); | 338 EXPECT_ROW1_EQ(1, 0, 0, -2, inverseTranslation); |
| 339 EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation); | 339 EXPECT_ROW2_EQ(0, 1, 0, -3, inverseTranslation); |
| 340 EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation); | 340 EXPECT_ROW3_EQ(0, 0, 1, -4, inverseTranslation); |
| 341 EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation); | 341 EXPECT_ROW4_EQ(0, 0, 0, 1, inverseTranslation); |
| 342 | 342 |
| 343 // Note that inversion should not have changed the original matrix. | 343 // Note that inversion should not have changed the original matrix. |
| 344 EXPECT_ROW1_EQ(1, 0, 0, 2, translation); | 344 EXPECT_ROW1_EQ(1, 0, 0, 2, translation); |
| 345 EXPECT_ROW2_EQ(0, 1, 0, 3, translation); | 345 EXPECT_ROW2_EQ(0, 1, 0, 3, translation); |
| 346 EXPECT_ROW3_EQ(0, 0, 1, 4, translation); | 346 EXPECT_ROW3_EQ(0, 0, 1, 4, translation); |
| 347 EXPECT_ROW4_EQ(0, 0, 0, 1, translation); | 347 EXPECT_ROW4_EQ(0, 0, 0, 1, translation); |
| 348 | 348 |
| 349 // Invert a non-uniform scale | 349 // Invert a non-uniform scale |
| 350 gfx::Transform scale; | 350 gfx::Transform scale; |
| 351 scale.PreconcatScale3d(4, 10, 100); | 351 scale.PreconcatScale3d(4, 10, 100); |
| 352 EXPECT_TRUE(MathUtil::isInvertible(scale)); | 352 EXPECT_TRUE(scale.IsInvertible()); |
| 353 | 353 |
| 354 gfx::Transform inverseScale = MathUtil::inverse(scale); | 354 gfx::Transform inverseScale = MathUtil::inverse(scale); |
| 355 EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale); | 355 EXPECT_ROW1_EQ(0.25, 0, 0, 0, inverseScale); |
| 356 EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale); | 356 EXPECT_ROW2_EQ(0, .1f, 0, 0, inverseScale); |
| 357 EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale); | 357 EXPECT_ROW3_EQ(0, 0, .01f, 0, inverseScale); |
| 358 EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale); | 358 EXPECT_ROW4_EQ(0, 0, 0, 1, inverseScale); |
| 359 | 359 |
| 360 // Try to invert a matrix that is not invertible. | 360 // Try to invert a matrix that is not invertible. |
| 361 // The inverse() function should simply return an identity matrix. | 361 // The inverse() function should simply return an identity matrix. |
| 362 gfx::Transform notInvertible; | 362 gfx::Transform notInvertible; |
| 363 notInvertible.matrix().setDouble(0, 0, 0); | 363 notInvertible.matrix().setDouble(0, 0, 0); |
| 364 notInvertible.matrix().setDouble(1, 1, 0); | 364 notInvertible.matrix().setDouble(1, 1, 0); |
| 365 notInvertible.matrix().setDouble(2, 2, 0); | 365 notInvertible.matrix().setDouble(2, 2, 0); |
| 366 notInvertible.matrix().setDouble(3, 3, 0); | 366 notInvertible.matrix().setDouble(3, 3, 0); |
| 367 EXPECT_FALSE(MathUtil::isInvertible(notInvertible)); | 367 EXPECT_FALSE(notInvertible.IsInvertible()); |
| 368 | 368 |
| 369 gfx::Transform inverseOfNotInvertible; | 369 gfx::Transform inverseOfNotInvertible; |
| 370 initializeTestMatrix(&inverseOfNotInvertible); // initialize this to somethi
ng non-identity, to make sure that assignment below actually took place. | 370 initializeTestMatrix(&inverseOfNotInvertible); // initialize this to somethi
ng non-identity, to make sure that assignment below actually took place. |
| 371 inverseOfNotInvertible = MathUtil::inverse(notInvertible); | 371 inverseOfNotInvertible = MathUtil::inverse(notInvertible); |
| 372 EXPECT_TRUE(MathUtil::isIdentity(inverseOfNotInvertible)); | 372 EXPECT_TRUE(inverseOfNotInvertible.IsIdentity()); |
| 373 } | 373 } |
| 374 | 374 |
| 375 TEST(MathUtilGfxTransformTest, verifyTo2DTransform) | 375 TEST(MathUtilGfxTransformTest, verifyTo2DTransform) |
| 376 { | 376 { |
| 377 gfx::Transform A; | 377 gfx::Transform A; |
| 378 initializeTestMatrix(&A); | 378 initializeTestMatrix(&A); |
| 379 | 379 |
| 380 gfx::Transform B = MathUtil::to2dTransform(A); | 380 gfx::Transform B = MathUtil::to2dTransform(A); |
| 381 | 381 |
| 382 EXPECT_ROW1_EQ(10, 14, 0, 22, B); | 382 EXPECT_ROW1_EQ(10, 14, 0, 22, B); |
| (...skipping 141 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 524 EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A); | 524 EXPECT_ROW1_EQ(2036, 2292, 2548, 2804, A); |
| 525 EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A); | 525 EXPECT_ROW2_EQ(2162, 2434, 2706, 2978, A); |
| 526 EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A); | 526 EXPECT_ROW3_EQ(2288, 2576, 2864, 3152, A); |
| 527 EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A); | 527 EXPECT_ROW4_EQ(2414, 2718, 3022, 3326, A); |
| 528 } | 528 } |
| 529 | 529 |
| 530 TEST(MathUtilGfxTransformTest, verifyMakeIdentiy) | 530 TEST(MathUtilGfxTransformTest, verifyMakeIdentiy) |
| 531 { | 531 { |
| 532 gfx::Transform A; | 532 gfx::Transform A; |
| 533 initializeTestMatrix(&A); | 533 initializeTestMatrix(&A); |
| 534 MathUtil::makeIdentity(&A); | 534 A.matrix().setIdentity(); |
| 535 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 535 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
| 536 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 536 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
| 537 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 537 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 538 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 538 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 539 EXPECT_TRUE(MathUtil::isIdentity(A)); | 539 EXPECT_TRUE(A.IsIdentity()); |
| 540 } | 540 } |
| 541 | 541 |
| 542 TEST(MathUtilGfxTransformTest, verifyTranslate) | 542 TEST(MathUtilGfxTransformTest, verifyTranslate) |
| 543 { | 543 { |
| 544 gfx::Transform A; | 544 gfx::Transform A; |
| 545 A.PreconcatTranslate(2, 3); | 545 A.PreconcatTranslate(2, 3); |
| 546 EXPECT_ROW1_EQ(1, 0, 0, 2, A); | 546 EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
