OLD | NEW |
---|---|
1 // Copyright 2012 The Chromium Authors. All rights reserved. | 1 // Copyright 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "cc/math_util.h" | 5 #include "cc/math_util.h" |
6 | 6 |
7 #include <cmath> | 7 #include <cmath> |
8 #include <limits> | 8 #include <limits> |
9 | 9 |
10 #include "ui/gfx/quad_f.h" | 10 #include "ui/gfx/quad_f.h" |
11 #include "ui/gfx/rect.h" | 11 #include "ui/gfx/rect.h" |
12 #include "ui/gfx/rect_conversions.h" | 12 #include "ui/gfx/rect_conversions.h" |
13 #include "ui/gfx/rect_f.h" | 13 #include "ui/gfx/rect_f.h" |
14 #include "ui/gfx/transform.h" | |
14 #include "ui/gfx/vector2d_f.h" | 15 #include "ui/gfx/vector2d_f.h" |
15 #include <public/WebTransformationMatrix.h> | |
16 | 16 |
17 using WebKit::WebTransformationMatrix; | 17 using gfx::Transform; |
18 | 18 |
19 namespace cc { | 19 namespace cc { |
20 | 20 |
21 const double MathUtil::PI_DOUBLE = 3.14159265358979323846; | 21 const double MathUtil::PI_DOUBLE = 3.14159265358979323846; |
22 const float MathUtil::PI_FLOAT = 3.14159265358979323846f; | 22 const float MathUtil::PI_FLOAT = 3.14159265358979323846f; |
23 const double MathUtil::EPSILON = 1e-9; | 23 const double MathUtil::EPSILON = 1e-9; |
24 | 24 |
25 static HomogeneousCoordinate projectHomogeneousPoint(const WebTransformationMatr ix& transform, const gfx::PointF& p) | 25 static HomogeneousCoordinate projectHomogeneousPoint(const Transform& transform, const gfx::PointF& p) |
26 { | 26 { |
27 // In this case, the layer we are trying to project onto is perpendicular to ray | 27 // In this case, the layer we are trying to project onto is perpendicular to ray |
28 // (point p and z-axis direction) that we are trying to project. This happen s when the | 28 // (point p and z-axis direction) that we are trying to project. This happen s when the |
29 // layer is rotated so that it is infinitesimally thin, or when it is co-pla nar with | 29 // layer is rotated so that it is infinitesimally thin, or when it is co-pla nar with |
30 // the camera origin -- i.e. when the layer is invisible anyway. | 30 // the camera origin -- i.e. when the layer is invisible anyway. |
31 if (!transform.m33()) | 31 if (!transform.matrix().getDouble(2, 2)) |
32 return HomogeneousCoordinate(0, 0, 0, 1); | 32 return HomogeneousCoordinate(0, 0, 0, 1); |
33 | 33 |
34 double x = p.x(); | 34 double x = p.x(); |
35 double y = p.y(); | 35 double y = p.y(); |
36 double z = -(transform.m13() * x + transform.m23() * y + transform.m43()) / transform.m33(); | 36 double z = -(transform.matrix().getDouble(2, 0) * x + transform.matrix().get Double(2, 1) * y + transform.matrix().getDouble(2, 3)) / transform.matrix().getD ouble(2, 2); |
37 // implicit definition of w = 1; | 37 // implicit definition of w = 1; |
38 | 38 |
39 double outX = x * transform.m11() + y * transform.m21() + z * transform.m31( ) + transform.m41(); | 39 double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix( ).getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix(). getDouble(0, 3); |
40 double outY = x * transform.m12() + y * transform.m22() + z * transform.m32( ) + transform.m42(); | 40 double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix( ).getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix(). getDouble(1, 3); |
41 double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33( ) + transform.m43(); | 41 double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix( ).getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix(). getDouble(2, 3); |
42 double outW = x * transform.m14() + y * transform.m24() + z * transform.m34( ) + transform.m44(); | 42 double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix( ).getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix(). getDouble(3, 3); |
43 | 43 |
44 return HomogeneousCoordinate(outX, outY, outZ, outW); | 44 return HomogeneousCoordinate(outX, outY, outZ, outW); |
45 } | 45 } |
46 | 46 |
