OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "effects/GrPorterDuffXferProcessor.h" | 8 #include "effects/GrPorterDuffXferProcessor.h" |
9 | 9 |
10 #include "GrBlend.h" | 10 #include "GrBlend.h" |
11 #include "GrDrawTargetCaps.h" | 11 #include "GrDrawTargetCaps.h" |
12 #include "GrProcessor.h" | 12 #include "GrProcessor.h" |
13 #include "GrProcOptInfo.h" | 13 #include "GrProcOptInfo.h" |
14 #include "GrTypes.h" | 14 #include "GrTypes.h" |
15 #include "GrXferProcessor.h" | 15 #include "GrXferProcessor.h" |
16 #include "gl/GrGLXferProcessor.h" | 16 #include "gl/GrGLXferProcessor.h" |
17 #include "gl/builders/GrGLFragmentShaderBuilder.h" | 17 #include "gl/builders/GrGLFragmentShaderBuilder.h" |
18 #include "gl/builders/GrGLProgramBuilder.h" | 18 #include "gl/builders/GrGLProgramBuilder.h" |
19 | 19 |
20 static bool can_tweak_alpha_for_coverage(GrBlendCoeff dstCoeff) { | 20 /** |
21 /* | 21 * Wraps the shader outputs and HW blend state that comprise a Porter Duff blend mode with coverage. |
22 The fractional coverage is f. | 22 */ |
23 The src and dst coeffs are Cs and Cd. | 23 struct BlendFormula { |
24 The dst and src colors are S and D. | 24 public: |
25 We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the sou rce color's alpha | 25 /** |
26 we're replacing S with S'=fS. It's obvious that that first term will always be ok. The second | 26 * Values the shader can write to primary and secondary outputs. These must all be modulated by |
27 term can be rearranged as [1-(1-Cd)f]D. By substituting in the various poss ibilities for Cd we | 27 * coverage to support mixed samples. The XP will ignore the multiplies when not using coverage. |
28 find that only 1, ISA, and ISC produce the correct destination when applied to S' and D. | |
29 */ | 28 */ |
30 return kOne_GrBlendCoeff == dstCoeff || | 29 enum OutputType { |
31 kISA_GrBlendCoeff == dstCoeff || | 30 kNone_OutputType, //<! 0 |
32 kISC_GrBlendCoeff == dstCoeff; | 31 kCoverage_OutputType, //<! inputCoverage |
32 kModulate_OutputType, //<! inputColor * inputCoverage | |
33 kISAModulate_OutputType, //<! (1 - inputColor.a) * inputCoverage | |
34 kISCModulate_OutputType, //<! (1 - inputColor) * inputCoverage | |
35 | |
36 kLast_OutputType = kISCModulate_OutputType | |
37 }; | |
38 | |
39 enum Properties { | |
40 kModifiesDst_Property = 1, | |
41 kUsesDstColor_Property = 1 << 1, | |
42 kUsesInputColor_Property = 1 << 2, | |
43 kCanTweakAlphaForCoverage_Property = 1 << 3, | |
44 | |
45 kLast_Property = kCanTweakAlphaForCoverage_Property | |
46 }; | |
47 | |
48 BlendFormula& operator =(const BlendFormula& other) { | |
49 fData = other.fData; | |
50 return *this; | |
51 } | |
52 | |
53 bool operator ==(const BlendFormula& other) const { | |
54 return fData == other.fData; | |
55 } | |
56 | |
57 bool hasSecondaryOutput() const { return kNone_OutputType != fSecondaryOutpu tType; } | |
58 bool modifiesDst() const { return SkToBool(fProps & kModifiesDst_Property); } | |
59 bool usesDstColor() const { return SkToBool(fProps & kUsesDstColor_Property) ; } | |
60 bool usesInputColor() const { return SkToBool(fProps & kUsesInputColor_Prope rty); } | |
61 bool canTweakAlphaForCoverage() const { | |
62 return SkToBool(fProps & kCanTweakAlphaForCoverage_Property); | |
63 } | |
64 | |
65 /** | |
66 * Deduce the properties of a compile-time constant BlendFormula. | |
67 */ | |
68 template<OutputType PrimaryOut, OutputType SecondaryOut, | |
69 GrBlendEquation BlendEquation, GrBlendCoeff SrcCoeff, GrBlendCoeff DstCoeff> | |
70 struct get_properties : SkTIntegralConstant<Properties, static_cast<Properti es>( | |
71 | |
72 (GR_BLEND_MODIFIES_DST(BlendEquation, SrcCoeff, DstCoeff) ? | |
73 kModifiesDst_Property : 0) | | |
74 | |
75 (GR_BLEND_COEFFS_USE_DST_COLOR(SrcCoeff, DstCoeff) ? | |
76 kUsesDstColor_Property : 0) | | |
77 | |
78 ((PrimaryOut >= kModulate_OutputType && GR_BLEND_COEFFS_USE_SRC_COLOR(Sr cCoeff,DstCoeff)) || | |
79 (SecondaryOut >= kModulate_OutputType && GR_BLEND_COEFF_REFS_SRC2(DstCo eff)) ? | |
80 kUsesInputColor_Property : 0) | // We assert later that SrcCoeff do esn't ref src2. | |
81 | |
82 (kModulate_OutputType == PrimaryOut && | |
83 kNone_OutputType == SecondaryOut && | |
84 GR_BLEND_CAN_TWEAK_ALPHA_FOR_COVERAGE(BlendEquation, SrcCoeff, DstCoeff ) ? | |
85 kCanTweakAlphaForCoverage_Property : 0))> { | |
86 | |
87 // The provided formula should already be optimized. | |
88 GR_STATIC_ASSERT((kNone_OutputType == PrimaryOut) == | |
89 !GR_BLEND_COEFFS_USE_SRC_COLOR(SrcCoeff, DstCoeff)); | |
90 GR_STATIC_ASSERT(!GR_BLEND_COEFF_REFS_SRC2(SrcCoeff)); | |
91 GR_STATIC_ASSERT((kNone_OutputType == SecondaryOut) == | |
92 !GR_BLEND_COEFF_REFS_SRC2(DstCoeff)); | |
93 GR_STATIC_ASSERT(PrimaryOut != SecondaryOut || kNone_OutputType == Prima ryOut); | |
94 GR_STATIC_ASSERT(kNone_OutputType != PrimaryOut || kNone_OutputType == S econdaryOut); | |
95 }; | |
96 | |
97 union { | |
98 struct { | |
99 // We allot the enums one more bit than they require because MSVC se ems to have a bug | |
100 // where it will sign-extend them if the last bit is set. | |
Chris Dalton
2015/05/22 17:35:01
This appears in violation of the C++03 9.6/4 stand
| |
101 OutputType fPrimaryOutputType : 4; | |
102 OutputType fSecondaryOutputType : 4; | |
103 GrBlendEquation fBlendEquation : 6; | |
104 GrBlendCoeff fSrcCoeff : 6; | |
105 GrBlendCoeff fDstCoeff : 6; | |
106 Properties fProps : 32 - (4 + 4 + 6 + 6 + 6); | |
107 }; | |
108 uint32_t fData; | |
109 }; | |
110 | |
111 GR_STATIC_ASSERT(kLast_OutputType < (1 << 3)); | |
112 GR_STATIC_ASSERT(kLast_GrBlendEquation < (1 << 5)); | |
113 GR_STATIC_ASSERT(kLast_GrBlendCoeff < (1 << 5)); | |
114 GR_STATIC_ASSERT(kLast_Property < (1 << 6)); | |
Chris Dalton
2015/05/22 17:35:02
Oops, I meant to add these before but they got los
| |
115 }; | |
116 | |
117 GR_STATIC_ASSERT(4 == sizeof(BlendFormula)); | |
118 | |
119 GR_MAKE_BITFIELD_OPS(BlendFormula::Properties); | |
120 | |
121 /** | |
122 * Initialize a compile-time constant BlendFormula and automatically deduce fPro ps. | |
123 */ | |
124 #define INIT_BLEND_FORMULA(PRIMARY_OUT, SECONDARY_OUT, BLEND_EQUATION, SRC_COEFF , DST_COEFF) \ | |
125 {{{PRIMARY_OUT, \ | |
126 SECONDARY_OUT, \ | |
127 BLEND_EQUATION, SRC_COEFF, DST_COEFF, \ | |
128 BlendFormula::get_properties<PRIMARY_OUT, SECONDARY_OUT, \ | |
129 BLEND_EQUATION, SRC_COEFF, DST_COEFF>::value }}} | |
130 | |
131 /** | |
132 * When there is no coverage, or the blend mode can tweak alpha for coverage, we use the standard | |
133 * Porter Duff formula. | |
134 */ | |
135 #define COEFF_FORMULA(SRC_COEFF, DST_COEFF) \ | |
136 INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ | |
137 BlendFormula::kNone_OutputType, \ | |
138 kAdd_GrBlendEquation, SRC_COEFF, DST_COEFF) | |
139 | |
140 /** | |
