Index: src/mips/code-stubs-mips.cc |
diff --git a/src/mips/code-stubs-mips.cc b/src/mips/code-stubs-mips.cc |
index f1f921fe8d8bbf63327071db31479d04543c1b7c..bbd5cc0cceaa5ba3c9e4c1ee1dbcc8cb90141f04 100644 |
--- a/src/mips/code-stubs-mips.cc |
+++ b/src/mips/code-stubs-mips.cc |
@@ -42,8 +42,7 @@ namespace internal { |
static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
Label* slow, |
- Condition cc, |
- bool never_nan_nan); |
+ Condition cc); |
static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
Register lhs, |
Register rhs, |
@@ -627,24 +626,6 @@ void FloatingPointHelper::LoadSmis(MacroAssembler* masm, |
} |
-void FloatingPointHelper::LoadOperands( |
- MacroAssembler* masm, |
- FloatingPointHelper::Destination destination, |
- Register heap_number_map, |
- Register scratch1, |
- Register scratch2, |
- Label* slow) { |
- |
- // Load right operand (a0) to f12 or a2/a3. |
- LoadNumber(masm, destination, |
- a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow); |
- |
- // Load left operand (a1) to f14 or a0/a1. |
- LoadNumber(masm, destination, |
- a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow); |
-} |
- |
- |
void FloatingPointHelper::LoadNumber(MacroAssembler* masm, |
Destination destination, |
Register object, |
@@ -922,14 +903,15 @@ void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, |
!scratch1.is(scratch3) && |
!scratch2.is(scratch3)); |
- Label done; |
+ Label done, maybe_undefined; |
__ UntagAndJumpIfSmi(dst, object, &done); |
__ AssertRootValue(heap_number_map, |
Heap::kHeapNumberMapRootIndex, |
"HeapNumberMap register clobbered."); |
- __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32); |
+ |
+ __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, &maybe_undefined); |
// Object is a heap number. |
// Convert the floating point value to a 32-bit integer. |
@@ -983,6 +965,14 @@ void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm, |
__ Subu(dst, zero_reg, dst); |
__ bind(&skip_sub); |
} |
+ __ Branch(&done); |
+ |
+ __ bind(&maybe_undefined); |
+ __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
+ __ Branch(not_int32, ne, object, Operand(at)); |
+ // |undefined| is truncated to 0. |
+ __ li(dst, Operand(Smi::FromInt(0))); |
+ // Fall through. |
__ bind(&done); |
} |
@@ -1183,48 +1173,43 @@ void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
// for "identity and not NaN". |
static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
Label* slow, |
- Condition cc, |
- bool never_nan_nan) { |
+ Condition cc) { |
Label not_identical; |
Label heap_number, return_equal; |
Register exp_mask_reg = t5; |
__ Branch(¬_identical, ne, a0, Operand(a1)); |
- // The two objects are identical. If we know that one of them isn't NaN then |
- // we now know they test equal. |
- if (cc != eq || !never_nan_nan) { |
- __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
- |
- // Test for NaN. Sadly, we can't just compare to factory->nan_value(), |
- // so we do the second best thing - test it ourselves. |
- // They are both equal and they are not both Smis so both of them are not |
- // Smis. If it's not a heap number, then return equal. |
- if (cc == less || cc == greater) { |
- __ GetObjectType(a0, t4, t4); |
- __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE)); |
- } else { |
- __ GetObjectType(a0, t4, t4); |
- __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE)); |
- // Comparing JS objects with <=, >= is complicated. |
- if (cc != eq) { |
- __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE)); |
- // Normally here we fall through to return_equal, but undefined is |
- // special: (undefined == undefined) == true, but |
- // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
- if (cc == less_equal || cc == greater_equal) { |
- __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE)); |
- __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); |
- __ Branch(&return_equal, ne, a0, Operand(t2)); |
- if (cc == le) { |
- // undefined <= undefined should fail. |
- __ li(v0, Operand(GREATER)); |
- } else { |
- // undefined >= undefined should fail. |
- __ li(v0, Operand(LESS)); |
- } |
- __ Ret(); |
+ __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask)); |
+ |
+ // Test for NaN. Sadly, we can't just compare to factory->nan_value(), |
+ // so we do the second best thing - test it ourselves. |
+ // They are both equal and they are not both Smis so both of them are not |
+ // Smis. If it's not a heap number, then return equal. |
+ if (cc == less || cc == greater) { |
+ __ GetObjectType(a0, t4, t4); |
+ __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE)); |
+ } else { |
+ __ GetObjectType(a0, t4, t4); |
+ __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE)); |
+ // Comparing JS objects with <=, >= is complicated. |
+ if (cc != eq) { |
+ __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE)); |