| 547 EXPECT_ROW2_EQ(0, 1, 0, 3, A); | 547 EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
| 548 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 548 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 549 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 549 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 550 | 550 |
| 551 // Verify that PreconcatTranslate() post-multiplies the existing matrix. | 551 // Verify that PreconcatTranslate() post-multiplies the existing matrix. |
| 552 MathUtil::makeIdentity(&A); | 552 A.matrix().setIdentity(); |
| 553 A.PreconcatScale(5, 5); | 553 A.PreconcatScale(5, 5); |
| 554 A.PreconcatTranslate(2, 3); | 554 A.PreconcatTranslate(2, 3); |
| 555 EXPECT_ROW1_EQ(5, 0, 0, 10, A); | 555 EXPECT_ROW1_EQ(5, 0, 0, 10, A); |
| 556 EXPECT_ROW2_EQ(0, 5, 0, 15, A); | 556 EXPECT_ROW2_EQ(0, 5, 0, 15, A); |
| 557 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 557 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 558 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 558 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 559 } | 559 } |
| 560 | 560 |
| 561 TEST(MathUtilGfxTransformTest, verifyTranslate3d) | 561 TEST(MathUtilGfxTransformTest, verifyTranslate3d) |
| 562 { | 562 { |
| 563 gfx::Transform A; | 563 gfx::Transform A; |
| 564 A.PreconcatTranslate3d(2, 3, 4); | 564 A.PreconcatTranslate3d(2, 3, 4); |
| 565 EXPECT_ROW1_EQ(1, 0, 0, 2, A); | 565 EXPECT_ROW1_EQ(1, 0, 0, 2, A); |
| 566 EXPECT_ROW2_EQ(0, 1, 0, 3, A); | 566 EXPECT_ROW2_EQ(0, 1, 0, 3, A); |
| 567 EXPECT_ROW3_EQ(0, 0, 1, 4, A); | 567 EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
| 568 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 568 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 569 | 569 |
| 570 // Verify that PreconcatTranslate3d() post-multiplies the existing matrix. | 570 // Verify that PreconcatTranslate3d() post-multiplies the existing matrix. |
| 571 MathUtil::makeIdentity(&A); | 571 A.matrix().setIdentity(); |
| 572 A.PreconcatScale3d(6, 7, 8); | 572 A.PreconcatScale3d(6, 7, 8); |
| 573 A.PreconcatTranslate3d(2, 3, 4); | 573 A.PreconcatTranslate3d(2, 3, 4); |
| 574 EXPECT_ROW1_EQ(6, 0, 0, 12, A); | 574 EXPECT_ROW1_EQ(6, 0, 0, 12, A); |
| 575 EXPECT_ROW2_EQ(0, 7, 0, 21, A); | 575 EXPECT_ROW2_EQ(0, 7, 0, 21, A); |
| 576 EXPECT_ROW3_EQ(0, 0, 8, 32, A); | 576 EXPECT_ROW3_EQ(0, 0, 8, 32, A); |
| 577 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 577 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 578 } | 578 } |
| 579 | 579 |
| 580 TEST(MathUtilGfxTransformTest, verifyScale) | 580 TEST(MathUtilGfxTransformTest, verifyScale) |
| 581 { | 581 { |
| 582 gfx::Transform A; | 582 gfx::Transform A; |
| 583 A.PreconcatScale(6, 7); | 583 A.PreconcatScale(6, 7); |
| 584 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | 584 EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
| 585 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | 585 EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
| 586 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 586 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 587 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 587 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 588 | 588 |
| 589 // Verify that PreconcatScale() post-multiplies the existing matrix. | 589 // Verify that PreconcatScale() post-multiplies the existing matrix. |
| 590 MathUtil::makeIdentity(&A); | 590 A.matrix().setIdentity(); |
| 591 A.PreconcatTranslate3d(2, 3, 4); | 591 A.PreconcatTranslate3d(2, 3, 4); |
| 592 A.PreconcatScale(6, 7); | 592 A.PreconcatScale(6, 7); |
| 593 EXPECT_ROW1_EQ(6, 0, 0, 2, A); | 593 EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
| 594 EXPECT_ROW2_EQ(0, 7, 0, 3, A); | 594 EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
| 595 EXPECT_ROW3_EQ(0, 0, 1, 4, A); | 595 EXPECT_ROW3_EQ(0, 0, 1, 4, A); |
| 596 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 596 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 597 } | 597 } |
| 598 | 598 |
| 599 TEST(MathUtilGfxTransformTest, verifyScale3d) | 599 TEST(MathUtilGfxTransformTest, verifyScale3d) |
| 600 { | 600 { |
| 601 gfx::Transform A; | 601 gfx::Transform A; |
| 602 A.PreconcatScale3d(6, 7, 8); | 602 A.PreconcatScale3d(6, 7, 8); |
| 603 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | 603 EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
| 604 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | 604 EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
| 605 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 605 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
| 606 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 606 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 607 | 607 |
| 608 // Verify that scale3d() post-multiplies the existing matrix. | 608 // Verify that scale3d() post-multiplies the existing matrix. |
| 609 MathUtil::makeIdentity(&A); | 609 A.matrix().setIdentity(); |
| 610 A.PreconcatTranslate3d(2, 3, 4); | 610 A.PreconcatTranslate3d(2, 3, 4); |
| 611 A.PreconcatScale3d(6, 7, 8); | 611 A.PreconcatScale3d(6, 7, 8); |
| 612 EXPECT_ROW1_EQ(6, 0, 0, 2, A); | 612 EXPECT_ROW1_EQ(6, 0, 0, 2, A); |
| 613 EXPECT_ROW2_EQ(0, 7, 0, 3, A); | 613 EXPECT_ROW2_EQ(0, 7, 0, 3, A); |
| 614 EXPECT_ROW3_EQ(0, 0, 8, 4, A); | 614 EXPECT_ROW3_EQ(0, 0, 8, 4, A); |
| 615 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 615 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 616 } | 616 } |
| 617 | 617 |
| 618 TEST(MathUtilGfxTransformTest, verifyRotate) | 618 TEST(MathUtilGfxTransformTest, verifyRotate) |
| 619 { | 619 { |
| 620 gfx::Transform A; | 620 gfx::Transform A; |
| 621 A.PreconcatRotate(90); | 621 A.PreconcatRotate(90); |
