Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(735)

Side by Side Diff: base/tracked_objects.cc

Issue 1128733002: Update from https://crrev.com/328418 (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 5 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « base/tracked_objects.h ('k') | base/tracked_objects_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "base/tracked_objects.h" 5 #include "base/tracked_objects.h"
6 6
7 #include <limits.h> 7 #include <limits.h>
8 #include <stdlib.h> 8 #include <stdlib.h>
9 9
10 #include "base/atomicops.h" 10 #include "base/atomicops.h"
(...skipping 10 matching lines...) Expand all
21 21
22 using base::TimeDelta; 22 using base::TimeDelta;
23 23
24 namespace base { 24 namespace base {
25 class TimeDelta; 25 class TimeDelta;
26 } 26 }
27 27
28 namespace tracked_objects { 28 namespace tracked_objects {
29 29
30 namespace { 30 namespace {
31 // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is
32 // negligible, enable by default.
33 // Flag to compile out parent-child link recording.
34 const bool kTrackParentChildLinks = false;
35
36 // When ThreadData is first initialized, should we start in an ACTIVE state to 31 // When ThreadData is first initialized, should we start in an ACTIVE state to
37 // record all of the startup-time tasks, or should we start up DEACTIVATED, so 32 // record all of the startup-time tasks, or should we start up DEACTIVATED, so
38 // that we only record after parsing the command line flag --enable-tracking. 33 // that we only record after parsing the command line flag --enable-tracking.
39 // Note that the flag may force either state, so this really controls only the 34 // Note that the flag may force either state, so this really controls only the
40 // period of time up until that flag is parsed. If there is no flag seen, then 35 // period of time up until that flag is parsed. If there is no flag seen, then
41 // this state may prevail for much or all of the process lifetime. 36 // this state may prevail for much or all of the process lifetime.
42 const ThreadData::Status kInitialStartupState = 37 const ThreadData::Status kInitialStartupState = ThreadData::PROFILING_ACTIVE;
43 ThreadData::PROFILING_CHILDREN_ACTIVE;
44 38
45 // Control whether an alternate time source (Now() function) is supported by 39 // Control whether an alternate time source (Now() function) is supported by
46 // the ThreadData class. This compile time flag should be set to true if we 40 // the ThreadData class. This compile time flag should be set to true if we
47 // want other modules (such as a memory allocator, or a thread-specific CPU time 41 // want other modules (such as a memory allocator, or a thread-specific CPU time
48 // clock) to be able to provide a thread-specific Now() function. Without this 42 // clock) to be able to provide a thread-specific Now() function. Without this
49 // compile-time flag, the code will only support the wall-clock time. This flag 43 // compile-time flag, the code will only support the wall-clock time. This flag
50 // can be flipped to efficiently disable this path (if there is a performance 44 // can be flipped to efficiently disable this path (if there is a performance
51 // problem with its presence). 45 // problem with its presence).
52 static const bool kAllowAlternateTimeSourceHandling = true; 46 static const bool kAllowAlternateTimeSourceHandling = true;
53 47
54 // Possible states of the profiler timing enabledness. 48 // Possible states of the profiler timing enabledness.
55 enum { 49 enum {
56 UNDEFINED_TIMING, 50 UNDEFINED_TIMING,
57 ENABLED_TIMING, 51 ENABLED_TIMING,
58 DISABLED_TIMING, 52 DISABLED_TIMING,
59 }; 53 };
60 54
61 // State of the profiler timing enabledness. 55 // State of the profiler timing enabledness.
62 base::subtle::Atomic32 g_profiler_timing_enabled = UNDEFINED_TIMING; 56 base::subtle::Atomic32 g_profiler_timing_enabled = UNDEFINED_TIMING;
63 57
64 // Returns whether profiler timing is enabled. The default is true, but this may 58 // Returns whether profiler timing is enabled. The default is true, but this
65 // be overridden by a command-line flag. Some platforms may programmatically set 59 // may be overridden by a command-line flag. Some platforms may
66 // this command-line flag to the "off" value if it's not specified. 60 // programmatically set this command-line flag to the "off" value if it's not
61 // specified.
67 // This in turn can be overridden by explicitly calling 62 // This in turn can be overridden by explicitly calling
68 // ThreadData::EnableProfilerTiming, say, based on a field trial. 63 // ThreadData::EnableProfilerTiming, say, based on a field trial.
69 inline bool IsProfilerTimingEnabled() { 64 inline bool IsProfilerTimingEnabled() {
70 // Reading |g_profiler_timing_enabled| is done without barrier because 65 // Reading |g_profiler_timing_enabled| is done without barrier because
71 // multiple initialization is not an issue while the barrier can be relatively 66 // multiple initialization is not an issue while the barrier can be relatively
72 // costly given that this method is sometimes called in a tight loop. 67 // costly given that this method is sometimes called in a tight loop.
73 base::subtle::Atomic32 current_timing_enabled = 68 base::subtle::Atomic32 current_timing_enabled =
74 base::subtle::NoBarrier_Load(&g_profiler_timing_enabled); 69 base::subtle::NoBarrier_Load(&g_profiler_timing_enabled);
75 if (current_timing_enabled == UNDEFINED_TIMING) { 70 if (current_timing_enabled == UNDEFINED_TIMING) {
76 if (!base::CommandLine::InitializedForCurrentProcess()) 71 if (!base::CommandLine::InitializedForCurrentProcess())
77 return true; 72 return true;
78 current_timing_enabled = 73 current_timing_enabled =
79 (base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII( 74 (base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
80 switches::kProfilerTiming) == 75 switches::kProfilerTiming) ==
81 switches::kProfilerTimingDisabledValue) 76 switches::kProfilerTimingDisabledValue)
82 ? DISABLED_TIMING 77 ? DISABLED_TIMING
83 : ENABLED_TIMING; 78 : ENABLED_TIMING;
84 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled, 79 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled,
85 current_timing_enabled); 80 current_timing_enabled);
86 } 81 }
87 return current_timing_enabled == ENABLED_TIMING; 82 return current_timing_enabled == ENABLED_TIMING;
88 } 83 }
89 84
90 } // namespace 85 } // namespace
91 86
92 //------------------------------------------------------------------------------ 87 //------------------------------------------------------------------------------
93 // DeathData tallies durations when a death takes place. 88 // DeathData tallies durations when a death takes place.