141 * When the coeffs are (Zero, Zero), we clear the dst. This formula has its own macro so we can set | |
142 * the primary output type to none. | |
143 */ | |
144 #define DST_CLEAR_FORMULA \ | |
145 INIT_BLEND_FORMULA(BlendFormula::kNone_OutputType, \ | |
146 BlendFormula::kNone_OutputType, \ | |
147 kAdd_GrBlendEquation, kZero_GrBlendCoeff, kZero_GrBlendCo eff) | |
148 | |
149 /** | |
150 * When the coeffs are (Zero, One), we don't write to the dst at all. This formu la has its own macro | |
151 * so we can set the primary output type to none. | |
152 */ | |
153 #define NO_DST_WRITE_FORMULA \ | |
154 INIT_BLEND_FORMULA(BlendFormula::kNone_OutputType, \ | |
155 BlendFormula::kNone_OutputType, \ | |
156 kAdd_GrBlendEquation, kZero_GrBlendCoeff, kOne_GrBlendCoe ff) | |
157 | |
158 /** | |
159 * When there is coverage, the equation with f=coverage is: | |
160 * | |
161 * D' = f * (S * srcCoeff + D * dstCoeff) + (1-f) * D | |
162 * | |
163 * This can be rewritten as: | |
164 * | |
165 * D' = f * S * srcCoeff + D * (1 - [f * (1 - dstCoeff)]) | |
166 * | |
167 * To implement this formula, we output [f * (1 - dstCoeff)] for the secondary c olor and replace the | |
168 * HW dst coeff with IS2C. | |
169 * | |
170 * Xfer modes: dst-atop (Sa!=1) | |
171 */ | |
172 #define COVERAGE_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, SRC_COEFF) \ | |
173 INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ | |
174 ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, \ | |
175 kAdd_GrBlendEquation, SRC_COEFF, kIS2C_GrBlendCoeff) | |
176 | |
177 /** | |
178 * When there is coverage and the src coeff is Zero, the equation with f=coverag e becomes: | |
179 * | |
180 * D' = f * D * dstCoeff + (1-f) * D | |
181 * | |
182 * This can be rewritten as: | |
183 * | |
184 * D' = D - D * [f * (1 - dstCoeff)] | |
185 * | |
186 * To implement this formula, we output [f * (1 - dstCoeff)] for the primary col or and use a reverse | |
187 * subtract HW blend equation with coeffs of (DC, One). | |
188 * | |
189 * Xfer modes: clear, dst-out (Sa=1), dst-in (Sa!=1), modulate (Sc!=1) | |
190 */ | |
191 #define COVERAGE_SRC_COEFF_ZERO_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT) \ | |
192 INIT_BLEND_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, \ | |
193 BlendFormula::kNone_OutputType, \ | |
194 kReverseSubtract_GrBlendEquation, kDC_GrBlendCoeff, kOne_ GrBlendCoeff) | |
195 | |
196 /** | |
197 * When there is coverage and the dst coeff is Zero, the equation with f=coverag e becomes: | |
198 * | |
199 * D' = f * S * srcCoeff + (1-f) * D | |
200 * | |
201 * To implement this formula, we output [f] for the secondary color and replace the HW dst coeff | |
202 * with IS2A. (Note that we can avoid dual source blending when Sa=1 by using IS A.) | |
203 * | |
204 * Xfer modes (Sa!=1): src, src-in, src-out | |
205 */ | |
206 #define COVERAGE_DST_COEFF_ZERO_FORMULA(SRC_COEFF) \ | |
207 INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ | |
208 BlendFormula::kCoverage_OutputType, \ | |
209 kAdd_GrBlendEquation, SRC_COEFF, kIS2A_GrBlendCoeff) | |
210 | |
211 /** | |
212 * This table outlines the blend formulas we will use with each xfermode, with a nd without coverage, | |
213 * with and without an opaque input color. Optimization properties are deduced a t compile time so we | |
214 * can make runtime decisions quickly. RGB coverage is not supported. | |
215 */ | |
216 static const BlendFormula gBlendTable[2][2][SkXfermode::kLastCoeffMode + 1] = { | |
217 | |
218 /*>> Has coverage, input color unknown <<*/ {{ | |
219 | |
220 /* clear */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_Out putType), | |
221 /* src */ COVERAGE_DST_COEFF_ZERO_FORMULA(kOne_GrBlendCoeff), | |
222 /* dst */ NO_DST_WRITE_FORMULA, | |
223 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
224 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
225 /* src-in */ COVERAGE_DST_COEFF_ZERO_FORMULA(kDA_GrBlendCoeff), | |
226 /* dst-in */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISAModulate_ OutputType), | |
227 /* src-out */ COVERAGE_DST_COEFF_ZERO_FORMULA(kIDA_GrBlendCoeff), | |
228 /* dst-out */ COEFF_FORMULA( kZero_GrBlendCoeff, kISA_GrBlendCoeff), | |
229 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
230 /* dst-atop */ COVERAGE_FORMULA(BlendFormula::kISAModulate_OutputType, kID A_GrBlendCoeff), | |
231 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
232 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
233 /* modulate */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_ OutputType), | |
234 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
235 | |
236 }, /*>> No coverage, input color unknown <<*/ { | |
237 | |
238 /* clear */ DST_CLEAR_FORMULA, | |
239 /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
240 /* dst */ NO_DST_WRITE_FORMULA, | |
241 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
242 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
243 /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
244 /* dst-in */ COEFF_FORMULA( kZero_GrBlendCoeff, kSA_GrBlendCoeff), | |
245 /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
246 /* dst-out */ COEFF_FORMULA( kZero_GrBlendCoeff, kISA_GrBlendCoeff), | |
247 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
248 /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kSA_GrBlendCoeff), | |
249 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
250 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
251 /* modulate */ COEFF_FORMULA( kZero_GrBlendCoeff, kSC_GrBlendCoeff), | |
252 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
253 | |
254 }}, /*>> Has coverage, input color opaque <<*/ {{ | |
255 | |
256 /* clear */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_Out putType), | |
257 /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
258 /* dst */ NO_DST_WRITE_FORMULA, | |
259 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
260 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
261 /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
262 /* dst-in */ NO_DST_WRITE_FORMULA, | |
263 /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
264 /* dst-out */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_Out putType), | |
265 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
266 /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
267 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
268 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
269 /* modulate */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_ OutputType), | |
270 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
271 | |
272 }, /*>> No coverage, input color opaque <<*/ { | |
273 | |
274 /* clear */ DST_CLEAR_FORMULA, | |
275 /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