| 622 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | 622 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
| 623 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | 623 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
| 624 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 624 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 625 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 625 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 626 | 626 |
| 627 // Verify that PreconcatRotate() post-multiplies the existing matrix. | 627 // Verify that PreconcatRotate() post-multiplies the existing matrix. |
| 628 MathUtil::makeIdentity(&A); | 628 A.matrix().setIdentity(); |
| 629 A.PreconcatScale3d(6, 7, 8); | 629 A.PreconcatScale3d(6, 7, 8); |
| 630 A.PreconcatRotate(90); | 630 A.PreconcatRotate(90); |
| 631 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | 631 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
| 632 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | 632 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
| 633 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 633 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
| 634 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 634 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 635 } | 635 } |
| 636 | 636 |
| 637 TEST(MathUtilGfxTransformTest, verifyRotateEulerAngles) | 637 TEST(MathUtilGfxTransformTest, verifyRotateEulerAngles) |
| 638 { | 638 { |
| 639 gfx::Transform A; | 639 gfx::Transform A; |
| 640 | 640 |
| 641 // Check rotation about z-axis | 641 // Check rotation about z-axis |
| 642 MathUtil::makeIdentity(&A); | 642 A.matrix().setIdentity(); |
| 643 MathUtil::rotateEulerAngles(&A, 0, 0, 90); | 643 MathUtil::rotateEulerAngles(&A, 0, 0, 90); |
| 644 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | 644 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
| 645 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | 645 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
| 646 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 646 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 647 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 647 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 648 | 648 |
| 649 // Check rotation about x-axis | 649 // Check rotation about x-axis |
| 650 MathUtil::makeIdentity(&A); | 650 A.matrix().setIdentity(); |
| 651 MathUtil::rotateEulerAngles(&A, 90, 0, 0); | 651 MathUtil::rotateEulerAngles(&A, 90, 0, 0); |
| 652 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 652 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
| 653 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); | 653 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); |
| 654 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); | 654 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); |
| 655 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 655 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 656 | 656 |
| 657 // Check rotation about y-axis. | 657 // Check rotation about y-axis. |
| 658 // Note carefully, the expected pattern is inverted compared to rotating abo
ut x axis or z axis. | 658 // Note carefully, the expected pattern is inverted compared to rotating abo
ut x axis or z axis. |
| 659 MathUtil::makeIdentity(&A); | 659 A.matrix().setIdentity(); |
| 660 MathUtil::rotateEulerAngles(&A, 0, 90, 0); | 660 MathUtil::rotateEulerAngles(&A, 0, 90, 0); |
| 661 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); | 661 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); |
| 662 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 662 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
| 663 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); | 663 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); |
| 664 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 664 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 665 | 665 |
| 666 // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix. | 666 // Verify that rotate3d(rx, ry, rz) post-multiplies the existing matrix. |
| 667 MathUtil::makeIdentity(&A); | 667 A.matrix().setIdentity(); |
| 668 A.PreconcatScale3d(6, 7, 8); | 668 A.PreconcatScale3d(6, 7, 8); |
| 669 MathUtil::rotateEulerAngles(&A, 0, 0, 90); | 669 MathUtil::rotateEulerAngles(&A, 0, 0, 90); |
| 670 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | 670 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
| 671 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | 671 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
| 672 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 672 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
| 673 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 673 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 674 } | 674 } |
| 675 | 675 |
| 676 TEST(MathUtilGfxTransformTest, verifyRotateEulerAnglesOrderOfCompositeRotations) | 676 TEST(MathUtilGfxTransformTest, verifyRotateEulerAnglesOrderOfCompositeRotations) |
| 677 { | 677 { |
| 678 // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform co
nsiting of | 678 // Rotate3d(degreesX, degreesY, degreesZ) is actually composite transform co
nsiting of |
| 679 // three primitive rotations. This test verifies that the ordering of those
three | 679 // three primitive rotations. This test verifies that the ordering of those
three |
| 680 // transforms is the intended ordering. | 680 // transforms is the intended ordering. |
| 681 // | 681 // |
| 682 // The correct ordering for this test case should be: | 682 // The correct ordering for this test case should be: |
| 683 // 1. rotate by 30 degrees about z-axis | 683 // 1. rotate by 30 degrees about z-axis |
| 684 // 2. rotate by 20 degrees about y-axis | 684 // 2. rotate by 20 degrees about y-axis |