94 89
95 DeathData::DeathData() { 90 DeathData::DeathData()
96 Clear(); 91 : count_(0),
92 sample_probability_count_(0),
93 run_duration_sum_(0),
94 queue_duration_sum_(0),
95 run_duration_max_(0),
96 queue_duration_max_(0),
97 run_duration_sample_(0),
98 queue_duration_sample_(0),
99 last_phase_snapshot_(nullptr) {
97 } 100 }
98 101
99 DeathData::DeathData(int count) { 102 DeathData::DeathData(const DeathData& other)
100 Clear(); 103 : count_(other.count_),
101 count_ = count; 104 sample_probability_count_(other.sample_probability_count_),
105 run_duration_sum_(other.run_duration_sum_),
106 queue_duration_sum_(other.queue_duration_sum_),
107 run_duration_max_(other.run_duration_max_),
108 queue_duration_max_(other.queue_duration_max_),
109 run_duration_sample_(other.run_duration_sample_),
110 queue_duration_sample_(other.queue_duration_sample_),
111 last_phase_snapshot_(nullptr) {
112 // This constructor will be used by std::map when adding new DeathData values
113 // to the map. At that point, last_phase_snapshot_ is still NULL, so we don't
114 // need to worry about ownership transfer.
115 DCHECK(other.last_phase_snapshot_ == nullptr);
116 }
117
118 DeathData::~DeathData() {
119 while (last_phase_snapshot_) {
120 const DeathDataPhaseSnapshot* snapshot = last_phase_snapshot_;
121 last_phase_snapshot_ = snapshot->prev;
122 delete snapshot;
123 }
102 } 124 }
103 125
104 // TODO(jar): I need to see if this macro to optimize branching is worth using. 126 // TODO(jar): I need to see if this macro to optimize branching is worth using.
105 // 127 //
106 // This macro has no branching, so it is surely fast, and is equivalent to: 128 // This macro has no branching, so it is surely fast, and is equivalent to:
107 // if (assign_it) 129 // if (assign_it)
108 // target = source; 130 // target = source;
109 // We use a macro rather than a template to force this to inline. 131 // We use a macro rather than a template to force this to inline.
110 // Related code for calculating max is discussed on the web. 132 // Related code for calculating max is discussed on the web.
111 #define CONDITIONAL_ASSIGN(assign_it, target, source) \ 133 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
112 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it)) 134 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
113 135
114 void DeathData::RecordDeath(const int32 queue_duration, 136 void DeathData::RecordDeath(const int32 queue_duration,
115 const int32 run_duration, 137 const int32 run_duration,
116 const uint32 random_number) { 138 const uint32 random_number) {
117 // We'll just clamp at INT_MAX, but we should note this in the UI as such. 139 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
118 if (count_ < INT_MAX) 140 if (count_ < INT_MAX)
119 ++count_; 141 ++count_;
142
143 int sample_probability_count = sample_probability_count_;
144 if (sample_probability_count < INT_MAX)
145 ++sample_probability_count;
146 sample_probability_count_ = sample_probability_count;
147
120 queue_duration_sum_ += queue_duration; 148 queue_duration_sum_ += queue_duration;
121 run_duration_sum_ += run_duration; 149 run_duration_sum_ += run_duration;
122 150
123 if (queue_duration_max_ < queue_duration) 151 if (queue_duration_max_ < queue_duration)
124 queue_duration_max_ = queue_duration; 152 queue_duration_max_ = queue_duration;
125 if (run_duration_max_ < run_duration) 153 if (run_duration_max_ < run_duration)
126 run_duration_max_ = run_duration; 154 run_duration_max_ = run_duration;
127 155
128 // Take a uniformly distributed sample over all durations ever supplied. 156 // Take a uniformly distributed sample over all durations ever supplied during
129 // The probability that we (instead) use this new sample is 1/count_. This 157 // the current profiling phase.
130 // results in a completely uniform selection of the sample (at least when we 158 // The probability that we (instead) use this new sample is
131 // don't clamp count_... but that should be inconsequentially likely). 159 // 1/sample_probability_count_. This results in a completely uniform selection
132 // We ignore the fact that we correlated our selection of a sample to the run 160 // of the sample (at least when we don't clamp sample_probability_count_...
133 // and queue times (i.e., we used them to generate random_number). 161 // but that should be inconsequentially likely). We ignore the fact that we
134 CHECK_GT(count_, 0); 162 // correlated our selection of a sample to the run and queue times (i.e., we
135 if (0 == (random_number % count_)) { 163 // used them to generate random_number).
164 CHECK_GT(sample_probability_count, 0);
165 if (0 == (random_number % sample_probability_count)) {
136 queue_duration_sample_ = queue_duration; 166 queue_duration_sample_ = queue_duration;
137 run_duration_sample_ = run_duration; 167 run_duration_sample_ = run_duration;
138 } 168 }
139 } 169 }
140 170
141 int DeathData::count() const { return count_; } 171 int DeathData::count() const { return count_; }
142 172
143 int32 DeathData::run_duration_sum() const { return run_duration_sum_; } 173 int32 DeathData::run_duration_sum() const { return run_duration_sum_; }
144 174
145 int32 DeathData::run_duration_max() const { return run_duration_max_; } 175 int32 DeathData::run_duration_max() const { return run_duration_max_; }
146 176
147 int32 DeathData::run_duration_sample() const { 177 int32 DeathData::run_duration_sample() const {
148 return run_duration_sample_; 178 return run_duration_sample_;
149 } 179 }
150 180
151 int32 DeathData::queue_duration_sum() const { 181 int32 DeathData::queue_duration_sum() const {
152 return queue_duration_sum_; 182 return queue_duration_sum_;
153 } 183 }
154 184
155 int32 DeathData::queue_duration_max() const { 185 int32 DeathData::queue_duration_max() const {
156 return queue_duration_max_; 186 return queue_duration_max_;
157 } 187 }
158 188
159 int32 DeathData::queue_duration_sample() const { 189 int32 DeathData::queue_duration_sample() const {
160 return queue_duration_sample_; 190 return queue_duration_sample_;
161 } 191 }
162 192
163 void DeathData::Clear() { 193 const DeathDataPhaseSnapshot* DeathData::last_phase_snapshot() const {
164 count_ = 0; 194 return last_phase_snapshot_;
165 run_duration_sum_ = 0; 195 }
196
197 void DeathData::OnProfilingPhaseCompleted(int profiling_phase) {
198 // Snapshotting and storing current state.
199 last_phase_snapshot_ = new DeathDataPhaseSnapshot(
200 profiling_phase, count_, run_duration_sum_, run_duration_max_,
201 run_duration_sample_, queue_duration_sum_, queue_duration_max_,
202 queue_duration_sample_, last_phase_snapshot_);
203
204 // Not touching fields for which a delta can be computed by comparing with a
205 // snapshot from the previous phase. Resetting other fields. Sample values
206 // will be reset upon next death recording because sample_probability_count_
207 // is set to 0.