47 static HomogeneousCoordinate mapHomogeneousPoint(const WebTransformationMatrix& transform, const gfx::Point3F& p) | 47 static HomogeneousCoordinate mapHomogeneousPoint(const Transform& transform, con st gfx::Point3F& p) |
48 { | 48 { |
49 double x = p.x(); | 49 double x = p.x(); |
50 double y = p.y(); | 50 double y = p.y(); |
51 double z = p.z(); | 51 double z = p.z(); |
52 // implicit definition of w = 1; | 52 // implicit definition of w = 1; |
53 | 53 |
54 double outX = x * transform.m11() + y * transform.m21() + z * transform.m31( ) + transform.m41(); | 54 double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix( ).getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix(). getDouble(0, 3); |
55 double outY = x * transform.m12() + y * transform.m22() + z * transform.m32( ) + transform.m42(); | 55 double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix( ).getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix(). getDouble(1, 3); |
56 double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33( ) + transform.m43(); | 56 double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix( ).getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix(). getDouble(2, 3); |
57 double outW = x * transform.m14() + y * transform.m24() + z * transform.m34( ) + transform.m44(); | 57 double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix( ).getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix(). getDouble(3, 3); |
58 | 58 |
59 return HomogeneousCoordinate(outX, outY, outZ, outW); | 59 return HomogeneousCoordinate(outX, outY, outZ, outW); |
60 } | 60 } |
61 | 61 |
62 static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordin ate& h1, const HomogeneousCoordinate& h2) | 62 static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordin ate& h1, const HomogeneousCoordinate& h2) |
63 { | 63 { |
64 // Points h1 and h2 form a line in 4d, and any point on that line can be rep resented | 64 // Points h1 and h2 form a line in 4d, and any point on that line can be rep resented |
65 // as an interpolation between h1 and h2: | 65 // as an interpolation between h1 and h2: |
66 // p = (1-t) h1 + (t) h2 | 66 // p = (1-t) h1 + (t) h2 |
67 // | 67 // |
(...skipping 27 matching lines...) Expand all Loading... | |
95 ymin = std::min(p.y(), ymin); | 95 ymin = std::min(p.y(), ymin); |
96 ymax = std::max(p.y(), ymax); | 96 ymax = std::max(p.y(), ymax); |
97 } | 97 } |
98 | 98 |
99 static inline void addVertexToClippedQuad(const gfx::PointF& newVertex, gfx::Poi ntF clippedQuad[8], int& numVerticesInClippedQuad) | 99 static inline void addVertexToClippedQuad(const gfx::PointF& newVertex, gfx::Poi ntF clippedQuad[8], int& numVerticesInClippedQuad) |
100 { | 100 { |
101 clippedQuad[numVerticesInClippedQuad] = newVertex; | 101 clippedQuad[numVerticesInClippedQuad] = newVertex; |
102 numVerticesInClippedQuad++; | 102 numVerticesInClippedQuad++; |
103 } | 103 } |
104 | 104 |
105 gfx::Rect MathUtil::mapClippedRect(const WebTransformationMatrix& transform, con st gfx::Rect& srcRect) | 105 gfx::Rect MathUtil::mapClippedRect(const Transform& transform, const gfx::Rect& srcRect) |
106 { | 106 { |
107 return gfx::ToEnclosingRect(mapClippedRect(transform, gfx::RectF(srcRect))); | 107 return gfx::ToEnclosingRect(mapClippedRect(transform, gfx::RectF(srcRect))); |
108 } | 108 } |
109 | 109 |
110 gfx::RectF MathUtil::mapClippedRect(const WebTransformationMatrix& transform, co nst gfx::RectF& srcRect) | 110 gfx::RectF MathUtil::mapClippedRect(const Transform& transform, const gfx::RectF & srcRect) |
111 { | 111 { |
112 if (transform.isIdentityOrTranslation()) | 112 if (MathUtil::isIdentityOrTranslation(transform)) |
113 return srcRect + gfx::Vector2dF(static_cast<float>(transform.m41()), sta tic_cast<float>(transform.m42())); | 113 return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().ge tDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
114 | 114 |