276 /* dst */ NO_DST_WRITE_FORMULA, | |
277 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
278 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
279 /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
280 /* dst-in */ NO_DST_WRITE_FORMULA, | |
281 /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
282 /* dst-out */ DST_CLEAR_FORMULA, | |
283 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
284 /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
285 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
286 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
287 /* modulate */ COEFF_FORMULA( kZero_GrBlendCoeff, kSC_GrBlendCoeff), | |
288 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
289 }}}; | |
290 | |
291 static BlendFormula get_blend_formula(SkXfermode::Mode xfermode, | |
292 const GrProcOptInfo& colorPOI, | |
293 const GrProcOptInfo& coveragePOI) { | |
294 SkASSERT(xfermode >= 0 && xfermode <= SkXfermode::kLastCoeffMode); | |
295 SkASSERT(!coveragePOI.isFourChannelOutput()); | |
296 | |
297 return gBlendTable[colorPOI.isOpaque()][coveragePOI.isSolidWhite()][xfermode ]; | |
33 } | 298 } |
34 | 299 |
300 static BlendFormula get_unoptimized_blend_formula(SkXfermode::Mode xfermode) { | |
301 SkASSERT(xfermode >= 0 && xfermode <= SkXfermode::kLastCoeffMode); | |
302 | |
303 return gBlendTable[0][0][xfermode]; | |
304 } | |
305 | |
306 /////////////////////////////////////////////////////////////////////////////// | |
307 | |
35 class PorterDuffXferProcessor : public GrXferProcessor { | 308 class PorterDuffXferProcessor : public GrXferProcessor { |
36 public: | 309 public: |
37 static GrXferProcessor* Create(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend, | 310 static GrXferProcessor* Create(SkXfermode::Mode xfermode, const GrDeviceCoor dTexture* dstCopy, |
38 GrColor constant, const GrDeviceCoordTexture* dstCopy, | |
39 bool willReadDstColor) { | 311 bool willReadDstColor) { |
40 return SkNEW_ARGS(PorterDuffXferProcessor, (srcBlend, dstBlend, constant , dstCopy, | 312 return SkNEW_ARGS(PorterDuffXferProcessor, (xfermode, dstCopy, willReadD stColor)); |
41 willReadDstColor)); | |
42 } | 313 } |
43 | 314 |
44 ~PorterDuffXferProcessor() override; | 315 ~PorterDuffXferProcessor() override; |
45 | 316 |
46 const char* name() const override { return "Porter Duff"; } | 317 const char* name() const override { return "Porter Duff"; } |
47 | 318 |
48 GrGLXferProcessor* createGLInstance() const override; | 319 GrGLXferProcessor* createGLInstance() const override; |
49 | 320 |
50 bool hasSecondaryOutput() const override; | 321 bool hasSecondaryOutput() const override { |
322 return fBlendFormula.hasSecondaryOutput(); | |
323 } | |
51 | 324 |
52 /////////////////////////////////////////////////////////////////////////// | 325 SkXfermode::Mode getXfermode() const { return fXfermode; } |
53 /// @name Stage Output Types | 326 BlendFormula getBlendFormula() const { return fBlendFormula; } |
54 //// | |
55 | |
56 enum PrimaryOutputType { | |
57 kNone_PrimaryOutputType, | |
58 kColor_PrimaryOutputType, | |
59 kCoverage_PrimaryOutputType, | |
60 // Modulate color and coverage, write result as the color output. | |
61 kModulate_PrimaryOutputType, | |
62 // Custom Porter-Duff output, used for when we explictly are reading the dst and blending | |
63 // in the shader. Secondary Output must be none if you use this. The cus tom blend uses the | |
64 // equation: cov * (coeffS * S + coeffD * D) + (1 - cov) * D | |
65 kCustom_PrimaryOutputType | |
66 }; | |
67 | |
68 enum SecondaryOutputType { | |
69 // There is no secondary output | |
70 kNone_SecondaryOutputType, | |
71 // Writes coverage as the secondary output. Only set if dual source blen ding is supported | |
72 // and primary output is kModulate. | |
73 kCoverage_SecondaryOutputType, | |
74 // Writes coverage * (1 - colorA) as the secondary output. Only set if d ual source blending | |
75 // is supported and primary output is kModulate. | |
76 kCoverageISA_SecondaryOutputType, | |
77 // Writes coverage * (1 - colorRGBA) as the secondary output. Only set i f dual source | |
78 // blending is supported and primary output is kModulate. | |
79 kCoverageISC_SecondaryOutputType, | |
80 | |
81 kSecondaryOutputTypeCnt, | |
82 }; | |
83 | |
84 PrimaryOutputType primaryOutputType() const { return fPrimaryOutputType; } | |
85 SecondaryOutputType secondaryOutputType() const { return fSecondaryOutputTyp e; } | |
86 | |
87 GrBlendCoeff getSrcBlend() const { return fSrcBlend; } | |
88 GrBlendCoeff getDstBlend() const { return fDstBlend; } | |
89 | 327 |
90 private: | 328 private: |
91 PorterDuffXferProcessor(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend, GrColo r constant, | 329 PorterDuffXferProcessor(SkXfermode::Mode, const GrDeviceCoordTexture* dstCop y, |
92 const GrDeviceCoordTexture* dstCopy, bool willReadDs tColor); | 330 bool willReadDstColor); |
93 | 331 |
94 GrXferProcessor::OptFlags onGetOptimizations(const GrProcOptInfo& colorPOI, | 332 GrXferProcessor::OptFlags onGetOptimizations(const GrProcOptInfo& colorPOI, |
95 const GrProcOptInfo& coveragePO I, | 333 const GrProcOptInfo& coveragePO I, |
96 bool doesStencilWrite, | 334 bool doesStencilWrite, |
97 GrColor* overrideColor, | 335 GrColor* overrideColor, |
98 const GrCaps& caps) override; | 336 const GrCaps& caps) override; |
99 | 337 |
100 void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) c onst override; | 338 void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) c onst override; |
101 | 339 |
102 void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override { | 340 void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override { |
103 if (!this->willReadDstColor()) { | 341 if (!this->willReadDstColor()) { |
104 blendInfo->fSrcBlend = fSrcBlend; | 342 blendInfo->fEquation = fBlendFormula.fBlendEquation; |
105 blendInfo->fDstBlend = fDstBlend; | 343 blendInfo->fSrcBlend = fBlendFormula.fSrcCoeff; |
106 } else { | 344 blendInfo->fDstBlend = fBlendFormula.fDstCoeff; |
107 blendInfo->fSrcBlend = kOne_GrBlendCoeff; | 345 blendInfo->fWriteColor = fBlendFormula.modifiesDst(); |
108 blendInfo->fDstBlend = kZero_GrBlendCoeff; | |
109 } | 346 } |
110 blendInfo->fBlendConstant = fBlendConstant; | |
111 } | 347 } |
112 | 348 |
113 bool onIsEqual(const GrXferProcessor& xpBase) const override { | 349 bool onIsEqual(const GrXferProcessor& xpBase) const override { |
114 const PorterDuffXferProcessor& xp = xpBase.cast<PorterDuffXferProcessor> (); | 350 const PorterDuffXferProcessor& xp = xpBase.cast<PorterDuffXferProcessor> (); |
115 if (fSrcBlend != xp.fSrcBlend || | 351 return fXfermode == xp.fXfermode && |
116 fDstBlend != xp.fDstBlend || | 352 fBlendFormula == xp.fBlendFormula; |
117 fBlendConstant != xp.fBlendConstant || | |
