Chromium Code Reviews| Index: src/IceInstARM32.h |
| diff --git a/src/IceInstARM32.h b/src/IceInstARM32.h |
| index e4e6c49ab8be20e2ba81dc0e380eb930df4205cb..2e3f764d2953740ccfbbf3c4aa526af9c4c96e14 100644 |
| --- a/src/IceInstARM32.h |
| +++ b/src/IceInstARM32.h |
| @@ -25,15 +25,22 @@ namespace Ice { |
| class TargetARM32; |
| -// OperandARM32 extends the Operand hierarchy. |
| -// TODO(jvoung): Add the OperandARM32Mem and OperandARM32Flex. |
| +// OperandARM32 extends the Operand hierarchy. Its subclasses are |
| +// OperandARM32Mem and OperandARM32Flex. |
| class OperandARM32 : public Operand { |
| OperandARM32() = delete; |
| OperandARM32(const OperandARM32 &) = delete; |
| OperandARM32 &operator=(const OperandARM32 &) = delete; |
| public: |
| - enum OperandKindARM32 { k__Start = Operand::kTarget }; |
| + enum OperandKindARM32 { |
| + k__Start = Operand::kTarget, |
| + kMem, |
| + kFlexStart, |
| + kFlexImm = kFlexStart, |
| + kFlexReg, |
| + kFlexEnd = kFlexReg |
| + }; |
| enum ShiftKind { |
| kNoShift = -1, |
| @@ -56,18 +63,178 @@ protected: |
| // OperandARM32Mem represents a memory operand in any of the various ARM32 |
| // addressing modes. |
| -// TODO(jvoung): Fill out more. |
| class OperandARM32Mem : public OperandARM32 { |
| OperandARM32Mem() = delete; |
| OperandARM32Mem(const OperandARM32Mem &) = delete; |
| OperandARM32Mem &operator=(const OperandARM32Mem &) = delete; |
| public: |
| + // Memory operand addressing mode. |
| + // The enum value also carries the encoding. |
| + // TODO(jvoung): unify with the assembler. |
| + enum AddrMode { |
| + // bit encoding P U W |
| + Offset = (8 | 4 | 0) << 21, // offset (w/o writeback to base) |
| + PreIndex = (8 | 4 | 1) << 21, // pre-indexed addressing with writeback |
| + PostIndex = (0 | 4 | 0) << 21, // post-indexed addressing with writeback |
| + NegOffset = (8 | 0 | 0) << 21, // negative offset (w/o writeback to base) |
| + NegPreIndex = (8 | 0 | 1) << 21, // negative pre-indexed with writeback |
| + NegPostIndex = (0 | 0 | 0) << 21 // negative post-indexed with writeback |
| + }; |
| + |
| + // Provide two constructors. |
| + // NOTE: The Variable-typed operands have to be registers. |
| + // |
| + // (1) Reg + Imm. The Immediate actually has a limited number of bits |
| + // for encoding, so check canHoldOffset first. It cannot handle |
| + // general Constant operands like ConstantRelocatable, since a relocatable |
| + // can potentially take up too many bits. |
| + static OperandARM32Mem *create(Cfg *Func, Type Ty, Variable *Base, |
|
jvoung (off chromium)
2015/05/14 22:42:07
Not really using these yet (or fancy versions of t
|
| + ConstantInteger32 *ImmOffset = nullptr, |
| + AddrMode Mode = Offset) { |
| + return new (Func->allocate<OperandARM32Mem>()) |
| + OperandARM32Mem(Func, Ty, Base, ImmOffset, Mode); |
| + } |
| + // (2) Reg +/- Reg with an optional shift of some kind and amount. |
| + // Note that this mode is disallowed in the NaCl sandbox. |
| + static OperandARM32Mem *create(Cfg *Func, Type Ty, Variable *Base, |
| + Variable *Index, ShiftKind ShiftOp = kNoShift, |
| + uint16_t ShiftAmt = 0, |
| + AddrMode Mode = Offset) { |