+ // Normally here we fall through to return_equal, but undefined is |
+ // special: (undefined == undefined) == true, but |
+ // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
+ if (cc == less_equal || cc == greater_equal) { |
+ __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE)); |
+ __ LoadRoot(t2, Heap::kUndefinedValueRootIndex); |
+ __ Branch(&return_equal, ne, a0, Operand(t2)); |
+ if (cc == le) { |
+ // undefined <= undefined should fail. |
+ __ li(v0, Operand(GREATER)); |
+ } else { |
+ // undefined >= undefined should fail. |
+ __ li(v0, Operand(LESS)); |
} |
+ __ Ret(); |
} |
} |
} |
@@ -1240,46 +1225,44 @@ static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
} |
__ Ret(); |
- if (cc != eq || !never_nan_nan) { |
- // For less and greater we don't have to check for NaN since the result of |
- // x < x is false regardless. For the others here is some code to check |
- // for NaN. |
- if (cc != lt && cc != gt) { |
- __ bind(&heap_number); |
- // It is a heap number, so return non-equal if it's NaN and equal if it's |
- // not NaN. |
- |
- // The representation of NaN values has all exponent bits (52..62) set, |
- // and not all mantissa bits (0..51) clear. |
- // Read top bits of double representation (second word of value). |
- __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
- // Test that exponent bits are all set. |
- __ And(t3, t2, Operand(exp_mask_reg)); |
- // If all bits not set (ne cond), then not a NaN, objects are equal. |
- __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg)); |
- |
- // Shift out flag and all exponent bits, retaining only mantissa. |
- __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord); |
- // Or with all low-bits of mantissa. |
- __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); |
- __ Or(v0, t3, Operand(t2)); |
- // For equal we already have the right value in v0: Return zero (equal) |
- // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
- // not (it's a NaN). For <= and >= we need to load v0 with the failing |
- // value if it's a NaN. |
- if (cc != eq) { |
- // All-zero means Infinity means equal. |
- __ Ret(eq, v0, Operand(zero_reg)); |
- if (cc == le) { |
- __ li(v0, Operand(GREATER)); // NaN <= NaN should fail. |
- } else { |
- __ li(v0, Operand(LESS)); // NaN >= NaN should fail. |
- } |
+ // For less and greater we don't have to check for NaN since the result of |
+ // x < x is false regardless. For the others here is some code to check |
+ // for NaN. |
+ if (cc != lt && cc != gt) { |
+ __ bind(&heap_number); |
+ // It is a heap number, so return non-equal if it's NaN and equal if it's |
+ // not NaN. |
+ |
+ // The representation of NaN values has all exponent bits (52..62) set, |
+ // and not all mantissa bits (0..51) clear. |
+ // Read top bits of double representation (second word of value). |
+ __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset)); |
+ // Test that exponent bits are all set. |
+ __ And(t3, t2, Operand(exp_mask_reg)); |
+ // If all bits not set (ne cond), then not a NaN, objects are equal. |
+ __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg)); |
+ |
+ // Shift out flag and all exponent bits, retaining only mantissa. |
+ __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord); |
+ // Or with all low-bits of mantissa. |
+ __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); |
+ __ Or(v0, t3, Operand(t2)); |
+ // For equal we already have the right value in v0: Return zero (equal) |
+ // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
+ // not (it's a NaN). For <= and >= we need to load v0 with the failing |
+ // value if it's a NaN. |
+ if (cc != eq) { |
+ // All-zero means Infinity means equal. |
+ __ Ret(eq, v0, Operand(zero_reg)); |
+ if (cc == le) { |
+ __ li(v0, Operand(GREATER)); // NaN <= NaN should fail. |
+ } else { |
+ __ li(v0, Operand(LESS)); // NaN >= NaN should fail. |
} |
- __ Ret(); |
} |
- // No fall through here. |
+ __ Ret(); |
} |
+ // No fall through here. |
__ bind(¬_identical); |
} |
@@ -1752,43 +1735,61 @@ void NumberToStringStub::Generate(MacroAssembler* masm) { |
} |
-// On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared. |
-// On exit, v0 is 0, positive, or negative (smi) to indicate the result |
-// of the comparison. |
-void CompareStub::Generate(MacroAssembler* masm) { |
- Label slow; // Call builtin. |
- Label not_smis, both_loaded_as_doubles; |
+static void ICCompareStub_CheckInputType(MacroAssembler* masm, |
+ Register input, |
+ Register scratch, |
+ CompareIC::State expected, |
+ Label* fail) { |
+ Label ok; |
+ if (expected == CompareIC::SMI) { |
+ __ JumpIfNotSmi(input, fail); |
+ } else if (expected == CompareIC::HEAP_NUMBER) { |
+ __ JumpIfSmi(input, &ok); |
+ __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, |
+ DONT_DO_SMI_CHECK); |
+ } |
+ // We could be strict about symbol/string here, but as long as |