118 fPrimaryOutputType != xp.fPrimaryOutputType || | |
119 fSecondaryOutputType != xp.fSecondaryOutputType) { | |
120 return false; | |
121 } | |
122 return true; | |
123 } | 353 } |
124 | 354 |
125 GrXferProcessor::OptFlags internalGetOptimizations(const GrProcOptInfo& colo rPOI, | 355 SkXfermode::Mode fXfermode; |
126 const GrProcOptInfo& cove ragePOI, | 356 BlendFormula fBlendFormula; |
127 bool doesStencilWrite); | |
128 | |
129 void calcOutputTypes(GrXferProcessor::OptFlags blendOpts, const GrCaps& caps , | |
130 bool hasSolidCoverage); | |
131 | |
132 GrBlendCoeff fSrcBlend; | |
133 GrBlendCoeff fDstBlend; | |
134 GrColor fBlendConstant; | |
135 PrimaryOutputType fPrimaryOutputType; | |
136 SecondaryOutputType fSecondaryOutputType; | |
137 | 357 |
138 typedef GrXferProcessor INHERITED; | 358 typedef GrXferProcessor INHERITED; |
139 }; | 359 }; |
140 | 360 |
141 /////////////////////////////////////////////////////////////////////////////// | 361 /////////////////////////////////////////////////////////////////////////////// |
142 | 362 |
143 bool append_porterduff_term(GrGLXPFragmentBuilder* fsBuilder, GrBlendCoeff coeff , | 363 void append_color_output(const PorterDuffXferProcessor& xp, GrGLXPFragmentBuilde r* fsBuilder, |
364 BlendFormula::OutputType outputType, const char* output , | |
365 const char* inColor, const char* inCoverage) { | |
366 switch (outputType) { | |
367 case BlendFormula::kNone_OutputType: | |
368 fsBuilder->codeAppendf("%s = vec4(0.0);", output); | |
369 break; | |
370 case BlendFormula::kCoverage_OutputType: | |
371 fsBuilder->codeAppendf("%s = %s;", | |
372 output, xp.readsCoverage() ? inCoverage : "ve c4(1.0)"); | |
373 break; | |
374 case BlendFormula::kModulate_OutputType: | |
375 if (xp.readsCoverage()) { | |
376 fsBuilder->codeAppendf("%s = %s * %s;", output, inColor, inCover age); | |
377 } else { | |
378 fsBuilder->codeAppendf("%s = %s;", output, inColor); | |
379 } | |
380 break; | |
381 case BlendFormula::kISAModulate_OutputType: | |
382 if (xp.readsCoverage()) { | |
383 fsBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", output, inColo r, inCoverage); | |
384 } else { | |
385 fsBuilder->codeAppendf("%s = vec4(1.0 - %s.a);", output, inColor ); | |
386 } | |
387 break; | |
388 case BlendFormula::kISCModulate_OutputType: | |
389 if (xp.readsCoverage()) { | |
390 fsBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;", output, in Color, inCoverage); | |
391 } else { | |
392 fsBuilder->codeAppendf("%s = vec4(1.0) - %s;", output, inColor); | |
393 } | |
394 break; | |
395 default: | |
396 SkFAIL("Unsupported output type."); | |
397 break; | |
398 } | |
399 } | |
400 | |
401 bool append_porterduff_term(GrGLXPFragmentBuilder* fsBuilder, SkXfermode::Coeff coeff, | |
144 const char* colorName, const char* srcColorName, | 402 const char* colorName, const char* srcColorName, |
145 const char* dstColorName, bool hasPrevious) { | 403 const char* dstColorName, bool hasPrevious) { |
146 if (kZero_GrBlendCoeff == coeff) { | 404 if (SkXfermode::kZero_Coeff == coeff) { |
147 return hasPrevious; | 405 return hasPrevious; |
148 } else { | 406 } else { |
149 if (hasPrevious) { | 407 if (hasPrevious) { |
150 fsBuilder->codeAppend(" + "); | 408 fsBuilder->codeAppend(" + "); |
151 } | 409 } |
152 fsBuilder->codeAppendf("%s", colorName); | 410 fsBuilder->codeAppendf("%s", colorName); |
153 switch (coeff) { | 411 switch (coeff) { |
154 case kOne_GrBlendCoeff: | 412 case SkXfermode::kOne_Coeff: |
155 break; | 413 break; |
156 case kSC_GrBlendCoeff: | 414 case SkXfermode::kSC_Coeff: |
157 fsBuilder->codeAppendf(" * %s", srcColorName); | 415 fsBuilder->codeAppendf(" * %s", srcColorName); |
158 break; | 416 break; |
159 case kISC_GrBlendCoeff: | 417 case SkXfermode::kISC_Coeff: |
160 fsBuilder->codeAppendf(" * (vec4(1.0) - %s)", srcColorName); | 418 fsBuilder->codeAppendf(" * (vec4(1.0) - %s)", srcColorName); |
161 break; | 419 break; |
162 case kDC_GrBlendCoeff: | 420 case SkXfermode::kDC_Coeff: |
163 fsBuilder->codeAppendf(" * %s", dstColorName); | 421 fsBuilder->codeAppendf(" * %s", dstColorName); |
164 break; | 422 break; |
165 case kIDC_GrBlendCoeff: | 423 case SkXfermode::kIDC_Coeff: |
166 fsBuilder->codeAppendf(" * (vec4(1.0) - %s)", dstColorName); | 424 fsBuilder->codeAppendf(" * (vec4(1.0) - %s)", dstColorName); |
167 break; | 425 break; |
168 case kSA_GrBlendCoeff: | 426 case SkXfermode::kSA_Coeff: |
169 fsBuilder->codeAppendf(" * %s.a", srcColorName); | 427 fsBuilder->codeAppendf(" * %s.a", srcColorName); |
170 break; | 428 break; |
171 case kISA_GrBlendCoeff: | 429 case SkXfermode::kISA_Coeff: |
172 fsBuilder->codeAppendf(" * (1.0 - %s.a)", srcColorName); | 430 fsBuilder->codeAppendf(" * (1.0 - %s.a)", srcColorName); |
173 break; | 431 break; |
174 case kDA_GrBlendCoeff: | 432 case SkXfermode::kDA_Coeff: |
175 fsBuilder->codeAppendf(" * %s.a", dstColorName); | 433 fsBuilder->codeAppendf(" * %s.a", dstColorName); |
176 break; | 434 break; |
177 case kIDA_GrBlendCoeff: | 435 case SkXfermode::kIDA_Coeff: |
178 fsBuilder->codeAppendf(" * (1.0 - %s.a)", dstColorName); | 436 fsBuilder->codeAppendf(" * (1.0 - %s.a)", dstColorName); |
179 break; | 437 break; |
180 default: | 438 default: |
181 SkFAIL("Unsupported Blend Coeff"); | 439 SkFAIL("Unsupported Blend Coeff"); |
182 } | 440 } |
183 return true; | 441 return true; |
184 } | 442 } |
185 } | 443 } |
186 | 444 |
187 class GLPorterDuffXferProcessor : public GrGLXferProcessor { | 445 class GLPorterDuffXferProcessor : public GrGLXferProcessor { |
188 public: | 446 public: |
189 GLPorterDuffXferProcessor(const GrProcessor&) {} | 447 GLPorterDuffXferProcessor(const GrProcessor&) {} |
190 | 448 |
191 virtual ~GLPorterDuffXferProcessor() {} | 449 virtual ~GLPorterDuffXferProcessor() {} |
192 | 450 |
193 static void GenKey(const GrProcessor& processor, const GrGLSLCaps& caps, | 451 static void GenKey(const GrProcessor& processor, const GrGLSLCaps& caps, |
194 GrProcessorKeyBuilder* b) { | 452 GrProcessorKeyBuilder* b) { |
195 const PorterDuffXferProcessor& xp = processor.cast<PorterDuffXferProcess or>(); | 453 const PorterDuffXferProcessor& xp = processor.cast<PorterDuffXferProcess or>(); |
196 b->add32(xp.primaryOutputType()); | |
197 b->add32(xp.secondaryOutputType()); | |
198 if (xp.willReadDstColor()) { | 454 if (xp.willReadDstColor()) { |
199 b->add32(xp.getSrcBlend()); | 455 b->add32(xp.getXfermode()); // Parent class includes willReadDstCol or() in key. |
200 b->add32(xp.getDstBlend()); | 456 } else { |
457 b->add32(SkToInt(xp.readsCoverage()) | | |
458 (xp.getBlendFormula().fPrimaryOutputType << 1) | | |
459 (xp.getBlendFormula().fSecondaryOutputType << 4)); | |
460 GR_STATIC_ASSERT(BlendFormula::kLast_OutputType < 8); | |
201 } | 461 } |
202 }; | 462 }; |