208 // We avoid resetting to 0 in favor of deltas whenever possible. The reason
209 // is that for incrementable fields, resetting to 0 from the snapshot thread
210 // potentially in parallel with incrementing in the death thread may result in
211 // significant data corruption that has a potential to grow with time. Not
212 // resetting incrementable fields and using deltas will cause any
213 // off-by-little corruptions to be likely fixed at the next snapshot.
214 // The max values are not incrementable, and cannot be deduced using deltas
215 // for a given phase. Hence, we have to reset them to 0. But the potential
216 // damage is limited to getting the previous phase's max to apply for the next
217 // phase, and the error doesn't have a potential to keep growing with new
218 // resets.
219 // sample_probability_count_ is incrementable, but must be reset to 0 at the
220 // phase end, so that we start a new uniformly randomized sample selection
221 // after the reset. Corruptions due to race conditions are possible, but the
222 // damage is limited to selecting a wrong sample, which is not something that
223 // can cause accumulating or cascading effects.
224 // If there were no corruptions caused by race conditions, we never send a
225 // sample for the previous phase in the next phase's snapshot because
226 // ThreadData::SnapshotExecutedTasks doesn't send deltas with 0 count.
227 sample_probability_count_ = 0;
166 run_duration_max_ = 0; 228 run_duration_max_ = 0;
167 run_duration_sample_ = 0;
168 queue_duration_sum_ = 0;
169 queue_duration_max_ = 0; 229 queue_duration_max_ = 0;
170 queue_duration_sample_ = 0;
171 } 230 }
172 231
173 //------------------------------------------------------------------------------ 232 //------------------------------------------------------------------------------
174 DeathDataSnapshot::DeathDataSnapshot() 233 DeathDataSnapshot::DeathDataSnapshot()
175 : count(-1), 234 : count(-1),
176 run_duration_sum(-1), 235 run_duration_sum(-1),
177 run_duration_max(-1), 236 run_duration_max(-1),
178 run_duration_sample(-1), 237 run_duration_sample(-1),
179 queue_duration_sum(-1), 238 queue_duration_sum(-1),
180 queue_duration_max(-1), 239 queue_duration_max(-1),
181 queue_duration_sample(-1) { 240 queue_duration_sample(-1) {
182 } 241 }
183 242
184 DeathDataSnapshot::DeathDataSnapshot( 243 DeathDataSnapshot::DeathDataSnapshot(int count,
185 const tracked_objects::DeathData& death_data) 244 int32 run_duration_sum,
186 : count(death_data.count()), 245 int32 run_duration_max,
187 run_duration_sum(death_data.run_duration_sum()), 246 int32 run_duration_sample,
188 run_duration_max(death_data.run_duration_max()), 247 int32 queue_duration_sum,
189 run_duration_sample(death_data.run_duration_sample()), 248 int32 queue_duration_max,
190 queue_duration_sum(death_data.queue_duration_sum()), 249 int32 queue_duration_sample)
191 queue_duration_max(death_data.queue_duration_max()), 250 : count(count),
192 queue_duration_sample(death_data.queue_duration_sample()) { 251 run_duration_sum(run_duration_sum),
252 run_duration_max(run_duration_max),
253 run_duration_sample(run_duration_sample),
254 queue_duration_sum(queue_duration_sum),
255 queue_duration_max(queue_duration_max),
256 queue_duration_sample(queue_duration_sample) {
193 } 257 }
194 258
195 DeathDataSnapshot::~DeathDataSnapshot() { 259 DeathDataSnapshot::~DeathDataSnapshot() {
196 } 260 }
197 261
262 DeathDataSnapshot DeathDataSnapshot::Delta(
263 const DeathDataSnapshot& older) const {
264 return DeathDataSnapshot(count - older.count,
265 run_duration_sum - older.run_duration_sum,
266 run_duration_max, run_duration_sample,
267 queue_duration_sum - older.queue_duration_sum,
268 queue_duration_max, queue_duration_sample);
269 }
270
198 //------------------------------------------------------------------------------ 271 //------------------------------------------------------------------------------
199 BirthOnThread::BirthOnThread(const Location& location, 272 BirthOnThread::BirthOnThread(const Location& location,
200 const ThreadData& current) 273 const ThreadData& current)
201 : location_(location), 274 : location_(location),
202 birth_thread_(&current) { 275 birth_thread_(&current) {
203 } 276 }
204 277
205 //------------------------------------------------------------------------------ 278 //------------------------------------------------------------------------------
206 BirthOnThreadSnapshot::BirthOnThreadSnapshot() { 279 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
207 } 280 }
208 281
209 BirthOnThreadSnapshot::BirthOnThreadSnapshot( 282 BirthOnThreadSnapshot::BirthOnThreadSnapshot(const BirthOnThread& birth)
210 const tracked_objects::BirthOnThread& birth)
211 : location(birth.location()), 283 : location(birth.location()),
212 thread_name(birth.birth_thread()->thread_name()) { 284 thread_name(birth.birth_thread()->thread_name()) {
213 } 285 }
214 286
215 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() { 287 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
216 } 288 }
217 289
218 //------------------------------------------------------------------------------ 290 //------------------------------------------------------------------------------
219 Births::Births(const Location& location, const ThreadData& current) 291 Births::Births(const Location& location, const ThreadData& current)
220 : BirthOnThread(location, current), 292 : BirthOnThread(location, current),
(...skipping 10 matching lines...) Expand all
231 // TODO(jar): We should pull all these static vars together, into a struct, and 303 // TODO(jar): We should pull all these static vars together, into a struct, and
232 // optimize layout so that we benefit from locality of reference during accesses 304 // optimize layout so that we benefit from locality of reference during accesses
233 // to them. 305 // to them.
234 306
235 // static 307 // static
236 NowFunction* ThreadData::now_function_ = NULL; 308 NowFunction* ThreadData::now_function_ = NULL;
237 309
238 // static 310 // static
239 bool ThreadData::now_function_is_time_ = false; 311 bool ThreadData::now_function_is_time_ = false;
240 312
241 // A TLS slot which points to the ThreadData instance for the current thread. We 313 // A TLS slot which points to the ThreadData instance for the current thread.
242 // do a fake initialization here (zeroing out data), and then the real in-place 314 // We do a fake initialization here (zeroing out data), and then the real
243 // construction happens when we call tls_index_.Initialize(). 315 // in-place construction happens when we call tls_index_.Initialize().