+ // hydrogen doesn't care, the stub doesn't have to care either. |
+ __ bind(&ok); |
+} |
- if (include_smi_compare_) { |
- Label not_two_smis, smi_done; |
- __ Or(a2, a1, a0); |
- __ JumpIfNotSmi(a2, ¬_two_smis); |
- __ sra(a1, a1, 1); |
- __ sra(a0, a0, 1); |
- __ Ret(USE_DELAY_SLOT); |
- __ subu(v0, a1, a0); |
- __ bind(¬_two_smis); |
- } else if (FLAG_debug_code) { |
- __ Or(a2, a1, a0); |
- __ And(a2, a2, kSmiTagMask); |
- __ Assert(ne, "CompareStub: unexpected smi operands.", |
- a2, Operand(zero_reg)); |
- } |
+// On entry a1 and a2 are the values to be compared. |
+// On exit a0 is 0, positive or negative to indicate the result of |
+// the comparison. |
+void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { |
+ Register lhs = a1; |
+ Register rhs = a0; |
+ Condition cc = GetCondition(); |
+ |
+ Label miss; |
+ ICCompareStub_CheckInputType(masm, lhs, a2, left_, &miss); |
+ ICCompareStub_CheckInputType(masm, rhs, a3, right_, &miss); |
+ Label slow; // Call builtin. |
+ Label not_smis, both_loaded_as_doubles; |
+ |
+ Label not_two_smis, smi_done; |
+ __ Or(a2, a1, a0); |
+ __ JumpIfNotSmi(a2, ¬_two_smis); |
+ __ sra(a1, a1, 1); |
+ __ sra(a0, a0, 1); |
+ __ Ret(USE_DELAY_SLOT); |
+ __ subu(v0, a1, a0); |
+ __ bind(¬_two_smis); |
// NOTICE! This code is only reached after a smi-fast-case check, so |
// it is certain that at least one operand isn't a smi. |
// Handle the case where the objects are identical. Either returns the answer |
// or goes to slow. Only falls through if the objects were not identical. |
- EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_); |
+ EmitIdenticalObjectComparison(masm, &slow, cc); |
// If either is a Smi (we know that not both are), then they can only |
// be strictly equal if the other is a HeapNumber. |
STATIC_ASSERT(kSmiTag == 0); |
ASSERT_EQ(0, Smi::FromInt(0)); |
- __ And(t2, lhs_, Operand(rhs_)); |
+ __ And(t2, lhs, Operand(rhs)); |
__ JumpIfNotSmi(t2, ¬_smis, t0); |
// One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
// 1) Return the answer. |
@@ -1798,8 +1799,8 @@ void CompareStub::Generate(MacroAssembler* masm) { |
// In cases 3 and 4 we have found out we were dealing with a number-number |
// comparison and the numbers have been loaded into f12 and f14 as doubles, |
// or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU. |
- EmitSmiNonsmiComparison(masm, lhs_, rhs_, |
- &both_loaded_as_doubles, &slow, strict_); |
+ EmitSmiNonsmiComparison(masm, lhs, rhs, |
+ &both_loaded_as_doubles, &slow, strict()); |
__ bind(&both_loaded_as_doubles); |
// f12, f14 are the double representations of the left hand side |
@@ -1835,7 +1836,7 @@ void CompareStub::Generate(MacroAssembler* masm) { |
__ bind(&nan); |
// NaN comparisons always fail. |
// Load whatever we need in v0 to make the comparison fail. |
- if (cc_ == lt || cc_ == le) { |
+ if (cc == lt || cc == le) { |
__ li(v0, Operand(GREATER)); |
} else { |
__ li(v0, Operand(LESS)); |
@@ -1844,20 +1845,20 @@ void CompareStub::Generate(MacroAssembler* masm) { |
} else { |
// Checks for NaN in the doubles we have loaded. Can return the answer or |
// fall through if neither is a NaN. Also binds rhs_not_nan. |
- EmitNanCheck(masm, cc_); |
+ EmitNanCheck(masm, cc); |
// Compares two doubles that are not NaNs. Returns the answer. |
// Never falls through. |
- EmitTwoNonNanDoubleComparison(masm, cc_); |
+ EmitTwoNonNanDoubleComparison(masm, cc); |
} |
__ bind(¬_smis); |
// At this point we know we are dealing with two different objects, |
// and neither of them is a Smi. The objects are in lhs_ and rhs_. |
- if (strict_) { |
+ if (strict()) { |
// This returns non-equal for some object types, or falls through if it |
// was not lucky. |
- EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_); |
+ EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); |
} |
Label check_for_symbols; |
@@ -1867,38 +1868,38 @@ void CompareStub::Generate(MacroAssembler* masm) { |
// that case. If the inputs are not doubles then jumps to check_for_symbols. |
// In this case a2 will contain the type of lhs_. |
EmitCheckForTwoHeapNumbers(masm, |
- lhs_, |
- rhs_, |
+ lhs, |
+ rhs, |
&both_loaded_as_doubles, |
&check_for_symbols, |
&flat_string_check); |
__ bind(&check_for_symbols); |
- if (cc_ == eq && !strict_) { |
+ if (cc == eq && !strict()) { |
// Returns an answer for two symbols or two detectable objects. |
// Otherwise jumps to string case or not both strings case. |
// Assumes that a2 is the type of lhs_ on entry. |
- EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow); |
+ EmitCheckForSymbolsOrObjects(masm, lhs, rhs, &flat_string_check, &slow); |
} |
// Check for both being sequential ASCII strings, and inline if that is the |
// case. |
__ bind(&flat_string_check); |
- __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow); |
+ __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, a2, a3, &slow); |
__ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3); |
- if (cc_ == eq) { |
+ if (cc == eq) { |
StringCompareStub::GenerateFlatAsciiStringEquals(masm, |
- lhs_, |
- rhs_, |
+ lhs, |
+ rhs, |
a2, |
a3, |
t0); |
} else { |
StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
- lhs_, |
- rhs_, |
+ lhs, |
+ rhs, |
a2, |
a3, |
t0, |
@@ -1909,18 +1910,18 @@ void CompareStub::Generate(MacroAssembler* masm) { |
__ bind(&slow); |
// Prepare for call to builtin. Push object pointers, a0 (lhs) first, |
// a1 (rhs) second. |
- __ Push(lhs_, rhs_); |
+ __ Push(lhs, rhs); |
// Figure out which native to call and setup the arguments. |
Builtins::JavaScript native; |
- if (cc_ == eq) { |
- native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
+ if (cc == eq) { |
+ native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
} else { |
native = Builtins::COMPARE; |
int ncr; // NaN compare result. |
- if (cc_ == lt || cc_ == le) { |
+ if (cc == lt || cc == le) { |
ncr = GREATER; |
} else { |
- ASSERT(cc_ == gt || cc_ == ge); // Remaining cases. |
+ ASSERT(cc == gt || cc == ge); // Remaining cases. |
ncr = LESS; |
} |
__ li(a0, Operand(Smi::FromInt(ncr))); |
@@ -1930,6 +1931,9 @@ void CompareStub::Generate(MacroAssembler* masm) { |
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
// tagged as a small integer. |
__ InvokeBuiltin(native, JUMP_FUNCTION); |
+ |
+ __ bind(&miss); |
+ GenerateMiss(masm); |
} |
@@ -2370,20 +2374,23 @@ void UnaryOpStub::GenerateGenericCodeFallback( |
} |
+void BinaryOpStub::Initialize() { |
+ platform_specific_bit_ = CpuFeatures::IsSupported(FPU); |
+} |
+ |
+ |
void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
Label get_result; |
__ Push(a1, a0); |
__ li(a2, Operand(Smi::FromInt(MinorKey()))); |
- __ li(a1, Operand(Smi::FromInt(op_))); |
- __ li(a0, Operand(Smi::FromInt(operands_type_))); |
- __ Push(a2, a1, a0); |
+ __ push(a2); |
__ TailCallExternalReference( |
ExternalReference(IC_Utility(IC::kBinaryOp_Patch), |
masm->isolate()), |
- 5, |
+ 3, |
1); |
} |
@@ -2394,59 +2401,8 @@ void BinaryOpStub::GenerateTypeTransitionWithSavedArgs( |
} |
-void BinaryOpStub::Generate(MacroAssembler* masm) { |
- // Explicitly allow generation of nested stubs. It is safe here because |
- // generation code does not use any raw pointers. |
- AllowStubCallsScope allow_stub_calls(masm, true); |
- switch (operands_type_) { |
- case BinaryOpIC::UNINITIALIZED: |
- GenerateTypeTransition(masm); |
- break; |
- case BinaryOpIC::SMI: |
- GenerateSmiStub(masm); |
- break; |
- case BinaryOpIC::INT32: |
- GenerateInt32Stub(masm); |
- break; |
- case BinaryOpIC::HEAP_NUMBER: |
- GenerateHeapNumberStub(masm); |
- break; |
- case BinaryOpIC::ODDBALL: |
- GenerateOddballStub(masm); |
- break; |
- case BinaryOpIC::BOTH_STRING: |
- GenerateBothStringStub(masm); |
- break; |
- case BinaryOpIC::STRING: |
- GenerateStringStub(masm); |
- break; |
- case BinaryOpIC::GENERIC: |
- GenerateGeneric(masm); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void BinaryOpStub::PrintName(StringStream* stream) { |
- const char* op_name = Token::Name(op_); |
- const char* overwrite_name; |
- switch (mode_) { |
- case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
- case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
- case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
- default: overwrite_name = "UnknownOverwrite"; break; |
- } |
- stream->Add("BinaryOpStub_%s_%s_%s", |
- op_name, |
- overwrite_name, |
- BinaryOpIC::GetName(operands_type_)); |
-} |
- |
- |
- |
-void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) { |
+void BinaryOpStub_GenerateSmiSmiOperation(MacroAssembler* masm, |
+ Token::Value op) { |
Register left = a1; |
Register right = a0; |
@@ -2457,7 +2413,7 @@ void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) { |
STATIC_ASSERT(kSmiTag == 0); |
Label not_smi_result; |
- switch (op_) { |
+ switch (op) { |
case Token::ADD: |
__ AdduAndCheckForOverflow(v0, left, right, scratch1); |
__ RetOnNoOverflow(scratch1); |
@@ -2600,10 +2556,24 @@ void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) { |
} |
-void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
- bool smi_operands, |
- Label* not_numbers, |
- Label* gc_required) { |
+void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm, |
+ Register result, |
+ Register heap_number_map, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required, |
+ OverwriteMode mode); |
+ |
+ |
+void BinaryOpStub_GenerateFPOperation(MacroAssembler* masm, |
+ BinaryOpIC::TypeInfo left_type, |
+ BinaryOpIC::TypeInfo right_type, |
+ bool smi_operands, |
+ Label* not_numbers, |
+ Label* gc_required, |
+ Label* miss, |
+ Token::Value op, |
+ OverwriteMode mode) { |
Register left = a1; |
Register right = a0; |
Register scratch1 = t3; |
@@ -2615,11 +2585,17 @@ void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