115 // Apply the transform, but retain the result in homogeneous coordinates. | 115 // Apply the transform, but retain the result in homogeneous coordinates. |
116 gfx::QuadF q = gfx::QuadF(srcRect); | 116 gfx::QuadF q = gfx::QuadF(srcRect); |
117 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1( ))); | 117 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1( ))); |
118 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2( ))); | 118 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2( ))); |
119 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3( ))); | 119 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3( ))); |
120 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4( ))); | 120 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4( ))); |
121 | 121 |
122 return computeEnclosingClippedRect(h1, h2, h3, h4); | 122 return computeEnclosingClippedRect(h1, h2, h3, h4); |
123 } | 123 } |
124 | 124 |
125 gfx::RectF MathUtil::projectClippedRect(const WebTransformationMatrix& transform , const gfx::RectF& srcRect) | 125 gfx::RectF MathUtil::projectClippedRect(const Transform& transform, const gfx::R ectF& srcRect) |
126 { | 126 { |
127 if (transform.isIdentityOrTranslation()) | 127 if (MathUtil::isIdentityOrTranslation(transform)) |
128 return srcRect + gfx::Vector2dF(static_cast<float>(transform.m41()), sta tic_cast<float>(transform.m42())); | 128 return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().ge tDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
129 | 129 |
130 // Perform the projection, but retain the result in homogeneous coordinates. | 130 // Perform the projection, but retain the result in homogeneous coordinates. |
131 gfx::QuadF q = gfx::QuadF(srcRect); | 131 gfx::QuadF q = gfx::QuadF(srcRect); |
132 HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1()); | 132 HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1()); |
133 HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2()); | 133 HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2()); |
134 HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3()); | 134 HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3()); |
135 HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4()); | 135 HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4()); |
136 | 136 |
137 return computeEnclosingClippedRect(h1, h2, h3, h4); | 137 return computeEnclosingClippedRect(h1, h2, h3, h4); |
138 } | 138 } |
139 | 139 |
140 void MathUtil::mapClippedQuad(const WebTransformationMatrix& transform, const gf x::QuadF& srcQuad, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad) | 140 void MathUtil::mapClippedQuad(const Transform& transform, const gfx::QuadF& srcQ uad, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad) |
141 { | 141 { |
142 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu ad.p1())); | 142 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu ad.p1())); |
143 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu ad.p2())); | 143 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu ad.p2())); |
144 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu ad.p3())); | 144 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu ad.p3())); |
145 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu ad.p4())); | 145 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu ad.p4())); |
146 | 146 |
147 // The order of adding the vertices to the array is chosen so that clockwise / counter-clockwise orientation is retained. | 147 // The order of adding the vertices to the array is chosen so that clockwise / counter-clockwise orientation is retained. |
148 | 148 |
149 numVerticesInClippedQuad = 0; | 149 numVerticesInClippedQuad = 0; |
150 | 150 |
(...skipping 83 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
234 | 234 |
235 if (!h4.shouldBeClipped()) | 235 if (!h4.shouldBeClipped()) |
236 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d() ); | 236 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d() ); |