| + return new (Func->allocate<OperandARM32Mem>()) |
| + OperandARM32Mem(Func, Ty, Base, Index, ShiftOp, ShiftAmt, Mode); |
| + } |
| + Variable *getBase() const { return Base; } |
| + ConstantInteger32 *getOffset() const { return ImmOffset; } |
| + Variable *getIndex() const { return Index; } |
| + ShiftKind getShiftOp() const { return ShiftOp; } |
| + uint16_t getShiftAmt() const { return ShiftAmt; } |
| + AddrMode getAddrMode() const { return Mode; } |
| + |
| + bool isRegReg() const { return Index != nullptr; } |
| + bool isNegAddrMode() const { return Mode >= NegOffset; } |
| + |
| + void emit(const Cfg *Func) const override; |
| + using OperandARM32::dump; |
| + void dump(const Cfg *Func, Ostream &Str) const override; |
| + |
| + static bool classof(const Operand *Operand) { |
| + return Operand->getKind() == static_cast<OperandKind>(kMem); |
| + } |
| + |
| // Return true if a load/store instruction for an element of type Ty |
| // can encode the Offset directly in the immediate field of the 32-bit |
| // ARM instruction. For some types, if the load is Sign extending, then |
| // the range is reduced. |
| static bool canHoldOffset(Type Ty, bool SignExt, int32_t Offset); |
| + |
| +private: |
| + OperandARM32Mem(Cfg *Func, Type Ty, Variable *Base, |
| + ConstantInteger32 *ImmOffset, AddrMode Mode); |
| + OperandARM32Mem(Cfg *Func, Type Ty, Variable *Base, Variable *Index, |
| + ShiftKind ShiftOp, uint16_t ShiftAmt, AddrMode Mode); |
| + ~OperandARM32Mem() override {} |
| + Variable *Base; |
| + ConstantInteger32 *ImmOffset; |
| + Variable *Index; |
| + ShiftKind ShiftOp; |
| + uint16_t ShiftAmt; |
| + AddrMode Mode; |
| +}; |
| + |
| +// OperandARM32Flex represent the "flexible second operand" for |
| +// data-processing instructions. It can be a rotatable 8-bit constant, or |
| +// a register with an optional shift operand. The shift amount can even be |
| +// a third register. |
| +class OperandARM32Flex : public OperandARM32 { |
| + OperandARM32Flex() = delete; |
| + OperandARM32Flex(const OperandARM32Flex &) = delete; |
| + OperandARM32Flex &operator=(const OperandARM32Flex &) = delete; |
| + |
| +public: |
| + static bool classof(const Operand *Operand) { |
| + return static_cast<OperandKind>(kFlexStart) <= Operand->getKind() && |
| + Operand->getKind() <= static_cast<OperandKind>(kFlexEnd); |
| + } |
| + |
| +protected: |
| + OperandARM32Flex(OperandKindARM32 Kind, Type Ty) : OperandARM32(Kind, Ty) {} |
| + ~OperandARM32Flex() override {} |
| +}; |
| + |
| +// Rotated immediate variant. |
| +class OperandARM32FlexImm : public OperandARM32Flex { |
| + OperandARM32FlexImm() = delete; |
| + OperandARM32FlexImm(const OperandARM32FlexImm &) = delete; |
| + OperandARM32FlexImm &operator=(const OperandARM32FlexImm &) = delete; |
| + |
| +public: |
| + // Immed_8 rotated by an even number of bits (2 * RotateAmt). |
| + static OperandARM32FlexImm *create(Cfg *Func, Type Ty, uint32_t Imm, |
| + uint32_t RotateAmt) { |
| + return new (Func->allocate<OperandARM32FlexImm>()) |
| + OperandARM32FlexImm(Func, Ty, Imm, RotateAmt); |
| + } |
| + |
| + void emit(const Cfg *Func) const override; |