203 | 463 |
204 private: | 464 private: |
205 void onEmitCode(const EmitArgs& args) override { | 465 void onEmitCode(const EmitArgs& args) override { |
206 const PorterDuffXferProcessor& xp = args.fXP.cast<PorterDuffXferProcesso r>(); | 466 const PorterDuffXferProcessor& xp = args.fXP.cast<PorterDuffXferProcesso r>(); |
207 GrGLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); | 467 GrGLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
208 if (PorterDuffXferProcessor::kCustom_PrimaryOutputType != xp.primaryOutp utType()) { | 468 if (!xp.willReadDstColor()) { |
209 SkASSERT(!xp.willReadDstColor()); | 469 BlendFormula blendFormula = xp.getBlendFormula(); |
210 switch(xp.secondaryOutputType()) { | 470 if (blendFormula.hasSecondaryOutput()) { |
211 case PorterDuffXferProcessor::kNone_SecondaryOutputType: | 471 append_color_output(xp, fsBuilder, blendFormula.fSecondaryOutput Type, |
212 break; | 472 args.fOutputSecondary, args.fInputColor, arg s.fInputCoverage); |
213 case PorterDuffXferProcessor::kCoverage_SecondaryOutputType: | |
214 fsBuilder->codeAppendf("%s = %s;", args.fOutputSecondary, | |
215 args.fInputCoverage); | |
216 break; | |
217 case PorterDuffXferProcessor::kCoverageISA_SecondaryOutputType: | |
218 fsBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", | |
219 args.fOutputSecondary, args.fInputCol or, | |
220 args.fInputCoverage); | |
221 break; | |
222 case PorterDuffXferProcessor::kCoverageISC_SecondaryOutputType: | |
223 fsBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;", | |
224 args.fOutputSecondary, args.fInputCol or, | |
225 args.fInputCoverage); | |
226 break; | |
227 default: | |
228 SkFAIL("Unexpected Secondary Output"); | |
229 } | 473 } |
230 | 474 append_color_output(xp, fsBuilder, blendFormula.fPrimaryOutputType, |
231 switch (xp.primaryOutputType()) { | 475 args.fOutputPrimary, args.fInputColor, args.fInp utCoverage); |
232 case PorterDuffXferProcessor::kNone_PrimaryOutputType: | |
233 fsBuilder->codeAppendf("%s = vec4(0);", args.fOutputPrimary) ; | |
234 break; | |
235 case PorterDuffXferProcessor::kColor_PrimaryOutputType: | |
236 fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args .fInputColor); | |
237 break; | |
238 case PorterDuffXferProcessor::kCoverage_PrimaryOutputType: | |
239 fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args .fInputCoverage); | |
240 break; | |
241 case PorterDuffXferProcessor::kModulate_PrimaryOutputType: | |
242 fsBuilder->codeAppendf("%s = %s * %s;", args.fOutputPrimary, args.fInputColor, | |
243 args.fInputCoverage); | |
244 break; | |
245 default: | |
246 SkFAIL("Unexpected Primary Output"); | |
247 } | |
248 } else { | 476 } else { |
249 SkASSERT(xp.willReadDstColor()); | 477 SkASSERT(xp.willReadDstColor()); |
250 | 478 |
479 SkXfermode::Coeff srcCoeff, dstCoeff; | |
480 SkXfermode::ModeAsCoeff(xp.getXfermode(), &srcCoeff, &dstCoeff); | |
481 | |
251 const char* dstColor = fsBuilder->dstColor(); | 482 const char* dstColor = fsBuilder->dstColor(); |
252 | 483 |
253 fsBuilder->codeAppend("vec4 colorBlend ="); | 484 fsBuilder->codeAppend("vec4 colorBlend ="); |
254 // append src blend | 485 // append src blend |
255 bool didAppend = append_porterduff_term(fsBuilder, xp.getSrcBlend(), | 486 bool didAppend = append_porterduff_term(fsBuilder, srcCoeff, |
256 args.fInputColor, args.fInpu tColor, | 487 args.fInputColor, args.fInpu tColor, |
257 dstColor, false); | 488 dstColor, false); |
258 // append dst blend | 489 // append dst blend |
259 SkAssertResult(append_porterduff_term(fsBuilder, xp.getDstBlend(), | 490 SkAssertResult(append_porterduff_term(fsBuilder, dstCoeff, |
260 dstColor, args.fInputColor, | 491 dstColor, args.fInputColor, |
261 dstColor, didAppend)); | 492 dstColor, didAppend)); |
262 fsBuilder->codeAppend(";"); | 493 fsBuilder->codeAppend(";"); |
263 | 494 |
264 fsBuilder->codeAppendf("%s = %s * colorBlend + (vec4(1.0) - %s) * %s ;", | 495 fsBuilder->codeAppendf("%s = %s * colorBlend + (vec4(1.0) - %s) * %s ;", |
265 args.fOutputPrimary, args.fInputCoverage, arg s.fInputCoverage, | 496 args.fOutputPrimary, args.fInputCoverage, arg s.fInputCoverage, |
266 dstColor); | 497 dstColor); |
267 } | 498 } |
268 } | 499 } |
269 | 500 |
270 void onSetData(const GrGLProgramDataManager&, const GrXferProcessor&) overri de {}; | 501 void onSetData(const GrGLProgramDataManager&, const GrXferProcessor&) overri de {}; |
271 | 502 |
272 typedef GrGLXferProcessor INHERITED; | 503 typedef GrGLXferProcessor INHERITED; |
273 }; | 504 }; |
274 | 505 |
275 /////////////////////////////////////////////////////////////////////////////// | 506 /////////////////////////////////////////////////////////////////////////////// |
276 | 507 |
277 PorterDuffXferProcessor::PorterDuffXferProcessor(GrBlendCoeff srcBlend, | 508 PorterDuffXferProcessor::PorterDuffXferProcessor(SkXfermode::Mode xfermode, |
278 GrBlendCoeff dstBlend, | |
279 GrColor constant, | |
280 const GrDeviceCoordTexture* dst Copy, | 509 const GrDeviceCoordTexture* dst Copy, |
281 bool willReadDstColor) | 510 bool willReadDstColor) |
282 : INHERITED(dstCopy, willReadDstColor) | 511 : INHERITED(dstCopy, willReadDstColor) |
283 , fSrcBlend(srcBlend) | 512 , fXfermode(xfermode) |
284 , fDstBlend(dstBlend) | 513 , fBlendFormula(get_unoptimized_blend_formula(xfermode)) { |
285 , fBlendConstant(constant) | |
286 , fPrimaryOutputType(kModulate_PrimaryOutputType) | |
287 , fSecondaryOutputType(kNone_SecondaryOutputType) { | |
288 this->initClassID<PorterDuffXferProcessor>(); | 514 this->initClassID<PorterDuffXferProcessor>(); |
289 } | 515 } |
290 | 516 |
291 PorterDuffXferProcessor::~PorterDuffXferProcessor() { | 517 PorterDuffXferProcessor::~PorterDuffXferProcessor() { |
292 } | 518 } |
293 | 519 |
294 void PorterDuffXferProcessor::onGetGLProcessorKey(const GrGLSLCaps& caps, | 520 void PorterDuffXferProcessor::onGetGLProcessorKey(const GrGLSLCaps& caps, |
295 GrProcessorKeyBuilder* b) cons t { | 521 GrProcessorKeyBuilder* b) cons t { |
296 GLPorterDuffXferProcessor::GenKey(*this, caps, b); | 522 GLPorterDuffXferProcessor::GenKey(*this, caps, b); |
297 } | 523 } |
298 | 524 |
299 GrGLXferProcessor* PorterDuffXferProcessor::createGLInstance() const { | 525 GrGLXferProcessor* PorterDuffXferProcessor::createGLInstance() const { |
300 return SkNEW_ARGS(GLPorterDuffXferProcessor, (*this)); | 526 return SkNEW_ARGS(GLPorterDuffXferProcessor, (*this)); |
301 } | 527 } |
302 | 528 |
303 GrXferProcessor::OptFlags | 529 GrXferProcessor::OptFlags |
304 PorterDuffXferProcessor::onGetOptimizations(const GrProcOptInfo& colorPOI, | 530 PorterDuffXferProcessor::onGetOptimizations(const GrProcOptInfo& colorPOI, |
305 const GrProcOptInfo& coveragePOI, | 531 const GrProcOptInfo& coveragePOI, |
306 bool doesStencilWrite, | 532 bool doesStencilWrite, |
