| Index: third_party/base/nonstd_unique_ptr.h
|
| diff --git a/third_party/base/nonstd_unique_ptr.h b/third_party/base/nonstd_unique_ptr.h
|
| index 9c0b13c1bf8f9673f361179b46ab4aa73e408a9b..c24bfff74c5d4318efc0cc0ac90639ca2744334d 100644
|
| --- a/third_party/base/nonstd_unique_ptr.h
|
| +++ b/third_party/base/nonstd_unique_ptr.h
|
| @@ -35,6 +35,13 @@
|
| // a pointer within a scope, and automatically destroying the pointer at the
|
| // end of a scope.
|
| //
|
| +// A unique_ptr<T> is like a T*, except that the destructor of unique_ptr<T>
|
| +// automatically deletes the pointer it holds (if any).
|
| +// That is, unique_ptr<T> owns the T object that it points to.
|
| +// Like a T*, a unique_ptr<T> may hold either NULL or a pointer to a T object.
|
| +// Also like T*, unique_ptr<T> is thread-compatible, and once you
|
| +// dereference it, you get the thread safety guarantees of T.
|
| +//
|
| // Example usage (unique_ptr):
|
| // {
|
| // unique_ptr<Foo> foo(new Foo("wee"));
|
| @@ -53,6 +60,8 @@
|
| // foo.reset(); // Foo("wee4") destroyed, foo no longer
|
| // // manages a pointer.
|
| // } // foo wasn't managing a pointer, so nothing was destroyed.
|
| +//
|
| +// The size of a unique_ptr is small: sizeof(unique_ptr<C>) == sizeof(C*)
|
|
|
| #ifndef NONSTD_UNIQUE_PTR_H_
|
| #define NONSTD_UNIQUE_PTR_H_
|
| @@ -66,45 +75,17 @@
|
|
|
| namespace nonstd {
|
|
|
| -// A unique_ptr<T> is like a T*, except that the destructor of unique_ptr<T>
|
| -// automatically deletes the pointer it holds (if any).
|
| -// That is, unique_ptr<T> owns the T object that it points to.
|
| -// Like a T*, a unique_ptr<T> may hold either NULL or a pointer to a T object.
|
| -// Also like T*, unique_ptr<T> is thread-compatible, and once you
|
| -// dereference it, you get the threadsafety guarantees of T.
|
| -//
|
| -// The size of a unique_ptr is small:
|
| -// sizeof(unique_ptr<C>) == sizeof(C*)
|
| +// Common implementation for both pointers to elements and pointers to
|
| +// arrays. These are differentiated below based on the need to invoke
|
| +// delete vs. delete[] as appropriate.
|
| template <class C>
|
| -class unique_ptr {
|
| +class unique_ptr_base {
|
| public:
|
|
|
| // The element type
|
| typedef C element_type;
|
|
|
| - // Constructor. Defaults to initializing with NULL.
|
| - // There is no way to create an uninitialized unique_ptr.
|
| - // The input parameter must be allocated with new.
|
| - explicit unique_ptr(C* p = NULL) : ptr_(p) { }
|
| -
|
| - // Destructor. If there is a C object, delete it.
|
| - // We don't need to test ptr_ == NULL because C++ does that for us.
|
| - ~unique_ptr() {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - delete ptr_;
|
| - }
|
| -
|
| - // Reset. Deletes the current owned object, if any.
|
| - // Then takes ownership of a new object, if given.
|
| - // this->reset(this->get()) works.
|
| - void reset(C* p = NULL) {
|
| - if (p != ptr_) {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - C* old_ptr = ptr_;
|
| - ptr_ = p;
|
| - delete old_ptr;
|
| - }
|
| - }
|
| + explicit unique_ptr_base(C* p) : ptr_(p) { }
|
|
|
| // Accessors to get the owned object.
|
| // operator* and operator-> will assert() if there is no current object.