| 685 // 3. rotate by 10 degrees about x-axis | 685 // 3. rotate by 10 degrees about x-axis |
| 686 // | 686 // |
| 687 // Note: there are 6 possible orderings of 3 transforms. For the specific tr
ansforms | 687 // Note: there are 6 possible orderings of 3 transforms. For the specific tr
ansforms |
| 688 // used in this test, all 6 combinations produce a unique matrix that is dif
ferent | 688 // used in this test, all 6 combinations produce a unique matrix that is dif
ferent |
| 689 // from the other orderings. That way, this test verifies the exact ordering
. | 689 // from the other orderings. That way, this test verifies the exact ordering
. |
| 690 | 690 |
| 691 gfx::Transform A; | 691 gfx::Transform A; |
| 692 MathUtil::makeIdentity(&A); | 692 A.matrix().setIdentity(); |
| 693 MathUtil::rotateEulerAngles(&A, 10, 20, 30); | 693 MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
| 694 | 694 |
| 695 EXPECT_ROW1_NEAR(0.8137976813493738026394908, | 695 EXPECT_ROW1_NEAR(0.8137976813493738026394908, |
| 696 -0.4409696105298823720630708, | 696 -0.4409696105298823720630708, |
| 697 0.3785223063697923939763257, | 697 0.3785223063697923939763257, |
| 698 0, A, ERROR_THRESHOLD); | 698 0, A, ERROR_THRESHOLD); |
| 699 EXPECT_ROW2_NEAR(0.4698463103929541584413698, | 699 EXPECT_ROW2_NEAR(0.4698463103929541584413698, |
| 700 0.8825641192593856043657752, | 700 0.8825641192593856043657752, |
| 701 0.0180283112362972230968694, | 701 0.0180283112362972230968694, |
| 702 0, A, ERROR_THRESHOLD); | 702 0, A, ERROR_THRESHOLD); |
| 703 EXPECT_ROW3_NEAR(-0.3420201433256686573969318, | 703 EXPECT_ROW3_NEAR(-0.3420201433256686573969318, |
| 704 0.1631759111665348205288950, | 704 0.1631759111665348205288950, |
| 705 0.9254165783983233639631294, | 705 0.9254165783983233639631294, |
| 706 0, A, ERROR_THRESHOLD); | 706 0, A, ERROR_THRESHOLD); |
| 707 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 707 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 708 } | 708 } |
| 709 | 709 |
| 710 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForAlignedAxes) | 710 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForAlignedAxes) |
| 711 { | 711 { |
| 712 gfx::Transform A; | 712 gfx::Transform A; |
| 713 | 713 |
| 714 // Check rotation about z-axis | 714 // Check rotation about z-axis |
| 715 MathUtil::makeIdentity(&A); | 715 A.matrix().setIdentity(); |
| 716 MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); | 716 MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); |
| 717 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); | 717 EXPECT_ROW1_NEAR(0, -1, 0, 0, A, ERROR_THRESHOLD); |
| 718 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); | 718 EXPECT_ROW2_NEAR(1, 0, 0, 0, A, ERROR_THRESHOLD); |
| 719 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 719 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 720 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 720 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 721 | 721 |
| 722 // Check rotation about x-axis | 722 // Check rotation about x-axis |
| 723 MathUtil::makeIdentity(&A); | 723 A.matrix().setIdentity(); |
| 724 MathUtil::rotateAxisAngle(&A, 1, 0, 0, 90); | 724 MathUtil::rotateAxisAngle(&A, 1, 0, 0, 90); |
| 725 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 725 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
| 726 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); | 726 EXPECT_ROW2_NEAR(0, 0, -1, 0, A, ERROR_THRESHOLD); |
| 727 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); | 727 EXPECT_ROW3_NEAR(0, 1, 0, 0, A, ERROR_THRESHOLD); |
| 728 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 728 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 729 | 729 |
| 730 // Check rotation about y-axis. | 730 // Check rotation about y-axis. |
| 731 // Note carefully, the expected pattern is inverted compared to rotating abo
ut x axis or z axis. | 731 // Note carefully, the expected pattern is inverted compared to rotating abo
ut x axis or z axis. |
| 732 MathUtil::makeIdentity(&A); | 732 A.matrix().setIdentity(); |
| 733 MathUtil::rotateAxisAngle(&A, 0, 1, 0, 90); | 733 MathUtil::rotateAxisAngle(&A, 0, 1, 0, 90); |
| 734 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); | 734 EXPECT_ROW1_NEAR(0, 0, 1, 0, A, ERROR_THRESHOLD); |
| 735 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 735 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
| 736 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); | 736 EXPECT_ROW3_NEAR(-1, 0, 0, 0, A, ERROR_THRESHOLD); |
| 737 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 737 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 738 | 738 |
| 739 // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. | 739 // Verify that rotate3d(axis, angle) post-multiplies the existing matrix. |
| 740 MathUtil::makeIdentity(&A); | 740 A.matrix().setIdentity(); |
| 741 A.PreconcatScale3d(6, 7, 8); | 741 A.PreconcatScale3d(6, 7, 8); |
| 742 MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); | 742 MathUtil::rotateAxisAngle(&A, 0, 0, 1, 90); |
| 743 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); | 743 EXPECT_ROW1_NEAR(0, -6, 0, 0, A, ERROR_THRESHOLD); |
| 744 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); | 744 EXPECT_ROW2_NEAR(7, 0, 0, 0, A, ERROR_THRESHOLD); |
| 745 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 745 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
| 746 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 746 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 747 } | 747 } |
| 748 | 748 |
| 749 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForArbitraryAxis) | 749 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForArbitraryAxis) |