237 | 237 |
238 if (h4.shouldBeClipped() ^ h1.shouldBeClipped()) | 238 if (h4.shouldBeClipped() ^ h1.shouldBeClipped()) |
239 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo rEdge(h4, h1).cartesianPoint2d()); | 239 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo rEdge(h4, h1).cartesianPoint2d()); |
240 | 240 |
241 return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ym in)); | 241 return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ym in)); |
242 } | 242 } |
243 | 243 |
244 gfx::QuadF MathUtil::mapQuad(const WebTransformationMatrix& transform, const gfx ::QuadF& q, bool& clipped) | 244 gfx::QuadF MathUtil::mapQuad(const Transform& transform, const gfx::QuadF& q, bo ol& clipped) |
245 { | 245 { |
246 if (transform.isIdentityOrTranslation()) { | 246 if (MathUtil::isIdentityOrTranslation(transform)) { |
247 gfx::QuadF mappedQuad(q); | 247 gfx::QuadF mappedQuad(q); |
248 mappedQuad += gfx::Vector2dF(static_cast<float>(transform.m41()), static _cast<float>(transform.m42())); | 248 mappedQuad += gfx::Vector2dF(static_cast<float>(transform.matrix().getDo uble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
249 clipped = false; | 249 clipped = false; |
250 return mappedQuad; | 250 return mappedQuad; |
251 } | 251 } |
252 | 252 |
253 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1( ))); | 253 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1( ))); |
254 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2( ))); | 254 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2( ))); |
255 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3( ))); | 255 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3( ))); |
256 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4( ))); | 256 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4( ))); |
257 | 257 |
258 clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped () || h4.shouldBeClipped(); | 258 clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped () || h4.shouldBeClipped(); |
259 | 259 |
260 // Result will be invalid if clipped == true. But, compute it anyway just in case, to emulate existing behavior. | 260 // Result will be invalid if clipped == true. But, compute it anyway just in case, to emulate existing behavior. |
261 return gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesian Point2d(), h4.cartesianPoint2d()); | 261 return gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesian Point2d(), h4.cartesianPoint2d()); |
262 } | 262 } |
263 | 263 |
264 gfx::PointF MathUtil::mapPoint(const WebTransformationMatrix& transform, const g fx::PointF& p, bool& clipped) | 264 gfx::PointF MathUtil::mapPoint(const Transform& transform, const gfx::PointF& p, bool& clipped) |
265 { | 265 { |
266 HomogeneousCoordinate h = mapHomogeneousPoint(transform, gfx::Point3F(p)); | 266 HomogeneousCoordinate h = mapHomogeneousPoint(transform, gfx::Point3F(p)); |
267 | 267 |
268 if (h.w > 0) { | 268 if (h.w > 0) { |
269 clipped = false; | 269 clipped = false; |
270 return h.cartesianPoint2d(); | 270 return h.cartesianPoint2d(); |
271 } | 271 } |
272 | 272 |
273 // The cartesian coordinates will be invalid after dividing by w. | 273 // The cartesian coordinates will be invalid after dividing by w. |
274 clipped = true; | 274 clipped = true; |
275 | 275 |
276 // Avoid dividing by w if w == 0. | 276 // Avoid dividing by w if w == 0. |
277 if (!h.w) | 277 if (!h.w) |
278 return gfx::PointF(); | 278 return gfx::PointF(); |
279 | 279 |
280 // This return value will be invalid because clipped == true, but (1) users of this | 280 // This return value will be invalid because clipped == true, but (1) users of this |
281 // code should be ignoring the return value when clipped == true anyway, and (2) this | 281 // code should be ignoring the return value when clipped == true anyway, and (2) this |