| + using OperandARM32::dump; |
| + void dump(const Cfg *Func, Ostream &Str) const override; |
| + |
| + static bool classof(const Operand *Operand) { |
| + return Operand->getKind() == static_cast<OperandKind>(kFlexImm); |
| + } |
| + |
| + // Return true if the Immediate can fit in the ARM flexible operand. |
| + // Fills in the out-params RotateAmt and Immed_8 if Immediate fits. |
| + static bool canHoldImm(uint32_t Immediate, uint32_t *RotateAmt, |
| + uint32_t *Immed_8); |
| + |
| + uint32_t getImm() const { return Imm; } |
| + uint32_t getRotateAmt() const { return RotateAmt; } |
| + |
| +private: |
| + OperandARM32FlexImm(Cfg *Func, Type Ty, uint32_t Imm, uint32_t RotateAmt); |
| + ~OperandARM32FlexImm() override {} |
| + |
| + uint32_t Imm; |
| + uint32_t RotateAmt; |
| +}; |
| + |
| +// Shifted register variant. |
| +class OperandARM32FlexReg : public OperandARM32Flex { |
| + OperandARM32FlexReg() = delete; |
| + OperandARM32FlexReg(const OperandARM32FlexReg &) = delete; |
| + OperandARM32FlexReg &operator=(const OperandARM32FlexReg &) = delete; |
| + |
| +public: |
| + // Register with immediate/reg shift amount and shift operation. |
|
jvoung (off chromium)
2015/05/14 22:42:07
Not really using this, but technically ARM could s
|
| + static OperandARM32FlexReg *create(Cfg *Func, Type Ty, Variable *Reg, |
| + ShiftKind ShiftOp, Operand *ShiftAmt) { |
| + return new (Func->allocate<OperandARM32FlexReg>()) |
| + OperandARM32FlexReg(Func, Ty, Reg, ShiftOp, ShiftAmt); |
| + } |
| + |
| + void emit(const Cfg *Func) const override; |
| + using OperandARM32::dump; |
| + void dump(const Cfg *Func, Ostream &Str) const override; |
| + |
| + static bool classof(const Operand *Operand) { |
| + return Operand->getKind() == static_cast<OperandKind>(kFlexReg); |
| + } |
| + |
| + Variable *getReg() const { return Reg; } |
| + ShiftKind getShiftOp() const { return ShiftOp; } |
| + // ShiftAmt can represent an immediate or a register. |
| + Operand *getShiftAmt() const { return ShiftAmt; } |
| + |
| +private: |
| + OperandARM32FlexReg(Cfg *Func, Type Ty, Variable *Reg, ShiftKind ShiftOp, |
| + Operand *ShiftAmt); |
| + ~OperandARM32FlexReg() override {} |
| + |
| + Variable *Reg; |
| + ShiftKind ShiftOp; |
| + Operand *ShiftAmt; |
| }; |
| class InstARM32 : public InstTarget { |
| @@ -76,7 +243,15 @@ class InstARM32 : public InstTarget { |
| InstARM32 &operator=(const InstARM32 &) = delete; |
| public: |
| - enum InstKindARM32 { k__Start = Inst::Target, Ret }; |
| + enum InstKindARM32 { |
| + k__Start = Inst::Target, |
| + Mov, |
| + Movt, |
| + Movw, |
| + Mvn, |
| + Ret, |
| + Ldr |
| + }; |
| static const char *getWidthString(Type Ty); |
| @@ -91,6 +266,168 @@ protected: |
| } |
| }; |
| +void emitTwoAddr(const char *Opcode, const Inst *Inst, const Cfg *Func); |
| + |
| +// TODO(jvoung): add condition codes if instruction can be predicated. |
| + |
| +// Instructions of the form x := op(y). |
| +template <InstARM32::InstKindARM32 K> |
| +class InstARM32UnaryopGPR : public InstARM32 { |
| + InstARM32UnaryopGPR() = delete; |
| + InstARM32UnaryopGPR(const InstARM32UnaryopGPR &) = delete; |