| 750 { | 750 { |
| (...skipping 16 matching lines...) Expand all Loading... |
| 767 } | 767 } |
| 768 | 768 |
| 769 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForDegenerateAxis) | 769 TEST(MathUtilGfxTransformTest, verifyRotateAxisAngleForDegenerateAxis) |
| 770 { | 770 { |
| 771 // Check rotation about a degenerate zero vector. | 771 // Check rotation about a degenerate zero vector. |
| 772 // It is expected to skip applying the rotation. | 772 // It is expected to skip applying the rotation. |
| 773 gfx::Transform A; | 773 gfx::Transform A; |
| 774 | 774 |
| 775 MathUtil::rotateAxisAngle(&A, 0, 0, 0, 45); | 775 MathUtil::rotateAxisAngle(&A, 0, 0, 0, 45); |
| 776 // Verify that A remains unchanged. | 776 // Verify that A remains unchanged. |
| 777 EXPECT_TRUE(MathUtil::isIdentity(A)); | 777 EXPECT_TRUE(A.IsIdentity()); |
| 778 | 778 |
| 779 initializeTestMatrix(&A); | 779 initializeTestMatrix(&A); |
| 780 MathUtil::rotateAxisAngle(&A, 0, 0, 0, 35); | 780 MathUtil::rotateAxisAngle(&A, 0, 0, 0, 35); |
| 781 | 781 |
| 782 // Verify that A remains unchanged. | 782 // Verify that A remains unchanged. |
| 783 EXPECT_ROW1_EQ(10, 14, 18, 22, A); | 783 EXPECT_ROW1_EQ(10, 14, 18, 22, A); |
| 784 EXPECT_ROW2_EQ(11, 15, 19, 23, A); | 784 EXPECT_ROW2_EQ(11, 15, 19, 23, A); |
| 785 EXPECT_ROW3_EQ(12, 16, 20, 24, A); | 785 EXPECT_ROW3_EQ(12, 16, 20, 24, A); |
| 786 EXPECT_ROW4_EQ(13, 17, 21, 25, A); | 786 EXPECT_ROW4_EQ(13, 17, 21, 25, A); |
| 787 } | 787 } |
| 788 | 788 |
| 789 TEST(MathUtilGfxTransformTest, verifySkewX) | 789 TEST(MathUtilGfxTransformTest, verifySkewX) |
| 790 { | 790 { |
| 791 gfx::Transform A; | 791 gfx::Transform A; |
| 792 A.PreconcatSkewX(45); | 792 A.PreconcatSkewX(45); |
| 793 EXPECT_ROW1_EQ(1, 1, 0, 0, A); | 793 EXPECT_ROW1_EQ(1, 1, 0, 0, A); |
| 794 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 794 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
| 795 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 795 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 796 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 796 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 797 | 797 |
| 798 // Verify that skewX() post-multiplies the existing matrix. | 798 // Verify that skewX() post-multiplies the existing matrix. |
| 799 // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-mu
ltiplied instead of post-multiplied. | 799 // Row 1, column 2, would incorrectly have value "7" if the matrix is pre-mu
ltiplied instead of post-multiplied. |
| 800 MathUtil::makeIdentity(&A); | 800 A.matrix().setIdentity(); |
| 801 A.PreconcatScale3d(6, 7, 8); | 801 A.PreconcatScale3d(6, 7, 8); |
| 802 A.PreconcatSkewX(45); | 802 A.PreconcatSkewX(45); |
| 803 EXPECT_ROW1_EQ(6, 6, 0, 0, A); | 803 EXPECT_ROW1_EQ(6, 6, 0, 0, A); |
| 804 EXPECT_ROW2_EQ(0, 7, 0, 0, A); | 804 EXPECT_ROW2_EQ(0, 7, 0, 0, A); |
| 805 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 805 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
| 806 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 806 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 807 } | 807 } |
| 808 | 808 |
| 809 TEST(MathUtilGfxTransformTest, verifySkewY) | 809 TEST(MathUtilGfxTransformTest, verifySkewY) |
| 810 { | 810 { |
| 811 gfx::Transform A; | 811 gfx::Transform A; |
| 812 A.PreconcatSkewY(45); | 812 A.PreconcatSkewY(45); |
| 813 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 813 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
| 814 EXPECT_ROW2_EQ(1, 1, 0, 0, A); | 814 EXPECT_ROW2_EQ(1, 1, 0, 0, A); |
| 815 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 815 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 816 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 816 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 817 | 817 |
| 818 // Verify that skewY() post-multiplies the existing matrix. | 818 // Verify that skewY() post-multiplies the existing matrix. |
| 819 // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-mu
ltiplied instead of post-multiplied. | 819 // Row 2, column 1, would incorrectly have value "6" if the matrix is pre-mu
ltiplied instead of post-multiplied. |
| 820 MathUtil::makeIdentity(&A); | 820 A.matrix().setIdentity(); |
| 821 A.PreconcatScale3d(6, 7, 8); | 821 A.PreconcatScale3d(6, 7, 8); |
| 822 A.PreconcatSkewY(45); | 822 A.PreconcatSkewY(45); |
| 823 EXPECT_ROW1_EQ(6, 0, 0, 0, A); | 823 EXPECT_ROW1_EQ(6, 0, 0, 0, A); |
| 824 EXPECT_ROW2_EQ(7, 7, 0, 0, A); | 824 EXPECT_ROW2_EQ(7, 7, 0, 0, A); |
| 825 EXPECT_ROW3_EQ(0, 0, 8, 0, A); | 825 EXPECT_ROW3_EQ(0, 0, 8, 0, A); |
| 826 EXPECT_ROW4_EQ(0, 0, 0, 1, A); | 826 EXPECT_ROW4_EQ(0, 0, 0, 1, A); |
| 827 } | 827 } |
| 828 | 828 |
| 829 TEST(MathUtilGfxTransformTest, verifyPerspectiveDepth) | 829 TEST(MathUtilGfxTransformTest, verifyPerspectiveDepth) |
| 830 { | 830 { |
| 831 gfx::Transform A; | 831 gfx::Transform A; |
| 832 A.PreconcatPerspectiveDepth(1); | 832 A.PreconcatPerspectiveDepth(1); |
| 833 EXPECT_ROW1_EQ(1, 0, 0, 0, A); | 833 EXPECT_ROW1_EQ(1, 0, 0, 0, A); |
| 834 EXPECT_ROW2_EQ(0, 1, 0, 0, A); | 834 EXPECT_ROW2_EQ(0, 1, 0, 0, A); |
| 835 EXPECT_ROW3_EQ(0, 0, 1, 0, A); | 835 EXPECT_ROW3_EQ(0, 0, 1, 0, A); |
| 836 EXPECT_ROW4_EQ(0, 0, -1, 1, A); | 836 EXPECT_ROW4_EQ(0, 0, -1, 1, A); |
| 837 | 837 |
| 838 // Verify that PreconcatPerspectiveDepth() post-multiplies the existing matr
ix. | 838 // Verify that PreconcatPerspectiveDepth() post-multiplies the existing matr
ix. |
| 839 MathUtil::makeIdentity(&A); | 839 A.matrix().setIdentity(); |
| 840 A.PreconcatTranslate3d(2, 3, 4); | 840 A.PreconcatTranslate3d(2, 3, 4); |
| 841 A.PreconcatPerspectiveDepth(1); | 841 A.PreconcatPerspectiveDepth(1); |
| 842 EXPECT_ROW1_EQ(1, 0, -2, 2, A); | 842 EXPECT_ROW1_EQ(1, 0, -2, 2, A); |