282 // behavior is more consistent with existing behavior of WebKit transforms i f the user | 282 // behavior is more consistent with existing behavior of WebKit transforms i f the user |
283 // really does not ignore the return value. | 283 // really does not ignore the return value. |
284 return h.cartesianPoint2d(); | 284 return h.cartesianPoint2d(); |
285 } | 285 } |
286 | 286 |
287 gfx::Point3F MathUtil::mapPoint(const WebTransformationMatrix& transform, const gfx::Point3F& p, bool& clipped) | 287 gfx::Point3F MathUtil::mapPoint(const Transform& transform, const gfx::Point3F& p, bool& clipped) |
288 { | 288 { |
289 HomogeneousCoordinate h = mapHomogeneousPoint(transform, p); | 289 HomogeneousCoordinate h = mapHomogeneousPoint(transform, p); |
290 | 290 |
291 if (h.w > 0) { | 291 if (h.w > 0) { |
292 clipped = false; | 292 clipped = false; |
293 return h.cartesianPoint3d(); | 293 return h.cartesianPoint3d(); |
294 } | 294 } |
295 | 295 |
296 // The cartesian coordinates will be invalid after dividing by w. | 296 // The cartesian coordinates will be invalid after dividing by w. |
297 clipped = true; | 297 clipped = true; |
298 | 298 |
299 // Avoid dividing by w if w == 0. | 299 // Avoid dividing by w if w == 0. |
300 if (!h.w) | 300 if (!h.w) |
301 return gfx::Point3F(); | 301 return gfx::Point3F(); |
302 | 302 |
303 // This return value will be invalid because clipped == true, but (1) users of this | 303 // This return value will be invalid because clipped == true, but (1) users of this |
304 // code should be ignoring the return value when clipped == true anyway, and (2) this | 304 // code should be ignoring the return value when clipped == true anyway, and (2) this |
305 // behavior is more consistent with existing behavior of WebKit transforms i f the user | 305 // behavior is more consistent with existing behavior of WebKit transforms i f the user |
306 // really does not ignore the return value. | 306 // really does not ignore the return value. |
307 return h.cartesianPoint3d(); | 307 return h.cartesianPoint3d(); |
308 } | 308 } |
309 | 309 |
310 gfx::QuadF MathUtil::projectQuad(const WebTransformationMatrix& transform, const gfx::QuadF& q, bool& clipped) | 310 gfx::QuadF MathUtil::projectQuad(const Transform& transform, const gfx::QuadF& q , bool& clipped) |
311 { | 311 { |
312 gfx::QuadF projectedQuad; | 312 gfx::QuadF projectedQuad; |
313 bool clippedPoint; | 313 bool clippedPoint; |
314 projectedQuad.set_p1(projectPoint(transform, q.p1(), clippedPoint)); | 314 projectedQuad.set_p1(projectPoint(transform, q.p1(), clippedPoint)); |
315 clipped = clippedPoint; | 315 clipped = clippedPoint; |
316 projectedQuad.set_p2(projectPoint(transform, q.p2(), clippedPoint)); | 316 projectedQuad.set_p2(projectPoint(transform, q.p2(), clippedPoint)); |
317 clipped |= clippedPoint; | 317 clipped |= clippedPoint; |
318 projectedQuad.set_p3(projectPoint(transform, q.p3(), clippedPoint)); | 318 projectedQuad.set_p3(projectPoint(transform, q.p3(), clippedPoint)); |
319 clipped |= clippedPoint; | 319 clipped |= clippedPoint; |
320 projectedQuad.set_p4(projectPoint(transform, q.p4(), clippedPoint)); | 320 projectedQuad.set_p4(projectPoint(transform, q.p4(), clippedPoint)); |
321 clipped |= clippedPoint; | 321 clipped |= clippedPoint; |
322 | 322 |
323 return projectedQuad; | 323 return projectedQuad; |
324 } | 324 } |
325 | 325 |
326 gfx::PointF MathUtil::projectPoint(const WebTransformationMatrix& transform, con st gfx::PointF& p, bool& clipped) | 326 gfx::PointF MathUtil::projectPoint(const Transform& transform, const gfx::PointF & p, bool& clipped) |
327 { | 327 { |
328 HomogeneousCoordinate h = projectHomogeneousPoint(transform, p); | 328 HomogeneousCoordinate h = projectHomogeneousPoint(transform, p); |
329 | 329 |
330 if (h.w > 0) { | 330 if (h.w > 0) { |
331 // The cartesian coordinates will be valid in this case. | 331 // The cartesian coordinates will be valid in this case. |