| + InstARM32UnaryopGPR &operator=(const InstARM32UnaryopGPR &) = delete; |
| + |
| +public: |
| + static InstARM32UnaryopGPR *create(Cfg *Func, Variable *Dest, Operand *Src) { |
| + return new (Func->allocate<InstARM32UnaryopGPR>()) |
| + InstARM32UnaryopGPR(Func, Dest, Src); |
| + } |
| + void emit(const Cfg *Func) const override { |
| + if (!ALLOW_DUMP) |
| + return; |
| + Ostream &Str = Func->getContext()->getStrEmit(); |
| + assert(getSrcSize() == 1); |
| + Str << "\t" << Opcode << "\t"; |
| + getDest()->emit(Func); |
| + Str << ", "; |
| + getSrc(0)->emit(Func); |
| + } |
| + void emitIAS(const Cfg *Func) const override { |
| + (void)Func; |
| + llvm_unreachable("Not yet implemented"); |
| + } |
| + void dump(const Cfg *Func) const override { |
| + if (!ALLOW_DUMP) |
| + return; |
| + Ostream &Str = Func->getContext()->getStrDump(); |
| + dumpDest(Func); |
| + Str << " = " << Opcode << "." << getDest()->getType() << " "; |
| + dumpSources(Func); |
| + } |
| + static bool classof(const Inst *Inst) { return isClassof(Inst, K); } |
| + |
| +private: |
| + InstARM32UnaryopGPR(Cfg *Func, Variable *Dest, Operand *Src) |
| + : InstARM32(Func, K, 1, Dest) { |
| + addSource(Src); |
| + } |
| + ~InstARM32UnaryopGPR() override {} |
| + static const char *Opcode; |
| +}; |
| + |
| +// Instructions of the form x := x op y. |
| +template <InstARM32::InstKindARM32 K> |
| +class InstARM32TwoAddrGPR : public InstARM32 { |
| + InstARM32TwoAddrGPR() = delete; |
| + InstARM32TwoAddrGPR(const InstARM32TwoAddrGPR &) = delete; |
| + InstARM32TwoAddrGPR &operator=(const InstARM32TwoAddrGPR &) = delete; |
| + |
| +public: |
| + // Dest must be a register. |
| + static InstARM32TwoAddrGPR *create(Cfg *Func, Variable *Dest, Operand *Src) { |
| + return new (Func->allocate<InstARM32TwoAddrGPR>()) |
| + InstARM32TwoAddrGPR(Func, Dest, Src); |
| + } |
| + void emit(const Cfg *Func) const override { |
| + if (!ALLOW_DUMP) |
| + return; |
| + emitTwoAddr(Opcode, this, Func); |
| + } |
| + void emitIAS(const Cfg *Func) const override { |
| + (void)Func; |
| + llvm::report_fatal_error("Not yet implemented"); |
| + } |
| + void dump(const Cfg *Func) const override { |
| + if (!ALLOW_DUMP) |
| + return; |
| + Ostream &Str = Func->getContext()->getStrDump(); |
| + dumpDest(Func); |
| + Str << " = " << Opcode << "." << getDest()->getType() << " "; |
| + dumpSources(Func); |
| + } |
| + static bool classof(const Inst *Inst) { return isClassof(Inst, K); } |
| + |
| +private: |
| + InstARM32TwoAddrGPR(Cfg *Func, Variable *Dest, Operand *Src) |
| + : InstARM32(Func, K, 2, Dest) { |
| + addSource(Dest); |
| + addSource(Src); |
| + } |
| + ~InstARM32TwoAddrGPR() override {} |
| + static const char *Opcode; |
| +}; |
| + |
| +// Base class for assignment instructions. |
| +// These can be tested for redundancy (and elided if redundant). |
| +template <InstARM32::InstKindARM32 K> |
| +class InstARM32Movlike : public InstARM32 { |
| + InstARM32Movlike() = delete; |
| + InstARM32Movlike(const InstARM32Movlike &) = delete; |
| + InstARM32Movlike &operator=(const InstARM32Movlike &) = delete; |
| + |
| +public: |
