OLD | NEW |
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 // The original file was copied from sqlite, and was in the public domain. | 5 // The original file was copied from sqlite, and was in the public domain. |
6 | 6 |
7 /* | 7 /* |
8 * This code implements the MD5 message-digest algorithm. | 8 * This code implements the MD5 message-digest algorithm. |
9 * The algorithm is due to Ron Rivest. This code was | 9 * The algorithm is due to Ron Rivest. This code was |
10 * written by Colin Plumb in 1993, no copyright is claimed. | 10 * written by Colin Plumb in 1993, no copyright is claimed. |
11 * This code is in the public domain; do with it what you wish. | 11 * This code is in the public domain; do with it what you wish. |
12 * | 12 * |
13 * Equivalent code is available from RSA Data Security, Inc. | 13 * Equivalent code is available from RSA Data Security, Inc. |
14 * This code has been tested against that, and is equivalent, | 14 * This code has been tested against that, and is equivalent, |
15 * except that you don't need to include two pages of legalese | 15 * except that you don't need to include two pages of legalese |
16 * with every copy. | 16 * with every copy. |
17 * | 17 * |
18 * To compute the message digest of a chunk of bytes, declare an | 18 * To compute the message digest of a chunk of bytes, declare an |
19 * MD5Context structure, pass it to MD5Init, call MD5Update as | 19 * MD5Context structure, pass it to MD5Init, call MD5Update as |
20 * needed on buffers full of bytes, and then call MD5Final, which | 20 * needed on buffers full of bytes, and then call MD5Final, which |
21 * will fill a supplied 16-byte array with the digest. | 21 * will fill a supplied 16-byte array with the digest. |
22 */ | 22 */ |
23 | 23 |
24 #include "base/md5.h" | 24 #include "base/md5.h" |
25 | 25 |
26 #include "base/basictypes.h" | 26 #include <stddef.h> |
27 | 27 |
28 namespace { | 28 namespace { |
29 | 29 |
30 struct Context { | 30 struct Context { |
31 uint32 buf[4]; | 31 uint32_t buf[4]; |
32 uint32 bits[2]; | 32 uint32_t bits[2]; |
33 unsigned char in[64]; | 33 uint8_t in[64]; |
34 }; | 34 }; |
35 | 35 |
36 /* | 36 /* |
37 * Note: this code is harmless on little-endian machines. | 37 * Note: this code is harmless on little-endian machines. |
38 */ | 38 */ |
39 void byteReverse(unsigned char *buf, unsigned longs) { | 39 void byteReverse(uint8_t* buf, unsigned longs) { |
40 uint32 t; | 40 do { |
41 do { | 41 uint32_t temp = static_cast<uint32_t>( |
42 t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 | | 42 static_cast<unsigned>(buf[3]) << 8 | |
43 ((unsigned)buf[1]<<8 | buf[0]); | 43 buf[2]) << 16 | |
44 *(uint32 *)buf = t; | 44 (static_cast<unsigned>(buf[1]) << 8 | buf[0]); |
45 buf += 4; | 45 *reinterpret_cast<uint32_t*>(buf) = temp; |
46 } while (--longs); | 46 buf += 4; |
| 47 } while (--longs); |
47 } | 48 } |
48 | 49 |
49 /* The four core functions - F1 is optimized somewhat */ | 50 /* The four core functions - F1 is optimized somewhat */ |
50 | 51 |
51 /* #define F1(x, y, z) (x & y | ~x & z) */ | 52 /* #define F1(x, y, z) (x & y | ~x & z) */ |
52 #define F1(x, y, z) (z ^ (x & (y ^ z))) | 53 #define F1(x, y, z) (z ^ (x & (y ^ z))) |
53 #define F2(x, y, z) F1(z, x, y) | 54 #define F2(x, y, z) F1(z, x, y) |
54 #define F3(x, y, z) (x ^ y ^ z) | 55 #define F3(x, y, z) (x ^ y ^ z) |
55 #define F4(x, y, z) (y ^ (x | ~z)) | 56 #define F4(x, y, z) (y ^ (x | ~z)) |
56 | 57 |
57 /* This is the central step in the MD5 algorithm. */ | 58 /* This is the central step in the MD5 algorithm. */ |
58 #define MD5STEP(f, w, x, y, z, data, s) \ | 59 #define MD5STEP(f, w, x, y, z, data, s) \ |
59 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) | 60 (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) |
60 | 61 |
61 /* | 62 /* |
62 * The core of the MD5 algorithm, this alters an existing MD5 hash to | 63 * The core of the MD5 algorithm, this alters an existing MD5 hash to |
63 * reflect the addition of 16 longwords of new data. MD5Update blocks | 64 * reflect the addition of 16 longwords of new data. MD5Update blocks |
64 * the data and converts bytes into longwords for this routine. | 65 * the data and converts bytes into longwords for this routine. |
65 */ | 66 */ |
66 void MD5Transform(uint32 buf[4], const uint32 in[16]) { | 67 void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { |
67 register uint32 a, b, c, d; | 68 uint32_t a, b, c, d; |
68 | 69 |
69 a = buf[0]; | 70 a = buf[0]; |
70 b = buf[1]; | 71 b = buf[1]; |
71 c = buf[2]; | 72 c = buf[2]; |
72 d = buf[3]; | 73 d = buf[3]; |
73 | 74 |
74 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); | 75 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
75 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); | 76 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
76 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); | 77 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
77 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); | 78 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
78 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); | 79 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
79 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); | 80 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
80 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); | 81 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