244 // static 316 // static
245 base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER; 317 base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;
246 318
247 // static 319 // static
248 int ThreadData::worker_thread_data_creation_count_ = 0; 320 int ThreadData::worker_thread_data_creation_count_ = 0;
249 321
250 // static 322 // static
251 int ThreadData::cleanup_count_ = 0; 323 int ThreadData::cleanup_count_ = 0;
252 324
253 // static 325 // static
(...skipping 27 matching lines...) Expand all
281 : next_(NULL), 353 : next_(NULL),
282 next_retired_worker_(NULL), 354 next_retired_worker_(NULL),
283 worker_thread_number_(thread_number), 355 worker_thread_number_(thread_number),
284 incarnation_count_for_pool_(-1), 356 incarnation_count_for_pool_(-1),
285 current_stopwatch_(NULL) { 357 current_stopwatch_(NULL) {
286 CHECK_GT(thread_number, 0); 358 CHECK_GT(thread_number, 0);
287 base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number); 359 base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
288 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_. 360 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
289 } 361 }
290 362
291 ThreadData::~ThreadData() {} 363 ThreadData::~ThreadData() {
364 }
292 365
293 void ThreadData::PushToHeadOfList() { 366 void ThreadData::PushToHeadOfList() {
294 // Toss in a hint of randomness (atop the uniniitalized value). 367 // Toss in a hint of randomness (atop the uniniitalized value).
295 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_, 368 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
296 sizeof(random_number_)); 369 sizeof(random_number_));
297 MSAN_UNPOISON(&random_number_, sizeof(random_number_)); 370 MSAN_UNPOISON(&random_number_, sizeof(random_number_));
298 random_number_ += static_cast<uint32>(this - static_cast<ThreadData*>(0)); 371 random_number_ += static_cast<uint32>(this - static_cast<ThreadData*>(0));
299 random_number_ ^= (Now() - TrackedTime()).InMilliseconds(); 372 random_number_ ^= (Now() - TrackedTime()).InMilliseconds();
300 373
301 DCHECK(!next_); 374 DCHECK(!next_);
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after
354 } 427 }
355 DCHECK_GT(worker_thread_data->worker_thread_number_, 0); 428 DCHECK_GT(worker_thread_data->worker_thread_number_, 0);
356 429
357 tls_index_.Set(worker_thread_data); 430 tls_index_.Set(worker_thread_data);
358 return worker_thread_data; 431 return worker_thread_data;
359 } 432 }
360 433
361 // static 434 // static
362 void ThreadData::OnThreadTermination(void* thread_data) { 435 void ThreadData::OnThreadTermination(void* thread_data) {
363 DCHECK(thread_data); // TLS should *never* call us with a NULL. 436 DCHECK(thread_data); // TLS should *never* call us with a NULL.
364 // We must NOT do any allocations during this callback. There is a chance 437 // We must NOT do any allocations during this callback. There is a chance
365 // that the allocator is no longer active on this thread. 438 // that the allocator is no longer active on this thread.
366 reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup(); 439 reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
367 } 440 }
368 441
369 void ThreadData::OnThreadTerminationCleanup() { 442 void ThreadData::OnThreadTerminationCleanup() {
370 // The list_lock_ was created when we registered the callback, so it won't be 443 // The list_lock_ was created when we registered the callback, so it won't be
371 // allocated here despite the lazy reference. 444 // allocated here despite the lazy reference.
372 base::AutoLock lock(*list_lock_.Pointer()); 445 base::AutoLock lock(*list_lock_.Pointer());
373 if (incarnation_counter_ != incarnation_count_for_pool_) 446 if (incarnation_counter_ != incarnation_count_for_pool_)
374 return; // ThreadData was constructed in an earlier unit test. 447 return; // ThreadData was constructed in an earlier unit test.
375 ++cleanup_count_; 448 ++cleanup_count_;
376 // Only worker threads need to be retired and reused. 449 // Only worker threads need to be retired and reused.
377 if (!worker_thread_number_) { 450 if (!worker_thread_number_) {
378 return; 451 return;
379 } 452 }
380 // We must NOT do any allocations during this callback. 453 // We must NOT do any allocations during this callback.
381 // Using the simple linked lists avoids all allocations. 454 // Using the simple linked lists avoids all allocations.
382 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL)); 455 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
383 this->next_retired_worker_ = first_retired_worker_; 456 this->next_retired_worker_ = first_retired_worker_;
384 first_retired_worker_ = this; 457 first_retired_worker_ = this;
385 } 458 }
386 459
387 // static 460 // static
388 void ThreadData::Snapshot(ProcessDataSnapshot* process_data_snapshot) { 461 void ThreadData::Snapshot(int current_profiling_phase,
389 ThreadData::SnapshotCurrentPhase( 462 ProcessDataSnapshot* process_data_snapshot) {
390 &process_data_snapshot->phased_process_data_snapshots[0]); 463 // Get an unchanging copy of a ThreadData list.
464 ThreadData* my_list = ThreadData::first();
465
466 // Gather data serially.
467 // This hackish approach *can* get some slightly corrupt tallies, as we are
468 // grabbing values without the protection of a lock, but it has the advantage
469 // of working even with threads that don't have message loops. If a user
470 // sees any strangeness, they can always just run their stats gathering a
471 // second time.
472 BirthCountMap birth_counts;
473 for (ThreadData* thread_data = my_list; thread_data;
474 thread_data = thread_data->next()) {
475 thread_data->SnapshotExecutedTasks(current_profiling_phase,
476 &process_data_snapshot->phased_snapshots,
477 &birth_counts);
478 }
479
480 // Add births that are still active -- i.e. objects that have tallied a birth,
481 // but have not yet tallied a matching death, and hence must be either
482 // running, queued up, or being held in limbo for future posting.
483 auto* current_phase_tasks =
484 &process_data_snapshot->phased_snapshots[current_profiling_phase].tasks;
485 for (const auto& birth_count : birth_counts) {
486 if (birth_count.second > 0) {
487 current_phase_tasks->push_back(
488 TaskSnapshot(BirthOnThreadSnapshot(*birth_count.first),
489 DeathDataSnapshot(birth_count.second, 0, 0, 0, 0, 0, 0),
490 "Still_Alive"));
491 }
492 }
493 }
494
495 // static
496 void ThreadData::OnProfilingPhaseCompleted(int profiling_phase) {
497 // Get an unchanging copy of a ThreadData list.
498 ThreadData* my_list = ThreadData::first();
499
500 // Add snapshots for all instances of death data in all threads serially.
501 // This hackish approach *can* get some slightly corrupt tallies, as we are
502 // grabbing values without the protection of a lock, but it has the advantage
503 // of working even with threads that don't have message loops. Any corruption
504 // shouldn't cause "cascading damage" to anything else (in later phases).