| 843 EXPECT_ROW2_EQ(0, 1, -3, 3, A); | 843 EXPECT_ROW2_EQ(0, 1, -3, 3, A); |
| 844 EXPECT_ROW3_EQ(0, 0, -3, 4, A); | 844 EXPECT_ROW3_EQ(0, 0, -3, 4, A); |
| 845 EXPECT_ROW4_EQ(0, 0, -1, 1, A); | 845 EXPECT_ROW4_EQ(0, 0, -1, 1, A); |
| 846 } | 846 } |
| 847 | 847 |
| 848 TEST(MathUtilGfxTransformTest, verifyHasPerspective) | 848 TEST(MathUtilGfxTransformTest, verifyHasPerspective) |
| 849 { | 849 { |
| 850 gfx::Transform A; | 850 gfx::Transform A; |
| 851 A.PreconcatPerspectiveDepth(1); | 851 A.PreconcatPerspectiveDepth(1); |
| 852 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 852 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
| 853 | 853 |
| 854 MathUtil::makeIdentity(&A); | 854 A.matrix().setIdentity(); |
| 855 A.PreconcatPerspectiveDepth(0); | 855 A.PreconcatPerspectiveDepth(0); |
| 856 EXPECT_FALSE(MathUtil::hasPerspective(A)); | 856 EXPECT_FALSE(MathUtil::hasPerspective(A)); |
| 857 | 857 |
| 858 MathUtil::makeIdentity(&A); | 858 A.matrix().setIdentity(); |
| 859 A.matrix().setDouble(3, 0, -1); | 859 A.matrix().setDouble(3, 0, -1); |
| 860 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 860 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
| 861 | 861 |
| 862 MathUtil::makeIdentity(&A); | 862 A.matrix().setIdentity(); |
| 863 A.matrix().setDouble(3, 1, -1); | 863 A.matrix().setDouble(3, 1, -1); |
| 864 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 864 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
| 865 | 865 |
| 866 MathUtil::makeIdentity(&A); | 866 A.matrix().setIdentity(); |
| 867 A.matrix().setDouble(3, 2, -0.3); | 867 A.matrix().setDouble(3, 2, -0.3); |
| 868 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 868 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
| 869 | 869 |
| 870 MathUtil::makeIdentity(&A); | 870 A.matrix().setIdentity(); |
| 871 A.matrix().setDouble(3, 3, 0.5); | 871 A.matrix().setDouble(3, 3, 0.5); |
| 872 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 872 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
| 873 | 873 |
| 874 MathUtil::makeIdentity(&A); | 874 A.matrix().setIdentity(); |
| 875 A.matrix().setDouble(3, 3, 0); | 875 A.matrix().setDouble(3, 3, 0); |
| 876 EXPECT_TRUE(MathUtil::hasPerspective(A)); | 876 EXPECT_TRUE(MathUtil::hasPerspective(A)); |
| 877 } | 877 } |
| 878 | 878 |
| 879 TEST(MathUtilGfxTransformTest, verifyIsInvertible) | 879 TEST(MathUtilGfxTransformTest, verifyIsInvertible) |
| 880 { | 880 { |
| 881 gfx::Transform A; | 881 gfx::Transform A; |
| 882 | 882 |
| 883 // Translations, rotations, scales, skews and arbitrary combinations of them
are invertible. | 883 // Translations, rotations, scales, skews and arbitrary combinations of them
are invertible. |
| 884 MathUtil::makeIdentity(&A); | 884 A.matrix().setIdentity(); |
| 885 EXPECT_TRUE(MathUtil::isInvertible(A)); | 885 EXPECT_TRUE(A.IsInvertible()); |
| 886 | 886 |
| 887 MathUtil::makeIdentity(&A); | 887 A.matrix().setIdentity(); |
| 888 A.PreconcatTranslate3d(2, 3, 4); | 888 A.PreconcatTranslate3d(2, 3, 4); |
| 889 EXPECT_TRUE(MathUtil::isInvertible(A)); | 889 EXPECT_TRUE(A.IsInvertible()); |
| 890 | 890 |
| 891 MathUtil::makeIdentity(&A); | 891 A.matrix().setIdentity(); |
| 892 A.PreconcatScale3d(6, 7, 8); | 892 A.PreconcatScale3d(6, 7, 8); |
| 893 EXPECT_TRUE(MathUtil::isInvertible(A)); | 893 EXPECT_TRUE(A.IsInvertible()); |
| 894 | 894 |
| 895 MathUtil::makeIdentity(&A); | 895 A.matrix().setIdentity(); |
| 896 MathUtil::rotateEulerAngles(&A, 10, 20, 30); | 896 MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
| 897 EXPECT_TRUE(MathUtil::isInvertible(A)); | 897 EXPECT_TRUE(A.IsInvertible()); |
| 898 | 898 |
| 899 MathUtil::makeIdentity(&A); | 899 A.matrix().setIdentity(); |
| 900 A.PreconcatSkewX(45); | 900 A.PreconcatSkewX(45); |
| 901 EXPECT_TRUE(MathUtil::isInvertible(A)); | 901 EXPECT_TRUE(A.IsInvertible()); |
| 902 | 902 |
| 903 // A perspective matrix (projection plane at z=0) is invertible. The intuiti
ve | 903 // A perspective matrix (projection plane at z=0) is invertible. The intuiti
ve |
| 904 // explanation is that perspective is eqivalent to a skew of the w-axis; ske
ws are | 904 // explanation is that perspective is eqivalent to a skew of the w-axis; ske
ws are |
| 905 // invertible. | 905 // invertible. |
| 906 MathUtil::makeIdentity(&A); | 906 A.matrix().setIdentity(); |
| 907 A.PreconcatPerspectiveDepth(1); | 907 A.PreconcatPerspectiveDepth(1); |
| 908 EXPECT_TRUE(MathUtil::isInvertible(A)); | 908 EXPECT_TRUE(A.IsInvertible()); |
| 909 | 909 |
| 910 // A "pure" perspective matrix derived by similar triangles, with m44() set
to zero | 910 // A "pure" perspective matrix derived by similar triangles, with m44() set
to zero |
| 911 // (i.e. camera positioned at the origin), is not invertible. | 911 // (i.e. camera positioned at the origin), is not invertible. |
| 912 MathUtil::makeIdentity(&A); | 912 A.matrix().setIdentity(); |
| 913 A.PreconcatPerspectiveDepth(1); | 913 A.PreconcatPerspectiveDepth(1); |
| 914 A.matrix().setDouble(3, 3, 0); | 914 A.matrix().setDouble(3, 3, 0); |
| 915 EXPECT_FALSE(MathUtil::isInvertible(A)); | 915 EXPECT_FALSE(A.IsInvertible()); |
| 916 | 916 |
| 917 // Adding more to a non-invertible matrix will not make it invertible in the
general case. | 917 // Adding more to a non-invertible matrix will not make it invertible in the
general case. |
| 918 MathUtil::makeIdentity(&A); | 918 A.matrix().setIdentity(); |
| 919 A.PreconcatPerspectiveDepth(1); | 919 A.PreconcatPerspectiveDepth(1); |
| 920 A.matrix().setDouble(3, 3, 0); | 920 A.matrix().setDouble(3, 3, 0); |
| 921 A.PreconcatScale3d(6, 7, 8); | 921 A.PreconcatScale3d(6, 7, 8); |
| 922 MathUtil::rotateEulerAngles(&A, 10, 20, 30); | 922 MathUtil::rotateEulerAngles(&A, 10, 20, 30); |