81 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); | 82 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
82 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); | 83 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
83 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); | 84 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
84 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); | 85 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
85 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); | 86 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
86 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); | 87 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
87 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); | 88 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
88 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); | 89 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
89 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); | 90 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
90 | 91 |
91 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); | 92 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
92 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); | 93 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
93 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); | 94 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
94 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); | 95 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
95 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); | 96 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
96 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); | 97 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
97 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); | 98 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
98 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); | 99 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
99 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); | 100 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
100 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); | 101 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
101 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); | 102 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
102 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); | 103 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
103 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); | 104 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
104 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); | 105 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
105 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); | 106 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
106 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); | 107 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
107 | 108 |
108 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); | 109 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
109 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); | 110 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
110 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); | 111 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
111 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); | 112 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
112 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); | 113 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
113 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); | 114 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
114 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); | 115 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
115 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); | 116 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
116 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); | 117 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
117 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); | 118 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
118 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); | 119 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
119 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); | 120 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
120 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); | 121 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
121 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); | 122 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
122 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); | 123 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
123 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); | 124 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
124 | 125 |
125 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); | 126 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
126 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); | 127 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
127 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); | 128 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
128 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); | 129 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
129 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); | 130 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
130 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); | 131 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
131 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); | 132 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
132 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); | 133 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
133 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); | 134 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
134 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); | 135 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
135 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); | 136 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
136 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); | 137 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
137 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); | 138 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
138 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); | 139 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
139 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); | 140 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
140 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); | 141 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
141 | 142 |
142 buf[0] += a; | 143 buf[0] += a; |
143 buf[1] += b; | 144 buf[1] += b; |
144 buf[2] += c; | 145 buf[2] += c; |
145 buf[3] += d; | 146 buf[3] += d; |
146 } | 147 } |
147 | 148 |
148 } // namespace | 149 } // namespace |
149 | 150 |
150 namespace base { | 151 namespace base { |
151 | 152 |
152 /* | 153 /* |
153 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious | 154 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
154 * initialization constants. | 155 * initialization constants. |
155 */ | 156 */ |
156 void MD5Init(MD5Context* context) { | 157 void MD5Init(MD5Context* context) { |
157 struct Context *ctx = (struct Context *)context; | 158 struct Context* ctx = reinterpret_cast<struct Context*>(context); |
158 ctx->buf[0] = 0x67452301; | 159 ctx->buf[0] = 0x67452301; |
159 ctx->buf[1] = 0xefcdab89; | 160 ctx->buf[1] = 0xefcdab89; |
160 ctx->buf[2] = 0x98badcfe; | 161 ctx->buf[2] = 0x98badcfe; |
161 ctx->buf[3] = 0x10325476; | 162 ctx->buf[3] = 0x10325476; |
162 ctx->bits[0] = 0; | 163 ctx->bits[0] = 0; |
163 ctx->bits[1] = 0; | 164 ctx->bits[1] = 0; |
164 } | 165 } |
165 | 166 |
166 /* | 167 /* |
167 * Update context to reflect the concatenation of another buffer full | 168 * Update context to reflect the concatenation of another buffer full |
168 * of bytes. | 169 * of bytes. |
169 */ | 170 */ |
170 void MD5Update(MD5Context* context, const StringPiece& data) { | 171 void MD5Update(MD5Context* context, const StringPiece& data) { |
171 const unsigned char* inbuf = (const unsigned char*)data.data(); | 172 struct Context* ctx = reinterpret_cast<struct Context*>(context); |
172 size_t len = data.size(); | 173 const uint8_t* buf = reinterpret_cast<const uint8_t*>(data.data()); |
173 struct Context *ctx = (struct Context *)context; | 174 size_t len = data.size(); |
174 const unsigned char* buf = (const unsigned char*)inbuf; | |
175 uint32 t; | |
176 | 175 |
177 /* Update bitcount */ | 176 /* Update bitcount */ |
178 | 177 |
179 t = ctx->bits[0]; | 178 uint32_t t = ctx->bits[0]; |
180 if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) | 179 if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t) |
181 ctx->bits[1]++; /* Carry from low to high */ | 180 ctx->bits[1]++; /* Carry from low to high */ |
182 ctx->bits[1] += static_cast<uint32>(len >> 29); | 181 ctx->bits[1] += static_cast<uint32_t>(len >> 29); |
183 | 182 |
184 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ | 183 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
185 | 184 |
186 /* Handle any leading odd-sized chunks */ | 185 /* Handle any leading odd-sized chunks */ |
187 | 186 |
188 if (t) { | 187 if (t) { |
189 unsigned char *p = (unsigned char *)ctx->in + t; | 188 uint8_t* p = static_cast<uint8_t*>(ctx->in + t); |
190 | 189 |
191 t = 64-t; | 190 t = 64 - t; |
192 if (len < t) { | 191 if (len < t) { |
193 memcpy(p, buf, len); | 192 memcpy(p, buf, len); |
194 return; | 193 return; |
195 } | 194 } |
196 memcpy(p, buf, t); | 195 memcpy(p, buf, t); |
197 byteReverse(ctx->in, 16); | 196 byteReverse(ctx->in, 16); |
198 MD5Transform(ctx->buf, (uint32 *)ctx->in); | 197 MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); |
199 buf += t; | 198 buf += t; |
200 len -= t; | 199 len -= t; |
201 } | 200 } |
202 | 201 |
203 /* Process data in 64-byte chunks */ | 202 /* Process data in 64-byte chunks */ |
204 | 203 |
205 while (len >= 64) { | 204 while (len >= 64) { |
206 memcpy(ctx->in, buf, 64); | 205 memcpy(ctx->in, buf, 64); |
207 byteReverse(ctx->in, 16); | 206 byteReverse(ctx->in, 16); |
208 MD5Transform(ctx->buf, (uint32 *)ctx->in); | 207 MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); |
209 buf += 64; | 208 buf += 64; |
210 len -= 64; | 209 len -= 64; |
211 } | 210 } |
212 | 211 |
213 /* Handle any remaining bytes of data. */ | 212 /* Handle any remaining bytes of data. */ |
214 | 213 |
215 memcpy(ctx->in, buf, len); | 214 memcpy(ctx->in, buf, len); |
216 } | 215 } |
217 | 216 |
218 /* | 217 /* |