505 for (ThreadData* thread_data = my_list; thread_data;
506 thread_data = thread_data->next()) {
507 thread_data->OnProfilingPhaseCompletedOnThread(profiling_phase);
508 }
391 } 509 }
392 510
393 Births* ThreadData::TallyABirth(const Location& location) { 511 Births* ThreadData::TallyABirth(const Location& location) {
394 BirthMap::iterator it = birth_map_.find(location); 512 BirthMap::iterator it = birth_map_.find(location);
395 Births* child; 513 Births* child;
396 if (it != birth_map_.end()) { 514 if (it != birth_map_.end()) {
397 child = it->second; 515 child = it->second;
398 child->RecordBirth(); 516 child->RecordBirth();
399 } else { 517 } else {
400 child = new Births(location, *this); // Leak this. 518 child = new Births(location, *this); // Leak this.
401 // Lock since the map may get relocated now, and other threads sometimes 519 // Lock since the map may get relocated now, and other threads sometimes
402 // snapshot it (but they lock before copying it). 520 // snapshot it (but they lock before copying it).
403 base::AutoLock lock(map_lock_); 521 base::AutoLock lock(map_lock_);
404 birth_map_[location] = child; 522 birth_map_[location] = child;
405 } 523 }
406 524
407 if (kTrackParentChildLinks && status_ > PROFILING_ACTIVE &&
408 !parent_stack_.empty()) {
409 const Births* parent = parent_stack_.top();
410 ParentChildPair pair(parent, child);
411 if (parent_child_set_.find(pair) == parent_child_set_.end()) {
412 // Lock since the map may get relocated now, and other threads sometimes
413 // snapshot it (but they lock before copying it).
414 base::AutoLock lock(map_lock_);
415 parent_child_set_.insert(pair);
416 }
417 }
418
419 return child; 525 return child;
420 } 526 }
421 527
422 void ThreadData::TallyADeath(const Births& birth, 528 void ThreadData::TallyADeath(const Births& births,
423 int32 queue_duration, 529 int32 queue_duration,
424 const TaskStopwatch& stopwatch) { 530 const TaskStopwatch& stopwatch) {
425 int32 run_duration = stopwatch.RunDurationMs(); 531 int32 run_duration = stopwatch.RunDurationMs();
426 532
427 // Stir in some randomness, plus add constant in case durations are zero. 533 // Stir in some randomness, plus add constant in case durations are zero.
428 const uint32 kSomePrimeNumber = 2147483647; 534 const uint32 kSomePrimeNumber = 2147483647;
429 random_number_ += queue_duration + run_duration + kSomePrimeNumber; 535 random_number_ += queue_duration + run_duration + kSomePrimeNumber;
430 // An address is going to have some randomness to it as well ;-). 536 // An address is going to have some randomness to it as well ;-).
431 random_number_ ^= static_cast<uint32>(&birth - reinterpret_cast<Births*>(0)); 537 random_number_ ^= static_cast<uint32>(&births - reinterpret_cast<Births*>(0));
432 538
433 // We don't have queue durations without OS timer. OS timer is automatically 539 // We don't have queue durations without OS timer. OS timer is automatically
434 // used for task-post-timing, so the use of an alternate timer implies all 540 // used for task-post-timing, so the use of an alternate timer implies all
435 // queue times are invalid, unless it was explicitly said that we can trust 541 // queue times are invalid, unless it was explicitly said that we can trust
436 // the alternate timer. 542 // the alternate timer.
437 if (kAllowAlternateTimeSourceHandling && 543 if (kAllowAlternateTimeSourceHandling &&
438 now_function_ && 544 now_function_ &&
439 !now_function_is_time_) { 545 !now_function_is_time_) {
440 queue_duration = 0; 546 queue_duration = 0;
441 } 547 }
442 548
443 DeathMap::iterator it = death_map_.find(&birth); 549 DeathMap::iterator it = death_map_.find(&births);
444 DeathData* death_data; 550 DeathData* death_data;
445 if (it != death_map_.end()) { 551 if (it != death_map_.end()) {
446 death_data = &it->second; 552 death_data = &it->second;
447 } else { 553 } else {
448 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now. 554 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now.
449 death_data = &death_map_[&birth]; 555 death_data = &death_map_[&births];
450 } // Release lock ASAP. 556 } // Release lock ASAP.
451 death_data->RecordDeath(queue_duration, run_duration, random_number_); 557 death_data->RecordDeath(queue_duration, run_duration, random_number_);
452
453 if (!kTrackParentChildLinks)
454 return;
455 if (!parent_stack_.empty()) { // We might get turned off.
456 DCHECK_EQ(parent_stack_.top(), &birth);
457 parent_stack_.pop();
458 }
459 } 558 }
460 559
461 // static 560 // static
462 Births* ThreadData::TallyABirthIfActive(const Location& location) { 561 Births* ThreadData::TallyABirthIfActive(const Location& location) {
463 if (!TrackingStatus()) 562 if (!TrackingStatus())
464 return NULL; 563 return NULL;
465 ThreadData* current_thread_data = Get(); 564 ThreadData* current_thread_data = Get();
466 if (!current_thread_data) 565 if (!current_thread_data)
467 return NULL; 566 return NULL;
468 return current_thread_data->TallyABirth(location); 567 return current_thread_data->TallyABirth(location);
469 } 568 }
470 569
471 // static 570 // static
472 void ThreadData::TallyRunOnNamedThreadIfTracking( 571 void ThreadData::TallyRunOnNamedThreadIfTracking(
473 const base::TrackingInfo& completed_task, 572 const base::TrackingInfo& completed_task,
474 const TaskStopwatch& stopwatch) { 573 const TaskStopwatch& stopwatch) {
475 // Even if we have been DEACTIVATED, we will process any pending births so 574 // Even if we have been DEACTIVATED, we will process any pending births so
476 // that our data structures (which counted the outstanding births) remain 575 // that our data structures (which counted the outstanding births) remain
477 // consistent. 576 // consistent.
478 const Births* birth = completed_task.birth_tally; 577 const Births* births = completed_task.birth_tally;
479 if (!birth) 578 if (!births)
480 return; 579 return;
481 ThreadData* current_thread_data = stopwatch.GetThreadData(); 580 ThreadData* current_thread_data = stopwatch.GetThreadData();
482 if (!current_thread_data) 581 if (!current_thread_data)
483 return; 582 return;
484 583
485 // Watch out for a race where status_ is changing, and hence one or both 584 // Watch out for a race where status_ is changing, and hence one or both
486 // of start_of_run or end_of_run is zero. In that case, we didn't bother to 585 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
487 // get a time value since we "weren't tracking" and we were trying to be 586 // get a time value since we "weren't tracking" and we were trying to be
488 // efficient by not calling for a genuine time value. For simplicity, we'll 587 // efficient by not calling for a genuine time value. For simplicity, we'll
489 // use a default zero duration when we can't calculate a true value. 588 // use a default zero duration when we can't calculate a true value.