__ AssertSmi(left); |
__ AssertSmi(right); |
} |
+ if (left_type == BinaryOpIC::SMI) { |
+ __ JumpIfNotSmi(left, miss); |
+ } |
+ if (right_type == BinaryOpIC::SMI) { |
+ __ JumpIfNotSmi(right, miss); |
+ } |
Register heap_number_map = t2; |
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- switch (op_) { |
+ switch (op) { |
case Token::ADD: |
case Token::SUB: |
case Token::MUL: |
@@ -2629,25 +2605,44 @@ void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
// depending on whether FPU is available or not. |
FloatingPointHelper::Destination destination = |
CpuFeatures::IsSupported(FPU) && |
- op_ != Token::MOD ? |
+ op != Token::MOD ? |
FloatingPointHelper::kFPURegisters : |
FloatingPointHelper::kCoreRegisters; |
// Allocate new heap number for result. |
Register result = s0; |
- GenerateHeapResultAllocation( |
- masm, result, heap_number_map, scratch1, scratch2, gc_required); |
+ BinaryOpStub_GenerateHeapResultAllocation( |
+ masm, result, heap_number_map, scratch1, scratch2, gc_required, mode); |
// Load the operands. |
if (smi_operands) { |
FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2); |
} else { |
- FloatingPointHelper::LoadOperands(masm, |
- destination, |
- heap_number_map, |
- scratch1, |
- scratch2, |
- not_numbers); |
+ // Load right operand to f14 or a2/a3. |
+ if (right_type == BinaryOpIC::INT32) { |
+ FloatingPointHelper::LoadNumberAsInt32Double( |
+ masm, right, destination, f14, f16, a2, a3, heap_number_map, |
+ scratch1, scratch2, f2, miss); |
+ } else { |
+ Label* fail = (right_type == BinaryOpIC::HEAP_NUMBER) ? miss |
+ : not_numbers; |
+ FloatingPointHelper::LoadNumber( |
+ masm, destination, right, f14, a2, a3, heap_number_map, |
+ scratch1, scratch2, fail); |
+ } |
+ // Load left operand to f12 or a0/a1. This keeps a0/a1 intact if it |
+ // jumps to |miss|. |
+ if (left_type == BinaryOpIC::INT32) { |
+ FloatingPointHelper::LoadNumberAsInt32Double( |
+ masm, left, destination, f12, f16, a0, a1, heap_number_map, |
+ scratch1, scratch2, f2, miss); |
+ } else { |
+ Label* fail = (left_type == BinaryOpIC::HEAP_NUMBER) ? miss |
+ : not_numbers; |
+ FloatingPointHelper::LoadNumber( |
+ masm, destination, left, f12, a0, a1, heap_number_map, |
+ scratch1, scratch2, fail); |
+ } |
} |
// Calculate the result. |
@@ -2656,7 +2651,7 @@ void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
// f12: Left value. |
// f14: Right value. |
CpuFeatures::Scope scope(FPU); |
- switch (op_) { |
+ switch (op) { |
case Token::ADD: |
__ add_d(f10, f12, f14); |
break; |
@@ -2682,7 +2677,7 @@ void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
} else { |
// Call the C function to handle the double operation. |
FloatingPointHelper::CallCCodeForDoubleOperation(masm, |
- op_, |
+ op, |
result, |
scratch1); |
if (FLAG_debug_code) { |
@@ -2722,7 +2717,7 @@ void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
not_numbers); |
} |
Label result_not_a_smi; |
- switch (op_) { |
+ switch (op) { |
case Token::BIT_OR: |
__ Or(a2, a3, Operand(a2)); |
break; |
@@ -2772,8 +2767,9 @@ void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
__ AllocateHeapNumber( |
result, scratch1, scratch2, heap_number_map, gc_required); |
} else { |
- GenerateHeapResultAllocation( |
- masm, result, heap_number_map, scratch1, scratch2, gc_required); |
+ BinaryOpStub_GenerateHeapResultAllocation( |
+ masm, result, heap_number_map, scratch1, scratch2, gc_required, |
+ mode); |
} |
// a2: Answer as signed int32. |
@@ -2788,7 +2784,7 @@ void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
// mentioned above SHR needs to always produce a positive result. |
CpuFeatures::Scope scope(FPU); |
__ mtc1(a2, f0); |
- if (op_ == Token::SHR) { |
+ if (op == Token::SHR) { |
__ Cvt_d_uw(f0, f0, f22); |
} else { |
__ cvt_d_w(f0, f0); |
@@ -2815,12 +2811,14 @@ void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm, |
// Generate the smi code. If the operation on smis are successful this return is |
// generated. If the result is not a smi and heap number allocation is not |
// requested the code falls through. If number allocation is requested but a |
-// heap number cannot be allocated the code jumps to the lable gc_required. |
-void BinaryOpStub::GenerateSmiCode( |
+// heap number cannot be allocated the code jumps to the label gc_required. |
+void BinaryOpStub_GenerateSmiCode( |
MacroAssembler* masm, |
Label* use_runtime, |
Label* gc_required, |
- SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { |
+ Token::Value op, |
+ BinaryOpStub::SmiCodeGenerateHeapNumberResults allow_heapnumber_results, |
+ OverwriteMode mode) { |
Label not_smis; |
Register left = a1; |
@@ -2833,12 +2831,14 @@ void BinaryOpStub::GenerateSmiCode( |
__ JumpIfNotSmi(scratch1, ¬_smis); |
// If the smi-smi operation results in a smi return is generated. |
- GenerateSmiSmiOperation(masm); |
+ BinaryOpStub_GenerateSmiSmiOperation(masm, op); |