307 GrColor* overrideColor, | 533 GrColor* overrideColor, |
308 const GrCaps& caps) { | 534 const GrCaps& caps) { |
309 GrXferProcessor::OptFlags optFlags = this->internalGetOptimizations(colorPOI , | |
310 coverage POI, | |
311 doesSten cilWrite); | |
312 this->calcOutputTypes(optFlags, caps, coveragePOI.isSolidWhite()); | |
313 return optFlags; | |
314 } | |
315 | |
316 void PorterDuffXferProcessor::calcOutputTypes(GrXferProcessor::OptFlags optFlags , | |
317 const GrCaps& caps, | |
318 bool hasSolidCoverage) { | |
319 if (this->willReadDstColor()) { | |
320 fPrimaryOutputType = kCustom_PrimaryOutputType; | |
321 return; | |
322 } | |
323 | |
324 if (optFlags & kIgnoreColor_OptFlag) { | |
325 if (optFlags & kIgnoreCoverage_OptFlag) { | |
326 fPrimaryOutputType = kNone_PrimaryOutputType; | |
327 return; | |
328 } else { | |
329 fPrimaryOutputType = kCoverage_PrimaryOutputType; | |
330 return; | |
331 } | |
332 } else if (optFlags & kIgnoreCoverage_OptFlag) { | |
333 fPrimaryOutputType = kColor_PrimaryOutputType; | |
334 return; | |
335 } | |
336 | |
337 // If we do have coverage determine whether it matters. Dual source blendin g is expensive so | |
338 // we don't do it if we are doing coverage drawing. If we aren't then We al ways do dual source | |
339 // blending if we have any effective coverage stages OR the geometry process or doesn't emits | |
340 // solid coverage. | |
341 if (!(optFlags & kSetCoverageDrawing_OptFlag) && !hasSolidCoverage) { | |
342 if (caps.shaderCaps()->dualSourceBlendingSupport()) { | |
343 if (kZero_GrBlendCoeff == fDstBlend) { | |
344 // write the coverage value to second color | |
345 fSecondaryOutputType = kCoverage_SecondaryOutputType; | |
346 fDstBlend = kIS2C_GrBlendCoeff; | |
347 } else if (kSA_GrBlendCoeff == fDstBlend) { | |
348 // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered. | |
349 fSecondaryOutputType = kCoverageISA_SecondaryOutputType; | |
350 fDstBlend = kIS2C_GrBlendCoeff; | |
351 } else if (kSC_GrBlendCoeff == fDstBlend) { | |
352 // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered. | |
353 fSecondaryOutputType = kCoverageISC_SecondaryOutputType; | |
354 fDstBlend = kIS2C_GrBlendCoeff; | |
355 } | |
356 } | |
357 } | |
358 } | |
359 | |
360 GrXferProcessor::OptFlags | |
361 PorterDuffXferProcessor::internalGetOptimizations(const GrProcOptInfo& colorPOI, | |
362 const GrProcOptInfo& coverageP OI, | |
363 bool doesStencilWrite) { | |
364 if (this->willReadDstColor()) { | 535 if (this->willReadDstColor()) { |
365 return GrXferProcessor::kNone_Opt; | 536 return GrXferProcessor::kNone_Opt; |
366 } | 537 } |
367 | 538 |
368 bool srcAIsOne = colorPOI.isOpaque(); | 539 fBlendFormula = get_blend_formula(fXfermode, colorPOI, coveragePOI); |
369 bool hasCoverage = !coveragePOI.isSolidWhite(); | |
370 | 540 |
371 bool dstCoeffIsOne = kOne_GrBlendCoeff == fDstBlend || | 541 GrXferProcessor::OptFlags optFlags = GrXferProcessor::kNone_Opt; |
372 (kSA_GrBlendCoeff == fDstBlend && srcAIsOne); | 542 if (!fBlendFormula.modifiesDst()) { |
373 bool dstCoeffIsZero = kZero_GrBlendCoeff == fDstBlend || | 543 if (!doesStencilWrite) { |
374 (kISA_GrBlendCoeff == fDstBlend && srcAIsOne); | 544 optFlags |= GrXferProcessor::kSkipDraw_OptFlag; |
375 | 545 } |
376 // When coeffs are (0,1) there is no reason to draw at all, unless | 546 optFlags |= (GrXferProcessor::kIgnoreColor_OptFlag | |
377 // stenciling is enabled. Having color writes disabled is effectively | 547 GrXferProcessor::kIgnoreCoverage_OptFlag | |
378 // (0,1). | 548 GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag); |
379 if ((kZero_GrBlendCoeff == fSrcBlend && dstCoeffIsOne)) { | 549 } else { |
380 if (doesStencilWrite) { | 550 if (!fBlendFormula.usesInputColor()) { |
381 return GrXferProcessor::kIgnoreColor_OptFlag | | 551 optFlags |= GrXferProcessor::kIgnoreColor_OptFlag; |
382 GrXferProcessor::kSetCoverageDrawing_OptFlag; | 552 } |
383 } else { | 553 if (coveragePOI.isSolidWhite()) { |
384 fDstBlend = kOne_GrBlendCoeff; | 554 optFlags |= GrXferProcessor::kIgnoreCoverage_OptFlag; |
385 return GrXferProcessor::kSkipDraw_OptFlag; | 555 } |
556 if (colorPOI.allStagesMultiplyInput() && fBlendFormula.canTweakAlphaForC overage()) { | |
557 optFlags |= GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; | |
386 } | 558 } |
387 } | 559 } |
388 | 560 |
389 // if we don't have coverage we can check whether the dst | 561 return optFlags; |
390 // has to read at all. If not, we'll disable blending. | |
391 if (!hasCoverage) { | |
392 if (dstCoeffIsZero) { | |
393 if (kOne_GrBlendCoeff == fSrcBlend) { | |
394 // if there is no coverage and coeffs are (1,0) then we | |
395 // won't need to read the dst at all, it gets replaced by src | |
396 fDstBlend = kZero_GrBlendCoeff; | |
397 return GrXferProcessor::kNone_Opt | | |
398 GrXferProcessor::kIgnoreCoverage_OptFlag; | |
399 } else if (kZero_GrBlendCoeff == fSrcBlend) { | |
400 // if the op is "clear" then we don't need to emit a color | |
401 // or blend, just write transparent black into the dst. | |
402 fSrcBlend = kOne_GrBlendCoeff; | |
403 fDstBlend = kZero_GrBlendCoeff; | |
404 return GrXferProcessor::kIgnoreColor_OptFlag | | |
405 GrXferProcessor::kIgnoreCoverage_OptFlag; | |
406 } | |
407 } | |
408 return GrXferProcessor::kIgnoreCoverage_OptFlag; | |
409 } | |
410 | |
411 // check whether coverage can be safely rolled into alpha | |
412 // of if we can skip color computation and just emit coverage | |
413 if (can_tweak_alpha_for_coverage(fDstBlend)) { | |
414 if (colorPOI.allStagesMultiplyInput()) { | |
415 return GrXferProcessor::kSetCoverageDrawing_OptFlag | | |
416 GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; | |
417 } else { | |
418 return GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
419 | |
420 } | |
421 } | |
422 if (dstCoeffIsZero) { | |
423 if (kZero_GrBlendCoeff == fSrcBlend) { | |
424 // the source color is not included in the blend | |
425 // the dst coeff is effectively zero so blend works out to: | |
426 // (c)(0)D + (1-c)D = (1-c)D. | |
427 fDstBlend = kISA_GrBlendCoeff; | |
428 return GrXferProcessor::kIgnoreColor_OptFlag | | |
429 GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
430 } else if (srcAIsOne) { | |
431 // the dst coeff is effectively zero so blend works out to: | |
432 // cS + (c)(0)D + (1-c)D = cS + (1-c)D. | |
433 // If Sa is 1 then we can replace Sa with c | |
434 // and set dst coeff to 1-Sa. | |
435 fDstBlend = kISA_GrBlendCoeff; | |
436 if (colorPOI.allStagesMultiplyInput()) { | |
437 return GrXferProcessor::kSetCoverageDrawing_OptFlag | | |
438 GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; | |
439 } else { | |
440 return GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
441 | |
442 } | |
443 } | |
444 } else if (dstCoeffIsOne) { | |