| + static InstARM32Movlike *create(Cfg *Func, Variable *Dest, Operand *Source) { |
| + return new (Func->allocate<InstARM32Movlike>()) |
| + InstARM32Movlike(Func, Dest, Source); |
| + } |
| + bool isRedundantAssign() const override { |
| + return checkForRedundantAssign(getDest(), getSrc(0)); |
| + } |
| + bool isSimpleAssign() const override { return true; } |
| + void emit(const Cfg *Func) const override; |
| + void emitIAS(const Cfg *Func) const override; |
| + void dump(const Cfg *Func) const override { |
| + if (!ALLOW_DUMP) |
| + return; |
| + Ostream &Str = Func->getContext()->getStrDump(); |
| + Str << Opcode << "." << getDest()->getType() << " "; |
| + dumpDest(Func); |
| + Str << ", "; |
| + dumpSources(Func); |
| + } |
| + static bool classof(const Inst *Inst) { return isClassof(Inst, K); } |
| + |
| +private: |
| + InstARM32Movlike(Cfg *Func, Variable *Dest, Operand *Source) |
| + : InstARM32(Func, K, 1, Dest) { |
| + addSource(Source); |
| + } |
| + ~InstARM32Movlike() override {} |
| + |
| + static const char *Opcode; |
| +}; |
| + |
| +// Move instruction (variable <- flex). This is more of a pseudo-inst. |
| +// If var is a register, then we use "mov". If var is stack, then we use |
| +// "str" to store to the stack. |
| +typedef InstARM32Movlike<InstARM32::Mov> InstARM32Mov; |
| +// MovT leaves the bottom bits alone so dest is also a source. |
| +// This helps indicate that a previous MovW setting dest is not dead code. |
| +typedef InstARM32TwoAddrGPR<InstARM32::Movt> InstARM32Movt; |
| +typedef InstARM32UnaryopGPR<InstARM32::Movw> InstARM32Movw; |
| +typedef InstARM32UnaryopGPR<InstARM32::Mvn> InstARM32Mvn; |
| + |
| +// Load instruction. |
| +class InstARM32Ldr : public InstARM32 { |
| + InstARM32Ldr() = delete; |
| + InstARM32Ldr(const InstARM32Ldr &) = delete; |
| + InstARM32Ldr &operator=(const InstARM32Ldr &) = delete; |
| + |
| +public: |
| + // Dest must be a register. |
| + static InstARM32Ldr *create(Cfg *Func, Variable *Dest, OperandARM32Mem *Mem) { |
| + return new (Func->allocate<InstARM32Ldr>()) InstARM32Ldr(Func, Dest, Mem); |
| + } |
| + void emit(const Cfg *Func) const override; |
| + void emitIAS(const Cfg *Func) const override; |
| + void dump(const Cfg *Func) const override; |
| + static bool classof(const Inst *Inst) { return isClassof(Inst, Ldr); } |
| + |
| +private: |
| + InstARM32Ldr(Cfg *Func, Variable *Dest, OperandARM32Mem *Mem); |
| + ~InstARM32Ldr() override {} |
| +}; |
| + |
| // Ret pseudo-instruction. This is actually a "bx" instruction with |
| // an "lr" register operand, but epilogue lowering will search for a Ret |
| // instead of a generic "bx". This instruction also takes a Source |
| @@ -116,6 +453,13 @@ private: |
| ~InstARM32Ret() override {} |
| }; |
| +// Declare partial template specializations of emit() methods that |
| +// already have default implementations. Without this, there is the |
| +// possibility of ODR violations and link errors. |
| + |
| +template <> void InstARM32Movw::emit(const Cfg *Func) const; |
| +template <> void InstARM32Movt::emit(const Cfg *Func) const; |
| + |
| } // end of namespace Ice |
| #endif // SUBZERO_SRC_ICEINSTARM32_H |