// If heap number results are possible generate the result in an allocated |
// heap number. |
- if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) { |
- GenerateFPOperation(masm, true, use_runtime, gc_required); |
+ if (allow_heapnumber_results == BinaryOpStub::ALLOW_HEAPNUMBER_RESULTS) { |
+ BinaryOpStub_GenerateFPOperation( |
+ masm, BinaryOpIC::UNINITIALIZED, BinaryOpIC::UNINITIALIZED, true, |
+ use_runtime, gc_required, ¬_smis, op, mode); |
} |
__ bind(¬_smis); |
} |
@@ -2850,14 +2850,14 @@ void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
if (result_type_ == BinaryOpIC::UNINITIALIZED || |
result_type_ == BinaryOpIC::SMI) { |
// Only allow smi results. |
- GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS); |
+ BinaryOpStub_GenerateSmiCode( |
+ masm, &call_runtime, NULL, op_, NO_HEAPNUMBER_RESULTS, mode_); |
} else { |
// Allow heap number result and don't make a transition if a heap number |
// cannot be allocated. |
- GenerateSmiCode(masm, |
- &call_runtime, |
- &call_runtime, |
- ALLOW_HEAPNUMBER_RESULTS); |
+ BinaryOpStub_GenerateSmiCode( |
+ masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, |
+ mode_); |
} |
// Code falls through if the result is not returned as either a smi or heap |
@@ -2865,22 +2865,14 @@ void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { |
GenerateTypeTransition(masm); |
__ bind(&call_runtime); |
+ GenerateRegisterArgsPush(masm); |
GenerateCallRuntime(masm); |
} |
-void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) { |
- ASSERT(operands_type_ == BinaryOpIC::STRING); |
- // Try to add arguments as strings, otherwise, transition to the generic |
- // BinaryOpIC type. |
- GenerateAddStrings(masm); |
- GenerateTypeTransition(masm); |
-} |
- |
- |
void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { |
Label call_runtime; |
- ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING); |
+ ASSERT(left_type_ == BinaryOpIC::STRING && right_type_ == BinaryOpIC::STRING); |
ASSERT(op_ == Token::ADD); |
// If both arguments are strings, call the string add stub. |
// Otherwise, do a transition. |
@@ -2909,7 +2901,7 @@ void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { |
void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
- ASSERT(operands_type_ == BinaryOpIC::INT32); |
+ ASSERT(Max(left_type_, right_type_) == BinaryOpIC::INT32); |
Register left = a1; |
Register right = a0; |
@@ -2932,7 +2924,7 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
Label skip; |
__ Or(scratch1, left, right); |
__ JumpIfNotSmi(scratch1, &skip); |
- GenerateSmiSmiOperation(masm); |
+ BinaryOpStub_GenerateSmiSmiOperation(masm, op_); |
// Fall through if the result is not a smi. |
__ bind(&skip); |
@@ -2942,6 +2934,15 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
case Token::MUL: |
case Token::DIV: |
case Token::MOD: { |
+ // It could be that only SMIs have been seen at either the left |
+ // or the right operand. For precise type feedback, patch the IC |
+ // again if this changes. |
+ if (left_type_ == BinaryOpIC::SMI) { |
+ __ JumpIfNotSmi(left, &transition); |
+ } |
+ if (right_type_ == BinaryOpIC::SMI) { |
+ __ JumpIfNotSmi(right, &transition); |
+ } |
// Load both operands and check that they are 32-bit integer. |
// Jump to type transition if they are not. The registers a0 and a1 (right |
// and left) are preserved for the runtime call. |
@@ -3038,12 +3039,13 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
: BinaryOpIC::INT32)) { |
// We are using FPU registers so s0 is available. |
heap_number_result = s0; |
- GenerateHeapResultAllocation(masm, |
- heap_number_result, |
- heap_number_map, |
- scratch1, |
- scratch2, |
- &call_runtime); |
+ BinaryOpStub_GenerateHeapResultAllocation(masm, |
+ heap_number_result, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ &call_runtime, |
+ mode_); |
__ mov(v0, heap_number_result); |
__ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset)); |
__ Ret(); |
@@ -3061,12 +3063,13 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
// Allocate a heap number to store the result. |
heap_number_result = s0; |
- GenerateHeapResultAllocation(masm, |
- heap_number_result, |
- heap_number_map, |
- scratch1, |
- scratch2, |
- &pop_and_call_runtime); |
+ BinaryOpStub_GenerateHeapResultAllocation(masm, |
+ heap_number_result, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ &pop_and_call_runtime, |
+ mode_); |
// Load the left value from the value saved on the stack. |
__ Pop(a1, a0); |
@@ -3175,12 +3178,13 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
__ bind(&return_heap_number); |
heap_number_result = t1; |
- GenerateHeapResultAllocation(masm, |
- heap_number_result, |
- heap_number_map, |
- scratch1, |
- scratch2, |
- &call_runtime); |
+ BinaryOpStub_GenerateHeapResultAllocation(masm, |
+ heap_number_result, |
+ heap_number_map, |
+ scratch1, |
+ scratch2, |
+ &call_runtime, |