490 TrackedTime start_of_run = stopwatch.StartTime(); 589 TrackedTime start_of_run = stopwatch.StartTime();
491 int32 queue_duration = 0; 590 int32 queue_duration = 0;
492 if (!start_of_run.is_null()) { 591 if (!start_of_run.is_null()) {
493 queue_duration = (start_of_run - completed_task.EffectiveTimePosted()) 592 queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
494 .InMilliseconds(); 593 .InMilliseconds();
495 } 594 }
496 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 595 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
497 } 596 }
498 597
499 // static 598 // static
500 void ThreadData::TallyRunOnWorkerThreadIfTracking( 599 void ThreadData::TallyRunOnWorkerThreadIfTracking(
501 const Births* birth, 600 const Births* births,
502 const TrackedTime& time_posted, 601 const TrackedTime& time_posted,
503 const TaskStopwatch& stopwatch) { 602 const TaskStopwatch& stopwatch) {
504 // Even if we have been DEACTIVATED, we will process any pending births so 603 // Even if we have been DEACTIVATED, we will process any pending births so
505 // that our data structures (which counted the outstanding births) remain 604 // that our data structures (which counted the outstanding births) remain
506 // consistent. 605 // consistent.
507 if (!birth) 606 if (!births)
508 return; 607 return;
509 608
510 // TODO(jar): Support the option to coalesce all worker-thread activity under 609 // TODO(jar): Support the option to coalesce all worker-thread activity under
511 // one ThreadData instance that uses locks to protect *all* access. This will 610 // one ThreadData instance that uses locks to protect *all* access. This will
512 // reduce memory (making it provably bounded), but run incrementally slower 611 // reduce memory (making it provably bounded), but run incrementally slower
513 // (since we'll use locks on TallyABirth and TallyADeath). The good news is 612 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
514 // that the locks on TallyADeath will be *after* the worker thread has run, 613 // that the locks on TallyADeath will be *after* the worker thread has run,
515 // and hence nothing will be waiting for the completion (... besides some 614 // and hence nothing will be waiting for the completion (... besides some
516 // other thread that might like to run). Also, the worker threads tasks are 615 // other thread that might like to run). Also, the worker threads tasks are
517 // generally longer, and hence the cost of the lock may perchance be amortized 616 // generally longer, and hence the cost of the lock may perchance be amortized
518 // over the long task's lifetime. 617 // over the long task's lifetime.
519 ThreadData* current_thread_data = stopwatch.GetThreadData(); 618 ThreadData* current_thread_data = stopwatch.GetThreadData();
520 if (!current_thread_data) 619 if (!current_thread_data)
521 return; 620 return;
522 621
523 TrackedTime start_of_run = stopwatch.StartTime(); 622 TrackedTime start_of_run = stopwatch.StartTime();
524 int32 queue_duration = 0; 623 int32 queue_duration = 0;
525 if (!start_of_run.is_null()) { 624 if (!start_of_run.is_null()) {
526 queue_duration = (start_of_run - time_posted).InMilliseconds(); 625 queue_duration = (start_of_run - time_posted).InMilliseconds();
527 } 626 }
528 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 627 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
529 } 628 }
530 629
531 // static 630 // static
532 void ThreadData::TallyRunInAScopedRegionIfTracking( 631 void ThreadData::TallyRunInAScopedRegionIfTracking(
533 const Births* birth, 632 const Births* births,
534 const TaskStopwatch& stopwatch) { 633 const TaskStopwatch& stopwatch) {
535 // Even if we have been DEACTIVATED, we will process any pending births so 634 // Even if we have been DEACTIVATED, we will process any pending births so
536 // that our data structures (which counted the outstanding births) remain 635 // that our data structures (which counted the outstanding births) remain
537 // consistent. 636 // consistent.
538 if (!birth) 637 if (!births)
539 return; 638 return;
540 639
541 ThreadData* current_thread_data = stopwatch.GetThreadData(); 640 ThreadData* current_thread_data = stopwatch.GetThreadData();
542 if (!current_thread_data) 641 if (!current_thread_data)
543 return; 642 return;
544 643
545 int32 queue_duration = 0; 644 int32 queue_duration = 0;
546 current_thread_data->TallyADeath(*birth, queue_duration, stopwatch); 645 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
547 }
548
549 // static
550 void ThreadData::SnapshotAllExecutedTasks(
551 ProcessDataPhaseSnapshot* process_data_phase,
552 BirthCountMap* birth_counts) {
553 // Get an unchanging copy of a ThreadData list.
554 ThreadData* my_list = ThreadData::first();
555
556 // Gather data serially.
557 // This hackish approach *can* get some slighly corrupt tallies, as we are
558 // grabbing values without the protection of a lock, but it has the advantage
559 // of working even with threads that don't have message loops. If a user
560 // sees any strangeness, they can always just run their stats gathering a
561 // second time.
562 for (ThreadData* thread_data = my_list;
563 thread_data;
564 thread_data = thread_data->next()) {
565 thread_data->SnapshotExecutedTasks(process_data_phase, birth_counts);
566 }
567 }
568
569 // static
570 void ThreadData::SnapshotCurrentPhase(
571 ProcessDataPhaseSnapshot* process_data_phase) {
572 // Add births that have run to completion to |collected_data|.
573 // |birth_counts| tracks the total number of births recorded at each location
574 // for which we have not seen a death count.
575 BirthCountMap birth_counts;
576 ThreadData::SnapshotAllExecutedTasks(process_data_phase, &birth_counts);
577
578 // Add births that are still active -- i.e. objects that have tallied a birth,
579 // but have not yet tallied a matching death, and hence must be either
580 // running, queued up, or being held in limbo for future posting.
581 for (const auto& birth_count : birth_counts) {
582 if (birth_count.second > 0) {
583 process_data_phase->tasks.push_back(TaskSnapshot(
584 *birth_count.first, DeathData(birth_count.second), "Still_Alive"));
585 }
586 }
587 } 646 }
588 647
589 void ThreadData::SnapshotExecutedTasks( 648 void ThreadData::SnapshotExecutedTasks(
590 ProcessDataPhaseSnapshot* process_data_phase, 649 int current_profiling_phase,
650 PhasedProcessDataSnapshotMap* phased_snapshots,
591 BirthCountMap* birth_counts) { 651 BirthCountMap* birth_counts) {
592 // Get copy of data, so that the data will not change during the iterations 652 // Get copy of data, so that the data will not change during the iterations
593 // and processing. 653 // and processing.