332 clipped = false; | 332 clipped = false; |
333 return h.cartesianPoint2d(); | 333 return h.cartesianPoint2d(); |
334 } | 334 } |
335 | 335 |
336 // The cartesian coordinates will be invalid after dividing by w. | 336 // The cartesian coordinates will be invalid after dividing by w. |
337 clipped = true; | 337 clipped = true; |
338 | 338 |
339 // Avoid dividing by w if w == 0. | 339 // Avoid dividing by w if w == 0. |
340 if (!h.w) | 340 if (!h.w) |
341 return gfx::PointF(); | 341 return gfx::PointF(); |
342 | 342 |
343 // This return value will be invalid because clipped == true, but (1) users of this | 343 // This return value will be invalid because clipped == true, but (1) users of this |
344 // code should be ignoring the return value when clipped == true anyway, and (2) this | 344 // code should be ignoring the return value when clipped == true anyway, and (2) this |
345 // behavior is more consistent with existing behavior of WebKit transforms i f the user | 345 // behavior is more consistent with existing behavior of WebKit transforms i f the user |
346 // really does not ignore the return value. | 346 // really does not ignore the return value. |
347 return h.cartesianPoint2d(); | 347 return h.cartesianPoint2d(); |
348 } | 348 } |
349 | 349 |
350 void MathUtil::flattenTransformTo2d(WebTransformationMatrix& transform) | 350 void MathUtil::flattenTransformTo2d(Transform& transform) |
351 { | 351 { |
352 // Set both the 3rd row and 3rd column to (0, 0, 1, 0). | 352 // Set both the 3rd row and 3rd column to (0, 0, 1, 0). |
353 // | 353 // |
354 // One useful interpretation of doing this operation: | 354 // One useful interpretation of doing this operation: |
355 // - For x and y values, the new transform behaves effectively like an orth ographic | 355 // - For x and y values, the new transform behaves effectively like an orth ographic |
356 // projection was added to the matrix sequence. | 356 // projection was added to the matrix sequence. |
357 // - For z values, the new transform overrides any effect that the transfor m had on | 357 // - For z values, the new transform overrides any effect that the transfor m had on |
358 // z, and instead it preserves the z value for any points that are transf ormed. | 358 // z, and instead it preserves the z value for any points that are transf ormed. |
359 // - Because of linearity of transforms, this flattened transform also pres erves the | 359 // - Because of linearity of transforms, this flattened transform also pres erves the |
360 // effect that any subsequent (post-multiplied) transforms would have on z values. | 360 // effect that any subsequent (post-multiplied) transforms would have on z values. |
361 // | 361 // |
362 transform.setM13(0); | 362 transform.matrix().setDouble(2, 0, 0); |
363 transform.setM23(0); | 363 transform.matrix().setDouble(2, 1, 0); |
364 transform.setM31(0); | 364 transform.matrix().setDouble(0, 2, 0); |
365 transform.setM32(0); | 365 transform.matrix().setDouble(1, 2, 0); |
366 transform.setM33(1); | 366 transform.matrix().setDouble(2, 2, 1); |
367 transform.setM34(0); | 367 transform.matrix().setDouble(3, 2, 0); |
368 transform.setM43(0); | 368 transform.matrix().setDouble(2, 3, 0); |
369 } | 369 } |
370 | 370 |
371 static inline float scaleOnAxis(double a, double b, double c) | 371 static inline float scaleOnAxis(double a, double b, double c) |
372 { | 372 { |
373 return std::sqrt(a * a + b * b + c * c); | 373 return std::sqrt(a * a + b * b + c * c); |
374 } | 374 } |
375 | 375 |
376 gfx::Vector2dF MathUtil::computeTransform2dScaleComponents(const WebTransformati onMatrix& transform) | 376 gfx::Vector2dF MathUtil::computeTransform2dScaleComponents(const Transform& tran sform) |
377 { | 377 { |
378 if (transform.hasPerspective()) | 378 if (hasPerspective(transform)) |
379 return gfx::Vector2dF(1, 1); | 379 return gfx::Vector2dF(1, 1); |