445 // the dst coeff is effectively one so blend works out to: | |
446 // cS + (c)(1)D + (1-c)D = cS + D. | |
447 fDstBlend = kOne_GrBlendCoeff; | |
448 if (colorPOI.allStagesMultiplyInput()) { | |
449 return GrXferProcessor::kSetCoverageDrawing_OptFlag | | |
450 GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; | |
451 } else { | |
452 return GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
453 | |
454 } | |
455 return GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
456 } | |
457 | |
458 return GrXferProcessor::kNone_Opt; | |
459 } | |
460 | |
461 bool PorterDuffXferProcessor::hasSecondaryOutput() const { | |
462 return kNone_SecondaryOutputType != fSecondaryOutputType; | |
463 } | 562 } |
464 | 563 |
465 /////////////////////////////////////////////////////////////////////////////// | 564 /////////////////////////////////////////////////////////////////////////////// |
466 | 565 |
467 class PDLCDXferProcessor : public GrXferProcessor { | 566 class PDLCDXferProcessor : public GrXferProcessor { |
468 public: | 567 public: |
469 static GrXferProcessor* Create(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend, | 568 static GrXferProcessor* Create(SkXfermode::Mode xfermode, const GrProcOptInf o& colorPOI); |
470 const GrProcOptInfo& colorPOI); | |
471 | 569 |
472 ~PDLCDXferProcessor() override; | 570 ~PDLCDXferProcessor() override; |
473 | 571 |
474 const char* name() const override { return "Porter Duff LCD"; } | 572 const char* name() const override { return "Porter Duff LCD"; } |
475 | 573 |
476 GrGLXferProcessor* createGLInstance() const override; | 574 GrGLXferProcessor* createGLInstance() const override; |
477 | 575 |
478 bool hasSecondaryOutput() const override { return false; } | 576 bool hasSecondaryOutput() const override { return false; } |
479 | 577 |
480 private: | 578 private: |
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
534 }; | 632 }; |
535 | 633 |
536 /////////////////////////////////////////////////////////////////////////////// | 634 /////////////////////////////////////////////////////////////////////////////// |
537 | 635 |
538 PDLCDXferProcessor::PDLCDXferProcessor(GrColor blendConstant, uint8_t alpha) | 636 PDLCDXferProcessor::PDLCDXferProcessor(GrColor blendConstant, uint8_t alpha) |
539 : fBlendConstant(blendConstant) | 637 : fBlendConstant(blendConstant) |
540 , fAlpha(alpha) { | 638 , fAlpha(alpha) { |
541 this->initClassID<PDLCDXferProcessor>(); | 639 this->initClassID<PDLCDXferProcessor>(); |
542 } | 640 } |
543 | 641 |
544 GrXferProcessor* PDLCDXferProcessor::Create(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend, | 642 GrXferProcessor* PDLCDXferProcessor::Create(SkXfermode::Mode xfermode, |
545 const GrProcOptInfo& colorPOI) { | 643 const GrProcOptInfo& colorPOI) { |
546 if (kOne_GrBlendCoeff != srcBlend || kISA_GrBlendCoeff != dstBlend) { | 644 if (SkXfermode::kSrcOver_Mode != xfermode) { |
547 return NULL; | 645 return NULL; |
548 } | 646 } |
549 | 647 |
550 if (kRGBA_GrColorComponentFlags != colorPOI.validFlags()) { | 648 if (kRGBA_GrColorComponentFlags != colorPOI.validFlags()) { |
551 return NULL; | 649 return NULL; |
552 } | 650 } |
553 | 651 |
554 GrColor blendConstant = GrUnPreMulColor(colorPOI.color()); | 652 GrColor blendConstant = GrUnPreMulColor(colorPOI.color()); |
555 uint8_t alpha = GrColorUnpackA(blendConstant); | 653 uint8_t alpha = GrColorUnpackA(blendConstant); |
556 blendConstant |= (0xff << GrColor_SHIFT_A); | 654 blendConstant |= (0xff << GrColor_SHIFT_A); |
(...skipping 21 matching lines...) Expand all Loading... | |
578 const GrCaps& caps) { | 676 const GrCaps& caps) { |
579 // We want to force our primary output to be alpha * Coverage, where alp ha is the alpha | 677 // We want to force our primary output to be alpha * Coverage, where alp ha is the alpha |
580 // value of the blend the constant. We should already have valid blend c oeff's if we are at | 678 // value of the blend the constant. We should already have valid blend c oeff's if we are at |
581 // a point where we have RGB coverage. We don't need any color stages si nce the known color | 679 // a point where we have RGB coverage. We don't need any color stages si nce the known color |
582 // output is already baked into the blendConstant. | 680 // output is already baked into the blendConstant. |
583 *overrideColor = GrColorPackRGBA(fAlpha, fAlpha, fAlpha, fAlpha); | 681 *overrideColor = GrColorPackRGBA(fAlpha, fAlpha, fAlpha, fAlpha); |
584 return GrXferProcessor::kOverrideColor_OptFlag; | 682 return GrXferProcessor::kOverrideColor_OptFlag; |
585 } | 683 } |
586 | 684 |
587 /////////////////////////////////////////////////////////////////////////////// | 685 /////////////////////////////////////////////////////////////////////////////// |
588 GrPorterDuffXPFactory::GrPorterDuffXPFactory(GrBlendCoeff src, GrBlendCoeff dst) | 686 |
589 : fSrcCoeff(src), fDstCoeff(dst) { | 687 GrPorterDuffXPFactory::GrPorterDuffXPFactory(SkXfermode::Mode xfermode) |
688 : fXfermode(xfermode) { | |
590 this->initClassID<GrPorterDuffXPFactory>(); | 689 this->initClassID<GrPorterDuffXPFactory>(); |
591 } | 690 } |
592 | 691 |
593 GrXPFactory* GrPorterDuffXPFactory::Create(SkXfermode::Mode mode) { | 692 GrXPFactory* GrPorterDuffXPFactory::Create(SkXfermode::Mode xfermode) { |
594 switch (mode) { | 693 static GrPorterDuffXPFactory gClearPDXPF(SkXfermode::kClear_Mode); |
595 case SkXfermode::kClear_Mode: { | 694 static GrPorterDuffXPFactory gSrcPDXPF(SkXfermode::kSrc_Mode); |
596 static GrPorterDuffXPFactory gClearPDXPF(kZero_GrBlendCoeff, kZero_G rBlendCoeff); | 695 static GrPorterDuffXPFactory gDstPDXPF(SkXfermode::kDst_Mode); |
597 return SkRef(&gClearPDXPF); | 696 static GrPorterDuffXPFactory gSrcOverPDXPF(SkXfermode::kSrcOver_Mode); |
598 break; | 697 static GrPorterDuffXPFactory gDstOverPDXPF(SkXfermode::kDstOver_Mode); |
599 } | 698 static GrPorterDuffXPFactory gSrcInPDXPF(SkXfermode::kSrcIn_Mode); |
600 case SkXfermode::kSrc_Mode: { | 699 static GrPorterDuffXPFactory gDstInPDXPF(SkXfermode::kDstIn_Mode); |
601 static GrPorterDuffXPFactory gSrcPDXPF(kOne_GrBlendCoeff, kZero_GrBl endCoeff); | 700 static GrPorterDuffXPFactory gSrcOutPDXPF(SkXfermode::kSrcOut_Mode); |
602 return SkRef(&gSrcPDXPF); | 701 static GrPorterDuffXPFactory gDstOutPDXPF(SkXfermode::kDstOut_Mode); |
603 break; | 702 static GrPorterDuffXPFactory gSrcATopPDXPF(SkXfermode::kSrcATop_Mode); |
604 } | 703 static GrPorterDuffXPFactory gDstATopPDXPF(SkXfermode::kDstATop_Mode); |
605 case SkXfermode::kDst_Mode: { | 704 static GrPorterDuffXPFactory gXorPDXPF(SkXfermode::kXor_Mode); |
606 static GrPorterDuffXPFactory gDstPDXPF(kZero_GrBlendCoeff, kOne_GrBl endCoeff); | 705 static GrPorterDuffXPFactory gPlusPDXPF(SkXfermode::kPlus_Mode); |