594 ThreadData::BirthMap birth_map; 654 BirthMap birth_map;
595 ThreadData::DeathMap death_map; 655 DeathsSnapshot deaths;
596 ThreadData::ParentChildSet parent_child_set; 656 SnapshotMaps(current_profiling_phase, &birth_map, &deaths);
597 SnapshotMaps(&birth_map, &death_map, &parent_child_set);
598
599 for (const auto& death : death_map) {
600 process_data_phase->tasks.push_back(
601 TaskSnapshot(*death.first, death.second, thread_name()));
602 (*birth_counts)[death.first] -= death.first->birth_count();
603 }
604 657
605 for (const auto& birth : birth_map) { 658 for (const auto& birth : birth_map) {
606 (*birth_counts)[birth.second] += birth.second->birth_count(); 659 (*birth_counts)[birth.second] += birth.second->birth_count();
607 } 660 }
608 661
609 if (!kTrackParentChildLinks) 662 for (const auto& death : deaths) {
610 return; 663 (*birth_counts)[death.first] -= death.first->birth_count();
611 664
612 for (const auto& parent_child : parent_child_set) { 665 // For the current death data, walk through all its snapshots, starting from
613 process_data_phase->descendants.push_back( 666 // the current one, then from the previous profiling phase etc., and for
614 ParentChildPairSnapshot(parent_child)); 667 // each snapshot calculate the delta between the snapshot and the previous
668 // phase, if any. Store the deltas in the result.
669 for (const DeathDataPhaseSnapshot* phase = &death.second; phase;
670 phase = phase->prev) {
671 const DeathDataSnapshot& death_data =
672 phase->prev ? phase->death_data.Delta(phase->prev->death_data)
673 : phase->death_data;
674
675 if (death_data.count > 0) {
676 (*phased_snapshots)[phase->profiling_phase].tasks.push_back(
677 TaskSnapshot(BirthOnThreadSnapshot(*death.first), death_data,
678 thread_name()));
679 }
680 }
615 } 681 }
616 } 682 }
617 683
618 // This may be called from another thread. 684 // This may be called from another thread.
619 void ThreadData::SnapshotMaps(BirthMap* birth_map, 685 void ThreadData::SnapshotMaps(int profiling_phase,
620 DeathMap* death_map, 686 BirthMap* birth_map,
621 ParentChildSet* parent_child_set) { 687 DeathsSnapshot* deaths) {
622 base::AutoLock lock(map_lock_); 688 base::AutoLock lock(map_lock_);
689
623 for (const auto& birth : birth_map_) 690 for (const auto& birth : birth_map_)
624 (*birth_map)[birth.first] = birth.second; 691 (*birth_map)[birth.first] = birth.second;
625 for (const auto& death : death_map_)
626 (*death_map)[death.first] = death.second;
627 692
628 if (!kTrackParentChildLinks) 693 for (const auto& death : death_map_) {
629 return; 694 deaths->push_back(std::make_pair(
695 death.first,
696 DeathDataPhaseSnapshot(profiling_phase, death.second.count(),
697 death.second.run_duration_sum(),
698 death.second.run_duration_max(),
699 death.second.run_duration_sample(),
700 death.second.queue_duration_sum(),
701 death.second.queue_duration_max(),
702 death.second.queue_duration_sample(),
703 death.second.last_phase_snapshot())));
704 }
705 }
630 706
631 for (const auto& parent_child : parent_child_set_) 707 void ThreadData::OnProfilingPhaseCompletedOnThread(int profiling_phase) {
632 parent_child_set->insert(parent_child); 708 base::AutoLock lock(map_lock_);
709
710 for (auto& death : death_map_) {
711 death.second.OnProfilingPhaseCompleted(profiling_phase);
712 }
633 } 713 }
634 714
635 static void OptionallyInitializeAlternateTimer() { 715 static void OptionallyInitializeAlternateTimer() {
636 NowFunction* alternate_time_source = GetAlternateTimeSource(); 716 NowFunction* alternate_time_source = GetAlternateTimeSource();
637 if (alternate_time_source) 717 if (alternate_time_source)
638 ThreadData::SetAlternateTimeSource(alternate_time_source); 718 ThreadData::SetAlternateTimeSource(alternate_time_source);
639 } 719 }
640 720
641 bool ThreadData::Initialize() { 721 bool ThreadData::Initialize() {
642 if (status_ >= DEACTIVATED) 722 if (status_ >= DEACTIVATED)
(...skipping 24 matching lines...) Expand all
667 return false; 747 return false;
668 } else { 748 } else {
669 // TLS was initialzed for us earlier. 749 // TLS was initialzed for us earlier.
670 DCHECK_EQ(status_, DORMANT_DURING_TESTS); 750 DCHECK_EQ(status_, DORMANT_DURING_TESTS);
671 } 751 }
672 752
673 // Incarnation counter is only significant to testing, as it otherwise will 753 // Incarnation counter is only significant to testing, as it otherwise will
674 // never again change in this process. 754 // never again change in this process.
675 ++incarnation_counter_; 755 ++incarnation_counter_;
676 756
677 // The lock is not critical for setting status_, but it doesn't hurt. It also 757 // The lock is not critical for setting status_, but it doesn't hurt. It also
678 // ensures that if we have a racy initialization, that we'll bail as soon as 758 // ensures that if we have a racy initialization, that we'll bail as soon as
679 // we get the lock earlier in this method. 759 // we get the lock earlier in this method.
680 status_ = kInitialStartupState; 760 status_ = kInitialStartupState;
681 if (!kTrackParentChildLinks &&
682 kInitialStartupState == PROFILING_CHILDREN_ACTIVE)
683 status_ = PROFILING_ACTIVE;
684 DCHECK(status_ != UNINITIALIZED); 761 DCHECK(status_ != UNINITIALIZED);
685 return true; 762 return true;
686 } 763 }
687 764
688 // static 765 // static
689 bool ThreadData::InitializeAndSetTrackingStatus(Status status) { 766 bool ThreadData::InitializeAndSetTrackingStatus(Status status) {
690 DCHECK_GE(status, DEACTIVATED); 767 DCHECK_GE(status, DEACTIVATED);
691 DCHECK_LE(status, PROFILING_CHILDREN_ACTIVE); 768 DCHECK_LE(status, PROFILING_ACTIVE);
692 769
693 if (!Initialize()) // No-op if already initialized. 770 if (!Initialize()) // No-op if already initialized.