380 float xScale = scaleOnAxis(transform.m11(), transform.m12(), transform.m13() ); | 380 float xScale = scaleOnAxis(transform.matrix().getDouble(0, 0), transform.mat rix().getDouble(1, 0), transform.matrix().getDouble(2, 0)); |
381 float yScale = scaleOnAxis(transform.m21(), transform.m22(), transform.m23() ); | 381 float yScale = scaleOnAxis(transform.matrix().getDouble(0, 1), transform.mat rix().getDouble(1, 1), transform.matrix().getDouble(2, 1)); |
382 return gfx::Vector2dF(xScale, yScale); | 382 return gfx::Vector2dF(xScale, yScale); |
383 } | 383 } |
384 | 384 |
385 float MathUtil::smallestAngleBetweenVectors(gfx::Vector2dF v1, gfx::Vector2dF v2 ) | 385 float MathUtil::smallestAngleBetweenVectors(gfx::Vector2dF v1, gfx::Vector2dF v2 ) |
386 { | 386 { |
387 double dotProduct = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); | 387 double dotProduct = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); |
388 // Clamp to compensate for rounding errors. | 388 // Clamp to compensate for rounding errors. |
389 dotProduct = std::max(-1.0, std::min(1.0, dotProduct)); | 389 dotProduct = std::max(-1.0, std::min(1.0, dotProduct)); |
390 return static_cast<float>(Rad2Deg(std::acos(dotProduct))); | 390 return static_cast<float>(Rad2Deg(std::acos(dotProduct))); |
391 } | 391 } |
392 | 392 |
393 gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF des tination) | 393 gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF des tination) |
394 { | 394 { |
395 float projectedLength = gfx::DotProduct(source, destination) / destination.L engthSquared(); | 395 float projectedLength = gfx::DotProduct(source, destination) / destination.L engthSquared(); |
396 return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * d estination.y()); | 396 return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * d estination.y()); |
397 } | 397 } |
398 | 398 |
399 bool MathUtil::isInvertible(const gfx::Transform& transform) | 399 bool MathUtil::isBackFaceVisible(const gfx::Transform& transform) |
400 { | 400 { |
401 const SkMatrix44& matrix = transform.matrix(); | 401 // Compute whether a layer with a forward-facing normal of (0, 0, 1) would |
402 double determinant = matrix.determinant(); | 402 // have its back face visible after applying the transform. |
403 return abs(determinant) > EPSILON; | 403 // |
404 } | 404 // This is done by transforming the normal and seeing if the resulting z |
405 // value is positive or negative. However, note that transforming a normal | |
406 // actually requires using the inverse-transpose of the original transform. | |
405 | 407 |
406 bool MathUtil::isBackFaceVisible(const gfx::Transform&) | 408 // TODO (shawnsingh) make this perform more efficiently - we do not |
407 { | 409 // actually need to instantiate/invert/transpose any matrices, exploiting th e |
408 // TODO (shawnsingh): to be implemented in a follow up patch very soon. | 410 // fact that we only need to transform (0, 0, 1, 0). |
409 NOTREACHED(); | 411 gfx::Transform inverseTransform = MathUtil::inverse(transform); |
410 return false; | 412 const SkMatrix44& mInv = inverseTransform.matrix(); |
411 } | |
412 | 413 |
413 bool MathUtil::isIdentity(const gfx::Transform& transform) | 414 return mInv.getDouble(2, 2) < 0; |
danakj
2012/11/24 02:34:54
This is a lot simpler than WebCore::Transformation
shawnsingh
2012/11/24 02:56:14
The difference is in the TODO. We should be able
danakj
2012/11/24 03:20:09
I see, okay.
| |
414 { | |
415 return transform.matrix().isIdentity(); | |
416 } | 415 } |
417 | 416 |
418 bool MathUtil::isIdentityOrTranslation(const gfx::Transform& transform) | 417 bool MathUtil::isIdentityOrTranslation(const gfx::Transform& transform) |
419 { | 418 { |
420 const SkMatrix44& matrix = transform.matrix(); | 419 const SkMatrix44& matrix = transform.matrix(); |
421 | 420 |
422 bool hasNoPerspective = !matrix.getDouble(3, 0) && !matrix.getDouble(3, 1) & & !matrix.getDouble(3, 2) && (matrix.getDouble(3, 3) == 1); | 421 bool hasNoPerspective = !matrix.getDouble(3, 0) && !matrix.getDouble(3, 1) & & !matrix.getDouble(3, 2) && (matrix.getDouble(3, 3) == 1); |