| 923 A.PreconcatTranslate3d(6, 7, 8); | 923 A.PreconcatTranslate3d(6, 7, 8); |
| 924 EXPECT_FALSE(MathUtil::isInvertible(A)); | 924 EXPECT_FALSE(A.IsInvertible()); |
| 925 | 925 |
| 926 // A degenerate matrix of all zeros is not invertible. | 926 // A degenerate matrix of all zeros is not invertible. |
| 927 MathUtil::makeIdentity(&A); | 927 A.matrix().setIdentity(); |
| 928 A.matrix().setDouble(0, 0, 0); | 928 A.matrix().setDouble(0, 0, 0); |
| 929 A.matrix().setDouble(1, 1, 0); | 929 A.matrix().setDouble(1, 1, 0); |
| 930 A.matrix().setDouble(2, 2, 0); | 930 A.matrix().setDouble(2, 2, 0); |
| 931 A.matrix().setDouble(3, 3, 0); | 931 A.matrix().setDouble(3, 3, 0); |
| 932 EXPECT_FALSE(MathUtil::isInvertible(A)); | 932 EXPECT_FALSE(A.IsInvertible()); |
| 933 } | 933 } |
| 934 | 934 |
| 935 TEST(MathUtilGfxTransformTest, verifyIsIdentity) | 935 TEST(MathUtilGfxTransformTest, verifyIsIdentity) |
| 936 { | 936 { |
| 937 gfx::Transform A; | 937 gfx::Transform A; |
| 938 | 938 |
| 939 initializeTestMatrix(&A); | 939 initializeTestMatrix(&A); |
| 940 EXPECT_FALSE(MathUtil::isIdentity(A)); | 940 EXPECT_FALSE(A.IsIdentity()); |
| 941 | 941 |
| 942 MathUtil::makeIdentity(&A); | 942 A.matrix().setIdentity(); |
| 943 EXPECT_TRUE(MathUtil::isIdentity(A)); | 943 EXPECT_TRUE(A.IsIdentity()); |
| 944 | 944 |
| 945 // Modifying any one individual element should cause the matrix to no longer
be identity. | 945 // Modifying any one individual element should cause the matrix to no longer
be identity. |
| 946 MathUtil::makeIdentity(&A); | 946 A.matrix().setIdentity(); |
| 947 A.matrix().setDouble(0, 0, 2); | 947 A.matrix().setDouble(0, 0, 2); |
| 948 EXPECT_FALSE(MathUtil::isIdentity(A)); | 948 EXPECT_FALSE(A.IsIdentity()); |
| 949 | 949 |
| 950 MathUtil::makeIdentity(&A); | 950 A.matrix().setIdentity(); |
| 951 A.matrix().setDouble(1, 0, 2); | 951 A.matrix().setDouble(1, 0, 2); |
| 952 EXPECT_FALSE(MathUtil::isIdentity(A)); | 952 EXPECT_FALSE(A.IsIdentity()); |
| 953 | 953 |
| 954 MathUtil::makeIdentity(&A); | 954 A.matrix().setIdentity(); |
| 955 A.matrix().setDouble(2, 0, 2); | 955 A.matrix().setDouble(2, 0, 2); |
| 956 EXPECT_FALSE(MathUtil::isIdentity(A)); | 956 EXPECT_FALSE(A.IsIdentity()); |
| 957 | 957 |
| 958 MathUtil::makeIdentity(&A); | 958 A.matrix().setIdentity(); |
| 959 A.matrix().setDouble(3, 0, 2); | 959 A.matrix().setDouble(3, 0, 2); |
| 960 EXPECT_FALSE(MathUtil::isIdentity(A)); | 960 EXPECT_FALSE(A.IsIdentity()); |
| 961 | 961 |
| 962 MathUtil::makeIdentity(&A); | 962 A.matrix().setIdentity(); |
| 963 A.matrix().setDouble(0, 1, 2); | 963 A.matrix().setDouble(0, 1, 2); |
| 964 EXPECT_FALSE(MathUtil::isIdentity(A)); | 964 EXPECT_FALSE(A.IsIdentity()); |
| 965 | 965 |
| 966 MathUtil::makeIdentity(&A); | 966 A.matrix().setIdentity(); |
| 967 A.matrix().setDouble(1, 1, 2); | 967 A.matrix().setDouble(1, 1, 2); |
| 968 EXPECT_FALSE(MathUtil::isIdentity(A)); | 968 EXPECT_FALSE(A.IsIdentity()); |
| 969 | 969 |
| 970 MathUtil::makeIdentity(&A); | 970 A.matrix().setIdentity(); |
| 971 A.matrix().setDouble(2, 1, 2); | 971 A.matrix().setDouble(2, 1, 2); |
| 972 EXPECT_FALSE(MathUtil::isIdentity(A)); | 972 EXPECT_FALSE(A.IsIdentity()); |
| 973 | 973 |
| 974 MathUtil::makeIdentity(&A); | 974 A.matrix().setIdentity(); |
| 975 A.matrix().setDouble(3, 1, 2); | 975 A.matrix().setDouble(3, 1, 2); |
| 976 EXPECT_FALSE(MathUtil::isIdentity(A)); | 976 EXPECT_FALSE(A.IsIdentity()); |
| 977 | 977 |
| 978 MathUtil::makeIdentity(&A); | 978 A.matrix().setIdentity(); |
| 979 A.matrix().setDouble(0, 2, 2); | 979 A.matrix().setDouble(0, 2, 2); |
| 980 EXPECT_FALSE(MathUtil::isIdentity(A)); | 980 EXPECT_FALSE(A.IsIdentity()); |
| 981 | 981 |
| 982 MathUtil::makeIdentity(&A); | 982 A.matrix().setIdentity(); |
| 983 A.matrix().setDouble(1, 2, 2); | 983 A.matrix().setDouble(1, 2, 2); |
| 984 EXPECT_FALSE(MathUtil::isIdentity(A)); | 984 EXPECT_FALSE(A.IsIdentity()); |
| 985 | 985 |
| 986 MathUtil::makeIdentity(&A); | 986 A.matrix().setIdentity(); |
| 987 A.matrix().setDouble(2, 2, 2); | 987 A.matrix().setDouble(2, 2, 2); |
| 988 EXPECT_FALSE(MathUtil::isIdentity(A)); | 988 EXPECT_FALSE(A.IsIdentity()); |
| 989 | 989 |
| 990 MathUtil::makeIdentity(&A); | 990 A.matrix().setIdentity(); |
| 991 A.matrix().setDouble(3, 2, 2); | 991 A.matrix().setDouble(3, 2, 2); |
| 992 EXPECT_FALSE(MathUtil::isIdentity(A)); | 992 EXPECT_FALSE(A.IsIdentity()); |
| 993 | 993 |
| 994 MathUtil::makeIdentity(&A); | 994 A.matrix().setIdentity(); |
| 995 A.matrix().setDouble(0, 3, 2); | 995 A.matrix().setDouble(0, 3, 2); |
| 996 EXPECT_FALSE(MathUtil::isIdentity(A)); | 996 EXPECT_FALSE(A.IsIdentity()); |
| 997 | 997 |
| 998 MathUtil::makeIdentity(&A); | 998 A.matrix().setIdentity(); |
| 999 A.matrix().setDouble(1, 3, 2); | 999 A.matrix().setDouble(1, 3, 2); |
| 1000 EXPECT_FALSE(MathUtil::isIdentity(A)); | 1000 EXPECT_FALSE(A.IsIdentity()); |
| 1001 | 1001 |
| 1002 MathUtil::makeIdentity(&A); | 1002 A.matrix().setIdentity(); |
| 1003 A.matrix().setDouble(2, 3, 2); | 1003 A.matrix().setDouble(2, 3, 2); |
| 1004 EXPECT_FALSE(MathUtil::isIdentity(A)); | 1004 EXPECT_FALSE(A.IsIdentity()); |
| 1005 | 1005 |
| 1006 MathUtil::makeIdentity(&A); | 1006 A.matrix().setIdentity(); |
| 1007 A.matrix().setDouble(3, 3, 2); | 1007 A.matrix().setDouble(3, 3, 2); |
| 1008 EXPECT_FALSE(MathUtil::isIdentity(A)); | 1008 EXPECT_FALSE(A.IsIdentity()); |
| 1009 } | 1009 } |
| 1010 | 1010 |
| 1011 TEST(MathUtilGfxTransformTest, verifyIsIdentityOrTranslation) | 1011 TEST(MathUtilGfxTransformTest, verifyIsIdentityOrTranslation) |
| 1012 { | 1012 { |
| 1013 gfx::Transform A; | 1013 gfx::Transform A; |
| 1014 | 1014 |
| 1015 initializeTestMatrix(&A); | 1015 initializeTestMatrix(&A); |