+ mode_); |
if (CpuFeatures::IsSupported(FPU)) { |
CpuFeatures::Scope scope(FPU); |
@@ -3224,6 +3228,7 @@ void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { |
} |
__ bind(&call_runtime); |
+ GenerateRegisterArgsPush(masm); |
GenerateCallRuntime(masm); |
} |
@@ -3262,20 +3267,32 @@ void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { |
void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { |
- Label call_runtime; |
- GenerateFPOperation(masm, false, &call_runtime, &call_runtime); |
+ Label call_runtime, transition; |
+ BinaryOpStub_GenerateFPOperation( |
+ masm, left_type_, right_type_, false, |
+ &transition, &call_runtime, &transition, op_, mode_); |
+ |
+ __ bind(&transition); |
+ GenerateTypeTransition(masm); |
__ bind(&call_runtime); |
+ GenerateRegisterArgsPush(masm); |
GenerateCallRuntime(masm); |
} |
void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) { |
- Label call_runtime, call_string_add_or_runtime; |
+ Label call_runtime, call_string_add_or_runtime, transition; |
- GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); |
+ BinaryOpStub_GenerateSmiCode( |
+ masm, &call_runtime, &call_runtime, op_, ALLOW_HEAPNUMBER_RESULTS, mode_); |
- GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime); |
+ BinaryOpStub_GenerateFPOperation( |
+ masm, left_type_, right_type_, false, |
+ &call_string_add_or_runtime, &call_runtime, &transition, op_, mode_); |
+ |
+ __ bind(&transition); |
+ GenerateTypeTransition(masm); |
__ bind(&call_string_add_or_runtime); |
if (op_ == Token::ADD) { |
@@ -3283,6 +3300,7 @@ void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) { |
} |
__ bind(&call_runtime); |
+ GenerateRegisterArgsPush(masm); |
GenerateCallRuntime(masm); |
} |
@@ -3318,63 +3336,20 @@ void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { |
} |
-void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) { |
- GenerateRegisterArgsPush(masm); |
- switch (op_) { |
- case Token::ADD: |
- __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
- break; |
- case Token::SUB: |
- __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
- break; |
- case Token::MUL: |
- __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
- break; |
- case Token::DIV: |
- __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
- break; |
- case Token::MOD: |
- __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
- break; |
- case Token::BIT_OR: |
- __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
- break; |
- case Token::BIT_AND: |
- __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
- break; |
- case Token::BIT_XOR: |
- __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
- break; |
- case Token::SAR: |
- __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
- break; |
- case Token::SHR: |
- __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
- break; |
- case Token::SHL: |
- __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void BinaryOpStub::GenerateHeapResultAllocation( |
- MacroAssembler* masm, |
- Register result, |
- Register heap_number_map, |
- Register scratch1, |
- Register scratch2, |
- Label* gc_required) { |
- |
+void BinaryOpStub_GenerateHeapResultAllocation(MacroAssembler* masm, |
+ Register result, |
+ Register heap_number_map, |
+ Register scratch1, |
+ Register scratch2, |
+ Label* gc_required, |
+ OverwriteMode mode) { |
// Code below will scratch result if allocation fails. To keep both arguments |
// intact for the runtime call result cannot be one of these. |
ASSERT(!result.is(a0) && !result.is(a1)); |
- if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) { |
+ if (mode == OVERWRITE_LEFT || mode == OVERWRITE_RIGHT) { |
Label skip_allocation, allocated; |
- Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0; |
+ Register overwritable_operand = mode == OVERWRITE_LEFT ? a1 : a0; |
// If the overwritable operand is already an object, we skip the |
// allocation of a heap number. |
__ JumpIfNotSmi(overwritable_operand, &skip_allocation); |
@@ -3387,7 +3362,7 @@ void BinaryOpStub::GenerateHeapResultAllocation( |
__ mov(result, overwritable_operand); |
__ bind(&allocated); |
} else { |
- ASSERT(mode_ == NO_OVERWRITE); |
+ ASSERT(mode == NO_OVERWRITE); |
__ AllocateHeapNumber( |
result, scratch1, scratch2, heap_number_map, gc_required); |
} |
@@ -5599,45 +5574,6 @@ void CallConstructStub::Generate(MacroAssembler* masm) { |
} |
-// Unfortunately you have to run without snapshots to see most of these |
-// names in the profile since most compare stubs end up in the snapshot. |
-void CompareStub::PrintName(StringStream* stream) { |
- ASSERT((lhs_.is(a0) && rhs_.is(a1)) || |
- (lhs_.is(a1) && rhs_.is(a0))); |
- const char* cc_name; |
- switch (cc_) { |
- case lt: cc_name = "LT"; break; |
- case gt: cc_name = "GT"; break; |
- case le: cc_name = "LE"; break; |
- case ge: cc_name = "GE"; break; |
- case eq: cc_name = "EQ"; break; |