694 return false; // Not compiled in. 771 return false; // Not compiled in.
695 772
696 if (!kTrackParentChildLinks && status > DEACTIVATED) 773 if (status > DEACTIVATED)
697 status = PROFILING_ACTIVE; 774 status = PROFILING_ACTIVE;
698 status_ = status; 775 status_ = status;
699 return true; 776 return true;
700 } 777 }
701 778
702 // static 779 // static
703 ThreadData::Status ThreadData::status() { 780 ThreadData::Status ThreadData::status() {
704 return status_; 781 return status_;
705 } 782 }
706 783
707 // static 784 // static
708 bool ThreadData::TrackingStatus() { 785 bool ThreadData::TrackingStatus() {
709 return status_ > DEACTIVATED; 786 return status_ > DEACTIVATED;
710 } 787 }
711 788
712 // static 789 // static
713 bool ThreadData::TrackingParentChildStatus() {
714 return status_ >= PROFILING_CHILDREN_ACTIVE;
715 }
716
717 // static
718 void ThreadData::PrepareForStartOfRun(const Births* parent) {
719 if (kTrackParentChildLinks && parent && status_ > PROFILING_ACTIVE) {
720 ThreadData* current_thread_data = Get();
721 if (current_thread_data)
722 current_thread_data->parent_stack_.push(parent);
723 }
724 }
725
726 // static
727 void ThreadData::SetAlternateTimeSource(NowFunction* now_function) { 790 void ThreadData::SetAlternateTimeSource(NowFunction* now_function) {
728 DCHECK(now_function); 791 DCHECK(now_function);
729 if (kAllowAlternateTimeSourceHandling) 792 if (kAllowAlternateTimeSourceHandling)
730 now_function_ = now_function; 793 now_function_ = now_function;
731 } 794 }
732 795
733 // static 796 // static
734 void ThreadData::EnableProfilerTiming() { 797 void ThreadData::EnableProfilerTiming() {
735 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled, ENABLED_TIMING); 798 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled, ENABLED_TIMING);
736 } 799 }
(...skipping 165 matching lines...) Expand 10 before | Expand all | Expand 10 after
902 965
903 ThreadData* TaskStopwatch::GetThreadData() const { 966 ThreadData* TaskStopwatch::GetThreadData() const {
904 #if DCHECK_IS_ON() 967 #if DCHECK_IS_ON()
905 DCHECK(state_ != CREATED); 968 DCHECK(state_ != CREATED);
906 #endif 969 #endif
907 970
908 return current_thread_data_; 971 return current_thread_data_;
909 } 972 }
910 973
911 //------------------------------------------------------------------------------ 974 //------------------------------------------------------------------------------
975 // DeathDataPhaseSnapshot
976
977 DeathDataPhaseSnapshot::DeathDataPhaseSnapshot(
978 int profiling_phase,
979 int count,
980 int32 run_duration_sum,
981 int32 run_duration_max,
982 int32 run_duration_sample,
983 int32 queue_duration_sum,
984 int32 queue_duration_max,
985 int32 queue_duration_sample,
986 const DeathDataPhaseSnapshot* prev)
987 : profiling_phase(profiling_phase),
988 death_data(count,
989 run_duration_sum,
990 run_duration_max,
991 run_duration_sample,
992 queue_duration_sum,
993 queue_duration_max,
994 queue_duration_sample),
995 prev(prev) {
996 }
997
998 //------------------------------------------------------------------------------
999 // TaskSnapshot
1000
912 TaskSnapshot::TaskSnapshot() { 1001 TaskSnapshot::TaskSnapshot() {
913 } 1002 }
914 1003
915 TaskSnapshot::TaskSnapshot(const BirthOnThread& birth, 1004 TaskSnapshot::TaskSnapshot(const BirthOnThreadSnapshot& birth,
916 const DeathData& death_data, 1005 const DeathDataSnapshot& death_data,
917 const std::string& death_thread_name) 1006 const std::string& death_thread_name)
918 : birth(birth), 1007 : birth(birth),
919 death_data(death_data), 1008 death_data(death_data),
920 death_thread_name(death_thread_name) { 1009 death_thread_name(death_thread_name) {
921 } 1010 }
922 1011
923 TaskSnapshot::~TaskSnapshot() { 1012 TaskSnapshot::~TaskSnapshot() {
924 } 1013 }
925 1014
926 //------------------------------------------------------------------------------ 1015 //------------------------------------------------------------------------------
927 // ParentChildPairSnapshot
928
929 ParentChildPairSnapshot::ParentChildPairSnapshot() {
930 }
931
932 ParentChildPairSnapshot::ParentChildPairSnapshot(
933 const ThreadData::ParentChildPair& parent_child)
934 : parent(*parent_child.first),
935 child(*parent_child.second) {
936 }
937
938 ParentChildPairSnapshot::~ParentChildPairSnapshot() {
939 }
940
941 //------------------------------------------------------------------------------
942 // ProcessDataPhaseSnapshot 1016 // ProcessDataPhaseSnapshot
943 1017
944 ProcessDataPhaseSnapshot::ProcessDataPhaseSnapshot() { 1018 ProcessDataPhaseSnapshot::ProcessDataPhaseSnapshot() {
945 } 1019 }
946 1020
947 ProcessDataPhaseSnapshot::~ProcessDataPhaseSnapshot() { 1021 ProcessDataPhaseSnapshot::~ProcessDataPhaseSnapshot() {
948 } 1022 }
949 1023
950 //------------------------------------------------------------------------------ 1024 //------------------------------------------------------------------------------
951 // ProcessDataPhaseSnapshot 1025 // ProcessDataPhaseSnapshot
952 1026
953 ProcessDataSnapshot::ProcessDataSnapshot() 1027 ProcessDataSnapshot::ProcessDataSnapshot()
954 #if !defined(OS_NACL) 1028 #if !defined(OS_NACL)
955 : process_id(base::GetCurrentProcId()) { 1029 : process_id(base::GetCurrentProcId()) {
956 #else 1030 #else
957 : process_id(base::kNullProcessId) { 1031 : process_id(base::kNullProcessId) {
958 #endif 1032 #endif
959 } 1033 }
960 1034
961 ProcessDataSnapshot::~ProcessDataSnapshot() { 1035 ProcessDataSnapshot::~ProcessDataSnapshot() {
962 } 1036 }
963 1037
964 } // namespace tracked_objects 1038 } // namespace tracked_objects
OLDNEW
« no previous file with comments | « base/tracked_objects.h ('k') | base/tracked_objects_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698