| 1016 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1016 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1017 | 1017 |
| 1018 MathUtil::makeIdentity(&A); | 1018 A.matrix().setIdentity(); |
| 1019 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); | 1019 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
| 1020 | 1020 |
| 1021 // Modifying any non-translation components should cause isIdentityOrTransla
tion() to | 1021 // Modifying any non-translation components should cause isIdentityOrTransla
tion() to |
| 1022 // return false. NOTE: (0, 3), (1, 3), and (2, 3) are the translation compon
ents, so | 1022 // return false. NOTE: (0, 3), (1, 3), and (2, 3) are the translation compon
ents, so |
| 1023 // modifying them should still return true for isIdentityOrTranslation(). | 1023 // modifying them should still return true for isIdentityOrTranslation(). |
| 1024 MathUtil::makeIdentity(&A); | 1024 A.matrix().setIdentity(); |
| 1025 A.matrix().setDouble(0, 0, 2); | 1025 A.matrix().setDouble(0, 0, 2); |
| 1026 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1026 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1027 | 1027 |
| 1028 MathUtil::makeIdentity(&A); | 1028 A.matrix().setIdentity(); |
| 1029 A.matrix().setDouble(1, 0, 2); | 1029 A.matrix().setDouble(1, 0, 2); |
| 1030 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1030 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1031 | 1031 |
| 1032 MathUtil::makeIdentity(&A); | 1032 A.matrix().setIdentity(); |
| 1033 A.matrix().setDouble(2, 0, 2); | 1033 A.matrix().setDouble(2, 0, 2); |
| 1034 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1034 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1035 | 1035 |
| 1036 MathUtil::makeIdentity(&A); | 1036 A.matrix().setIdentity(); |
| 1037 A.matrix().setDouble(3, 0, 2); | 1037 A.matrix().setDouble(3, 0, 2); |
| 1038 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1038 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1039 | 1039 |
| 1040 MathUtil::makeIdentity(&A); | 1040 A.matrix().setIdentity(); |
| 1041 A.matrix().setDouble(0, 0, 2); | 1041 A.matrix().setDouble(0, 0, 2); |
| 1042 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1042 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1043 | 1043 |
| 1044 MathUtil::makeIdentity(&A); | 1044 A.matrix().setIdentity(); |
| 1045 A.matrix().setDouble(1, 1, 2); | 1045 A.matrix().setDouble(1, 1, 2); |
| 1046 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1046 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1047 | 1047 |
| 1048 MathUtil::makeIdentity(&A); | 1048 A.matrix().setIdentity(); |
| 1049 A.matrix().setDouble(2, 1, 2); | 1049 A.matrix().setDouble(2, 1, 2); |
| 1050 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1050 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1051 | 1051 |
| 1052 MathUtil::makeIdentity(&A); | 1052 A.matrix().setIdentity(); |
| 1053 A.matrix().setDouble(3, 1, 2); | 1053 A.matrix().setDouble(3, 1, 2); |
| 1054 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1054 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1055 | 1055 |
| 1056 MathUtil::makeIdentity(&A); | 1056 A.matrix().setIdentity(); |
| 1057 A.matrix().setDouble(0, 2, 2); | 1057 A.matrix().setDouble(0, 2, 2); |
| 1058 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1058 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1059 | 1059 |
| 1060 MathUtil::makeIdentity(&A); | 1060 A.matrix().setIdentity(); |
| 1061 A.matrix().setDouble(1, 2, 2); | 1061 A.matrix().setDouble(1, 2, 2); |
| 1062 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1062 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1063 | 1063 |
| 1064 MathUtil::makeIdentity(&A); | 1064 A.matrix().setIdentity(); |
| 1065 A.matrix().setDouble(2, 2, 2); | 1065 A.matrix().setDouble(2, 2, 2); |
| 1066 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1066 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1067 | 1067 |
| 1068 MathUtil::makeIdentity(&A); | 1068 A.matrix().setIdentity(); |
| 1069 A.matrix().setDouble(3, 2, 2); | 1069 A.matrix().setDouble(3, 2, 2); |
| 1070 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1070 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1071 | 1071 |
| 1072 // Note carefully - expecting true here. | 1072 // Note carefully - expecting true here. |
| 1073 MathUtil::makeIdentity(&A); | 1073 A.matrix().setIdentity(); |
| 1074 A.matrix().setDouble(0, 3, 2); | 1074 A.matrix().setDouble(0, 3, 2); |
| 1075 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); | 1075 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
| 1076 | 1076 |
| 1077 // Note carefully - expecting true here. | 1077 // Note carefully - expecting true here. |
| 1078 MathUtil::makeIdentity(&A); | 1078 A.matrix().setIdentity(); |
| 1079 A.matrix().setDouble(1, 3, 2); | 1079 A.matrix().setDouble(1, 3, 2); |
| 1080 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); | 1080 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
| 1081 | 1081 |
| 1082 // Note carefully - expecting true here. | 1082 // Note carefully - expecting true here. |
| 1083 MathUtil::makeIdentity(&A); | 1083 A.matrix().setIdentity(); |
| 1084 A.matrix().setDouble(2, 3, 2); | 1084 A.matrix().setDouble(2, 3, 2); |
| 1085 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); | 1085 EXPECT_TRUE(MathUtil::isIdentityOrTranslation(A)); |
| 1086 | 1086 |
| 1087 MathUtil::makeIdentity(&A); | 1087 A.matrix().setIdentity(); |
| 1088 A.matrix().setDouble(3, 3, 2); | 1088 A.matrix().setDouble(3, 3, 2); |
| 1089 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); | 1089 EXPECT_FALSE(MathUtil::isIdentityOrTranslation(A)); |
| 1090 } | 1090 } |
| 1091 | 1091 |
| 1092 } // namespace | 1092 } // namespace |
| 1093 } // namespace cc | 1093 } // namespace cc |
| OLD | NEW |