- case ne: cc_name = "NE"; break; |
- default: cc_name = "UnknownCondition"; break; |
- } |
- bool is_equality = cc_ == eq || cc_ == ne; |
- stream->Add("CompareStub_%s", cc_name); |
- stream->Add(lhs_.is(a0) ? "_a0" : "_a1"); |
- stream->Add(rhs_.is(a0) ? "_a0" : "_a1"); |
- if (strict_ && is_equality) stream->Add("_STRICT"); |
- if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN"); |
- if (!include_number_compare_) stream->Add("_NO_NUMBER"); |
- if (!include_smi_compare_) stream->Add("_NO_SMI"); |
-} |
- |
- |
-int CompareStub::MinorKey() { |
- // Encode the two parameters in a unique 16 bit value. |
- ASSERT(static_cast<unsigned>(cc_) < (1 << 14)); |
- ASSERT((lhs_.is(a0) && rhs_.is(a1)) || |
- (lhs_.is(a1) && rhs_.is(a0))); |
- return ConditionField::encode(static_cast<unsigned>(cc_)) |
- | RegisterField::encode(lhs_.is(a0)) |
- | StrictField::encode(strict_) |
- | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false) |
- | IncludeSmiCompareField::encode(include_smi_compare_); |
-} |
- |
- |
// StringCharCodeAtGenerator. |
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
Label flat_string; |
@@ -6829,7 +6765,7 @@ void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, |
void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::SMIS); |
+ ASSERT(state_ == CompareIC::SMI); |
Label miss; |
__ Or(a2, a1, a0); |
__ JumpIfNotSmi(a2, &miss); |
@@ -6851,18 +6787,18 @@ void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::HEAP_NUMBERS); |
+ ASSERT(state_ == CompareIC::HEAP_NUMBER); |
Label generic_stub; |
Label unordered, maybe_undefined1, maybe_undefined2; |
Label miss; |
- __ And(a2, a1, Operand(a0)); |
- __ JumpIfSmi(a2, &generic_stub); |
- __ GetObjectType(a0, a2, a2); |
- __ Branch(&maybe_undefined1, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
- __ GetObjectType(a1, a2, a2); |
- __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
+ if (left_ == CompareIC::SMI) { |
+ __ JumpIfNotSmi(a1, &miss); |
+ } |
+ if (right_ == CompareIC::SMI) { |
+ __ JumpIfNotSmi(a0, &miss); |
+ } |
// Inlining the double comparison and falling back to the general compare |
// stub if NaN is involved or FPU is unsupported. |
@@ -6870,10 +6806,33 @@ void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
CpuFeatures::Scope scope(FPU); |
// Load left and right operand. |
- __ Subu(a2, a1, Operand(kHeapObjectTag)); |
- __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset)); |
+ Label done, left, left_smi, right_smi; |
+ __ JumpIfSmi(a0, &right_smi); |
+ __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, |
+ DONT_DO_SMI_CHECK); |
__ Subu(a2, a0, Operand(kHeapObjectTag)); |
__ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset)); |
+ __ Branch(&left); |
+ __ bind(&right_smi); |
+ __ SmiUntag(a2, a0); // Can't clobber a0 yet. |
+ FPURegister single_scratch = f6; |
+ __ mtc1(a2, single_scratch); |
+ __ cvt_d_w(f2, single_scratch); |
+ |
+ __ bind(&left); |
+ __ JumpIfSmi(a1, &left_smi); |
+ __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, |
+ DONT_DO_SMI_CHECK); |
+ __ Subu(a2, a1, Operand(kHeapObjectTag)); |
+ __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset)); |
+ __ Branch(&done); |
+ __ bind(&left_smi); |
+ __ SmiUntag(a2, a1); // Can't clobber a1 yet. |
+ single_scratch = f8; |
+ __ mtc1(a2, single_scratch); |
+ __ cvt_d_w(f0, single_scratch); |
+ |
+ __ bind(&done); |
// Return a result of -1, 0, or 1, or use CompareStub for NaNs. |
Label fpu_eq, fpu_lt; |
@@ -6897,15 +6856,16 @@ void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
} |
__ bind(&unordered); |
- |
- CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0); |
__ bind(&generic_stub); |
+ ICCompareStub stub(op_, CompareIC::GENERIC, CompareIC::GENERIC, |
+ CompareIC::GENERIC); |
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
__ bind(&maybe_undefined1); |
if (Token::IsOrderedRelationalCompareOp(op_)) { |
__ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
__ Branch(&miss, ne, a0, Operand(at)); |
+ __ JumpIfSmi(a1, &unordered); |
__ GetObjectType(a1, a2, a2); |
__ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE)); |
__ jmp(&unordered); |
@@ -6923,7 +6883,7 @@ void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { |
void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::SYMBOLS); |
+ ASSERT(state_ == CompareIC::SYMBOL); |
Label miss; |
// Registers containing left and right operands respectively. |
@@ -6961,7 +6921,7 @@ void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { |
void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::STRINGS); |
+ ASSERT(state_ == CompareIC::STRING); |
Label miss; |
bool equality = Token::IsEqualityOp(op_); |
@@ -7046,7 +7006,7 @@ void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
- ASSERT(state_ == CompareIC::OBJECTS); |
+ ASSERT(state_ == CompareIC::OBJECT); |
Label miss; |
__ And(a2, a1, Operand(a0)); |
__ JumpIfSmi(a2, &miss); |