423 bool hasNoRotationOrSkew = !matrix.getDouble(0, 1) && !matrix.getDouble(0, 2 ) && !matrix.getDouble(1, 0) && | 422 bool hasNoRotationOrSkew = !matrix.getDouble(0, 1) && !matrix.getDouble(0, 2 ) && !matrix.getDouble(1, 0) && |
424 !matrix.getDouble(1, 2) && !matrix.getDouble(2, 0) && !matrix.getDouble( 2, 1); | 423 !matrix.getDouble(1, 2) && !matrix.getDouble(2, 0) && !matrix.getDouble( 2, 1); |
425 bool hasNoScale = matrix.getDouble(0, 0) == 1 && matrix.getDouble(1, 1) == 1 && matrix.getDouble(2, 2) == 1; | 424 bool hasNoScale = matrix.getDouble(0, 0) == 1 && matrix.getDouble(1, 1) == 1 && matrix.getDouble(2, 2) == 1; |
426 | 425 |
427 return hasNoPerspective && hasNoRotationOrSkew && hasNoScale; | 426 return hasNoPerspective && hasNoRotationOrSkew && hasNoScale; |
428 } | 427 } |
429 | 428 |
430 bool MathUtil::hasPerspective(const gfx::Transform& transform) | 429 bool MathUtil::hasPerspective(const gfx::Transform& transform) |
431 { | 430 { |
432 // Mathematically it is a bit too strict to expect the 4th element to be | 431 // Mathematically it is a bit too strict to expect the 4th element to be |
433 // equal to 1. However, the only non-perspective case where this element | 432 // equal to 1. However, the only non-perspective case where this element |
434 // becomes non-1 is when it was explicitly initialized. In that case it | 433 // becomes non-1 is when it was explicitly initialized. In that case it |
435 // still causes us to have a nontrivial divide-by-w, so we count it as | 434 // still causes us to have a nontrivial divide-by-w, so we count it as |
436 // being perspective here. | 435 // being perspective here. |
437 const SkMatrix44& matrix = transform.matrix(); | 436 const SkMatrix44& matrix = transform.matrix(); |
438 return matrix.getDouble(3, 0) || matrix.getDouble(3, 1) || matrix.getDouble( 3, 2) || (matrix.getDouble(3, 3) != 1); | 437 return matrix.getDouble(3, 0) || matrix.getDouble(3, 1) || matrix.getDouble( 3, 2) || (matrix.getDouble(3, 3) != 1); |
439 } | 438 } |
440 | 439 |
441 void MathUtil::makeIdentity(gfx::Transform* transform) | |
442 { | |
443 transform->matrix().setIdentity(); | |
444 } | |
445 | |
446 void MathUtil::rotateEulerAngles(gfx::Transform* transform, double eulerX, doubl e eulerY, double eulerZ) | 440 void MathUtil::rotateEulerAngles(gfx::Transform* transform, double eulerX, doubl e eulerY, double eulerZ) |
447 { | 441 { |
448 // TODO (shawnsingh): make this implementation faster and more accurate by | 442 // TODO (shawnsingh): make this implementation faster and more accurate by |
449 // hard-coding each matrix instead of calling rotateAxisAngle(). | 443 // hard-coding each matrix instead of calling rotateAxisAngle(). |
450 gfx::Transform rotationAboutX; | 444 gfx::Transform rotationAboutX; |
451 gfx::Transform rotationAboutY; | 445 gfx::Transform rotationAboutY; |
452 gfx::Transform rotationAboutZ; | 446 gfx::Transform rotationAboutZ; |
453 | 447 |
454 MathUtil::rotateAxisAngle(&rotationAboutX, 1, 0, 0, eulerX); | 448 MathUtil::rotateAxisAngle(&rotationAboutX, 1, 0, 0, eulerX); |
455 MathUtil::rotateAxisAngle(&rotationAboutY, 0, 1, 0, eulerY); | 449 MathUtil::rotateAxisAngle(&rotationAboutY, 0, 1, 0, eulerY); |
(...skipping 91 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
547 | 541 |
548 gfx::Transform operator*(const gfx::Transform& A, const gfx::Transform& B) | 542 gfx::Transform operator*(const gfx::Transform& A, const gfx::Transform& B) |
549 { | 543 { |
550 // Compute A * B. | 544 // Compute A * B. |
551 gfx::Transform result = A; | 545 gfx::Transform result = A; |
552 result.PreconcatTransform(B); | 546 result.PreconcatTransform(B); |
553 return result; | 547 return result; |
554 } | 548 } |
555 | 549 |
556 } // namespace cc | 550 } // namespace cc |
OLD | NEW |