219 * Final wrapup - pad to 64-byte boundary with the bit pattern | 218 * Final wrapup - pad to 64-byte boundary with the bit pattern |
220 * 1 0* (64-bit count of bits processed, MSB-first) | 219 * 1 0* (64-bit count of bits processed, MSB-first) |
221 */ | 220 */ |
222 void MD5Final(MD5Digest* digest, MD5Context* context) { | 221 void MD5Final(MD5Digest* digest, MD5Context* context) { |
223 struct Context *ctx = (struct Context *)context; | 222 struct Context* ctx = reinterpret_cast<struct Context*>(context); |
224 unsigned count; | 223 unsigned count; |
225 unsigned char *p; | 224 uint8_t* p; |
226 | 225 |
227 /* Compute number of bytes mod 64 */ | 226 /* Compute number of bytes mod 64 */ |
228 count = (ctx->bits[0] >> 3) & 0x3F; | 227 count = (ctx->bits[0] >> 3) & 0x3F; |
229 | 228 |
230 /* Set the first char of padding to 0x80. This is safe since there is | 229 /* Set the first char of padding to 0x80. This is safe since there is |
231 always at least one byte free */ | 230 always at least one byte free */ |
232 p = ctx->in + count; | 231 p = ctx->in + count; |
233 *p++ = 0x80; | 232 *p++ = 0x80; |
234 | 233 |
235 /* Bytes of padding needed to make 64 bytes */ | 234 /* Bytes of padding needed to make 64 bytes */ |
236 count = 64 - 1 - count; | 235 count = 64 - 1 - count; |
237 | 236 |
238 /* Pad out to 56 mod 64 */ | 237 /* Pad out to 56 mod 64 */ |
239 if (count < 8) { | 238 if (count < 8) { |
240 /* Two lots of padding: Pad the first block to 64 bytes */ | 239 /* Two lots of padding: Pad the first block to 64 bytes */ |
241 memset(p, 0, count); | 240 memset(p, 0, count); |
242 byteReverse(ctx->in, 16); | 241 byteReverse(ctx->in, 16); |
243 MD5Transform(ctx->buf, (uint32 *)ctx->in); | 242 MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); |
244 | 243 |
245 /* Now fill the next block with 56 bytes */ | 244 /* Now fill the next block with 56 bytes */ |
246 memset(ctx->in, 0, 56); | 245 memset(ctx->in, 0, 56); |
247 } else { | 246 } else { |
248 /* Pad block to 56 bytes */ | 247 /* Pad block to 56 bytes */ |
249 memset(p, 0, count-8); | 248 memset(p, 0, count - 8); |
250 } | 249 } |
251 byteReverse(ctx->in, 14); | 250 byteReverse(ctx->in, 14); |
252 | 251 |
253 /* Append length in bits and transform */ | 252 /* Append length in bits and transform */ |
254 memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], | 253 memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], &ctx->bits[0], |
255 &ctx->bits[0], | 254 sizeof(ctx->bits[0])); |
256 sizeof(ctx->bits[0])); | 255 memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], &ctx->bits[1], |
257 memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], | 256 sizeof(ctx->bits[1])); |
258 &ctx->bits[1], | |
259 sizeof(ctx->bits[1])); | |
260 | 257 |
261 MD5Transform(ctx->buf, (uint32 *)ctx->in); | 258 MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); |
262 byteReverse((unsigned char *)ctx->buf, 4); | 259 byteReverse(reinterpret_cast<uint8_t*>(ctx->buf), 4); |
263 memcpy(digest->a, ctx->buf, 16); | 260 memcpy(digest->a, ctx->buf, 16); |
264 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ | 261 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
265 } | 262 } |
266 | 263 |
267 void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { | 264 void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { |
268 /* MD5Final mutates the MD5Context*. Make a copy for generating the | 265 /* MD5Final mutates the MD5Context*. Make a copy for generating the |
269 intermediate value. */ | 266 intermediate value. */ |
270 MD5Context context_copy; | 267 MD5Context context_copy; |
271 memcpy(&context_copy, context, sizeof(context_copy)); | 268 memcpy(&context_copy, context, sizeof(context_copy)); |
272 MD5Final(digest, &context_copy); | 269 MD5Final(digest, &context_copy); |
273 } | 270 } |
274 | 271 |
275 std::string MD5DigestToBase16(const MD5Digest& digest) { | 272 std::string MD5DigestToBase16(const MD5Digest& digest) { |
276 static char const zEncode[] = "0123456789abcdef"; | 273 static char const zEncode[] = "0123456789abcdef"; |
277 | 274 |
278 std::string ret; | 275 std::string ret; |
279 ret.resize(32); | 276 ret.resize(32); |
280 | 277 |
281 int j = 0; | 278 for (int i = 0, j = 0; i < 16; i++, j += 2) { |
282 for (int i = 0; i < 16; i ++) { | 279 uint8_t a = digest.a[i]; |
283 int a = digest.a[i]; | 280 ret[j] = zEncode[(a >> 4) & 0xf]; |
284 ret[j++] = zEncode[(a>>4)&0xf]; | 281 ret[j + 1] = zEncode[a & 0xf]; |
285 ret[j++] = zEncode[a & 0xf]; | |
286 } | 282 } |
287 return ret; | 283 return ret; |
288 } | 284 } |
289 | 285 |
290 void MD5Sum(const void* data, size_t length, MD5Digest* digest) { | 286 void MD5Sum(const void* data, size_t length, MD5Digest* digest) { |
291 MD5Context ctx; | 287 MD5Context ctx; |
292 MD5Init(&ctx); | 288 MD5Init(&ctx); |
293 MD5Update(&ctx, | 289 MD5Update(&ctx, StringPiece(reinterpret_cast<const char*>(data), length)); |
294 StringPiece(reinterpret_cast<const char*>(data), length)); | |
295 MD5Final(digest, &ctx); | 290 MD5Final(digest, &ctx); |
296 } | 291 } |
297 | 292 |
298 std::string MD5String(const StringPiece& str) { | 293 std::string MD5String(const StringPiece& str) { |
299 MD5Digest digest; | 294 MD5Digest digest; |
300 MD5Sum(str.data(), str.length(), &digest); | 295 MD5Sum(str.data(), str.length(), &digest); |
301 return MD5DigestToBase16(digest); | 296 return MD5DigestToBase16(digest); |
302 } | 297 } |
303 | 298 |
304 } // namespace base | 299 } // namespace base |
OLD | NEW |