|
| @@ -125,7 +106,7 @@ class unique_ptr {
|
| bool operator!=(C* p) const { return ptr_ != p; }
|
|
|
| // Swap two scoped pointers.
|
| - void swap(unique_ptr& p2) {
|
| + void swap(unique_ptr_base& p2) {
|
| C* tmp = ptr_;
|
| ptr_ = p2.ptr_;
|
| p2.ptr_ = tmp;
|
| @@ -145,9 +126,86 @@ class unique_ptr {
|
| // Allow promotion to bool for conditional statements.
|
| operator bool() const { return ptr_ != NULL; }
|
|
|
| - private:
|
| + protected:
|
| C* ptr_;
|
| +};
|
| +
|
| +// Implementation for ordinary pointers using delete.
|
| +template <class C>
|
| +class unique_ptr : public unique_ptr_base<C> {
|
| + public:
|
| + using unique_ptr_base<C>::ptr_;
|
| +
|
| + // Constructor. Defaults to initializing with NULL. There is no way
|
| + // to create an uninitialized unique_ptr. The input parameter must be
|
| + // allocated with new (not new[] - see below).
|
| + explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { }
|
| +
|
| + // Destructor. If there is a C object, delete it.
|
| + // We don't need to test ptr_ == NULL because C++ does that for us.
|
| + ~unique_ptr() {
|
| + enum { type_must_be_complete = sizeof(C) };
|
| + delete ptr_;
|
| + }
|
| +
|
| + // Reset. Deletes the current owned object, if any.
|
| + // Then takes ownership of a new object, if given.
|
| + // this->reset(this->get()) works.
|
| + void reset(C* p = NULL) {
|
| + if (p != ptr_) {
|
| + enum { type_must_be_complete = sizeof(C) };
|
| + C* old_ptr = ptr_;
|
| + ptr_ = p;
|
| + delete old_ptr;
|
| + }
|
| + }
|
| +
|
| +private:
|
| + // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't
|
| + // make sense, and if C2 == C, it still doesn't make sense because you should
|
| + // never have the same object owned by two different unique_ptrs.
|
| + template <class C2> bool operator==(unique_ptr<C2> const& p2) const;
|
| + template <class C2> bool operator!=(unique_ptr<C2> const& p2) const;
|
| +
|
| + // Disallow evil constructors
|
| + unique_ptr(const unique_ptr&);
|
| + void operator=(const unique_ptr&);
|
| +};
|
| +
|
| +// Specialization for arrays using delete[].
|
| +template <class C>
|
| +class unique_ptr<C[]> : public unique_ptr_base<C> {
|
| + public:
|
| + using unique_ptr_base<C>::ptr_;
|
| +
|
| + // Constructor. Defaults to initializing with NULL. There is no way
|
| + // to create an uninitialized unique_ptr. The input parameter must be
|
| + // allocated with new[] (not new - see above).
|
| + explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { }
|
| +
|
| + // Destructor. If there is a C object, delete it.
|
| + // We don't need to test ptr_ == NULL because C++ does that for us.
|
| + ~unique_ptr() {
|
| + enum { type_must_be_complete = sizeof(C) };
|
| + delete[] ptr_;
|
| + }
|
| +
|
| + // Reset. Deletes the current owned object, if any.
|
| + // Then takes ownership of a new object, if given.
|
| + // this->reset(this->get()) works.
|
| + void reset(C* p = NULL) {
|
| + if (p != ptr_) {
|
| + enum { type_must_be_complete = sizeof(C) };
|
| + C* old_ptr = ptr_;
|
| + ptr_ = p;
|
| + delete[] old_ptr;
|
| + }
|
| + }
|
| +
|
| + // Support indexing since it is holding array.
|
| + C& operator[] (size_t i) { return ptr_[i]; }
|
|
|
| +private:
|
| // Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't
|
| // make sense, and if C2 == C, it still doesn't make sense because you should
|
| // never have the same object owned by two different unique_ptrs.
|
|
|