607 return SkRef(&gDstPDXPF); | 706 static GrPorterDuffXPFactory gModulatePDXPF(SkXfermode::kModulate_Mode); |
608 break; | 707 static GrPorterDuffXPFactory gScreenPDXPF(SkXfermode::kScreen_Mode); |
609 } | 708 |
610 case SkXfermode::kSrcOver_Mode: { | 709 static GrPorterDuffXPFactory* gFactories[] = { |
611 static GrPorterDuffXPFactory gSrcOverPDXPF(kOne_GrBlendCoeff, kISA_G rBlendCoeff); | 710 &gClearPDXPF, &gSrcPDXPF, &gDstPDXPF, &gSrcOverPDXPF, &gDstOverPDXPF, &g SrcInPDXPF, |
612 return SkRef(&gSrcOverPDXPF); | 711 &gDstInPDXPF, &gSrcOutPDXPF, &gDstOutPDXPF, &gSrcATopPDXPF, &gDstATopPDX PF, &gXorPDXPF, |
613 break; | 712 &gPlusPDXPF, &gModulatePDXPF, &gScreenPDXPF |
614 } | 713 }; |
615 case SkXfermode::kDstOver_Mode: { | 714 GR_STATIC_ASSERT(SK_ARRAY_COUNT(gFactories) == SkXfermode::kLastCoeffMode + 1); |
616 static GrPorterDuffXPFactory gDstOverPDXPF(kIDA_GrBlendCoeff, kOne_G rBlendCoeff); | 715 |
617 return SkRef(&gDstOverPDXPF); | 716 if (xfermode < 0 || xfermode > SkXfermode::kLastCoeffMode) { |
618 break; | 717 return NULL; |
619 } | |
620 case SkXfermode::kSrcIn_Mode: { | |
621 static GrPorterDuffXPFactory gSrcInPDXPF(kDA_GrBlendCoeff, kZero_GrB lendCoeff); | |
622 return SkRef(&gSrcInPDXPF); | |
623 break; | |
624 } | |
625 case SkXfermode::kDstIn_Mode: { | |
626 static GrPorterDuffXPFactory gDstInPDXPF(kZero_GrBlendCoeff, kSA_GrB lendCoeff); | |
627 return SkRef(&gDstInPDXPF); | |
628 break; | |
629 } | |
630 case SkXfermode::kSrcOut_Mode: { | |
631 static GrPorterDuffXPFactory gSrcOutPDXPF(kIDA_GrBlendCoeff, kZero_G rBlendCoeff); | |
632 return SkRef(&gSrcOutPDXPF); | |
633 break; | |
634 } | |
635 case SkXfermode::kDstOut_Mode: { | |
636 static GrPorterDuffXPFactory gDstOutPDXPF(kZero_GrBlendCoeff, kISA_G rBlendCoeff); | |
637 return SkRef(&gDstOutPDXPF); | |
638 break; | |
639 } | |
640 case SkXfermode::kSrcATop_Mode: { | |
641 static GrPorterDuffXPFactory gSrcATopPDXPF(kDA_GrBlendCoeff, kISA_Gr BlendCoeff); | |
642 return SkRef(&gSrcATopPDXPF); | |
643 break; | |
644 } | |
645 case SkXfermode::kDstATop_Mode: { | |
646 static GrPorterDuffXPFactory gDstATopPDXPF(kIDA_GrBlendCoeff, kSA_Gr BlendCoeff); | |
647 return SkRef(&gDstATopPDXPF); | |
648 break; | |
649 } | |
650 case SkXfermode::kXor_Mode: { | |
651 static GrPorterDuffXPFactory gXorPDXPF(kIDA_GrBlendCoeff, kISA_GrBle ndCoeff); | |
652 return SkRef(&gXorPDXPF); | |
653 break; | |
654 } | |
655 case SkXfermode::kPlus_Mode: { | |
656 static GrPorterDuffXPFactory gPlusPDXPF(kOne_GrBlendCoeff, kOne_GrBl endCoeff); | |
657 return SkRef(&gPlusPDXPF); | |
658 break; | |
659 } | |
660 case SkXfermode::kModulate_Mode: { | |
661 static GrPorterDuffXPFactory gModulatePDXPF(kZero_GrBlendCoeff, kSC_ GrBlendCoeff); | |
662 return SkRef(&gModulatePDXPF); | |
663 break; | |
664 } | |
665 case SkXfermode::kScreen_Mode: { | |
666 static GrPorterDuffXPFactory gScreenPDXPF(kOne_GrBlendCoeff, kISC_Gr BlendCoeff); | |
667 return SkRef(&gScreenPDXPF); | |
668 break; | |
669 } | |
670 default: | |
671 return NULL; | |
672 } | 718 } |
719 return SkRef(gFactories[xfermode]); | |
673 } | 720 } |
674 | 721 |
675 GrXferProcessor* | 722 GrXferProcessor* |
676 GrPorterDuffXPFactory::onCreateXferProcessor(const GrCaps& caps, | 723 GrPorterDuffXPFactory::onCreateXferProcessor(const GrCaps& caps, |
677 const GrProcOptInfo& colorPOI, | 724 const GrProcOptInfo& colorPOI, |
678 const GrProcOptInfo& covPOI, | 725 const GrProcOptInfo& covPOI, |
679 const GrDeviceCoordTexture* dstCopy ) const { | 726 const GrDeviceCoordTexture* dstCopy ) const { |
680 if (covPOI.isFourChannelOutput()) { | 727 if (covPOI.isFourChannelOutput()) { |
681 return PDLCDXferProcessor::Create(fSrcCoeff, fDstCoeff, colorPOI); | 728 return PDLCDXferProcessor::Create(fXfermode, colorPOI); |
682 } else { | 729 } else { |
683 return PorterDuffXferProcessor::Create(fSrcCoeff, fDstCoeff, 0, dstCopy, | 730 return PorterDuffXferProcessor::Create(fXfermode, dstCopy, |
684 this->willReadDstColor(caps, colo rPOI, covPOI)); | 731 this->willReadDstColor(caps, colo rPOI, covPOI)); |
685 } | 732 } |
686 } | 733 } |
687 | 734 |
688 bool GrPorterDuffXPFactory::supportsRGBCoverage(GrColor /*knownColor*/, | 735 bool GrPorterDuffXPFactory::supportsRGBCoverage(GrColor /*knownColor*/, |
689 uint32_t knownColorFlags) const { | 736 uint32_t knownColorFlags) const { |
690 if (kOne_GrBlendCoeff == fSrcCoeff && kISA_GrBlendCoeff == fDstCoeff && | 737 if (SkXfermode::kSrcOver_Mode == fXfermode && |
691 kRGBA_GrColorComponentFlags == knownColorFlags) { | 738 kRGBA_GrColorComponentFlags == knownColorFlags) { |
692 return true; | 739 return true; |
693 } | 740 } |
694 return false; | 741 return false; |
695 } | 742 } |
696 | 743 |
697 void GrPorterDuffXPFactory::getInvariantOutput(const GrProcOptInfo& colorPOI, | 744 void GrPorterDuffXPFactory::getInvariantOutput(const GrProcOptInfo& colorPOI, |
698 const GrProcOptInfo& coveragePOI, | 745 const GrProcOptInfo& coveragePOI, |
699 GrXPFactory::InvariantOutput* out put) const { | 746 GrXPFactory::InvariantOutput* out put) const { |
700 if (!coveragePOI.isSolidWhite()) { | 747 const BlendFormula& blendFormula = get_blend_formula(fXfermode, colorPOI, co veragePOI); |
748 | |
749 if (blendFormula.usesDstColor()) { | |
701 output->fWillBlendWithDst = true; | 750 output->fWillBlendWithDst = true; |
702 output->fBlendedColorFlags = 0; | 751 output->fBlendedColorFlags = kNone_GrColorComponentFlags; |
703 return; | 752 return; |
704 } | 753 } |
705 | 754 |
706 GrBlendCoeff srcCoeff = fSrcCoeff; | 755 SkASSERT(coveragePOI.isSolidWhite()); |
707 GrBlendCoeff dstCoeff = fDstCoeff; | 756 SkASSERT(kAdd_GrBlendEquation == blendFormula.fBlendEquation); |
708 | 757 |
709 // TODO: figure out to merge this simplify with other current optimization c ode paths and | 758 output->fWillBlendWithDst = false; |
710 // eventually remove from GrBlend | |
711 GrSimplifyBlend(&srcCoeff, &dstCoeff, colorPOI.color(), colorPOI.validFlags( ), | |
712 0, 0, 0); | |
713 | 759 |
714 if (GrBlendCoeffRefsDst(srcCoeff)) { | 760 switch (blendFormula.fSrcCoeff) { |
715 output->fWillBlendWithDst = true; | |
716 output->fBlendedColorFlags = 0; | |
717 return; | |
718 } | |
719 | |
720 if (kZero_GrBlendCoeff != dstCoeff) { | |
721 bool srcAIsOne = colorPOI.isOpaque(); | |
722 if (kISA_GrBlendCoeff != dstCoeff || !srcAIsOne) { | |
723 output->fWillBlendWithDst = true; | |
724 } | |
725 output->fBlendedColorFlags = 0; | |
726 return; | |
727 } | |
728 | |
729 switch (srcCoeff) { | |
730 case kZero_GrBlendCoeff: | 761 case kZero_GrBlendCoeff: |
731 output->fBlendedColor = 0; | 762 output->fBlendedColor = 0; |
732 output->fBlendedColorFlags = kRGBA_GrColorComponentFlags; | 763 output->fBlendedColorFlags = kRGBA_GrColorComponentFlags; |
733 break; | 764 return; |
734 | 765 |
735 case kOne_GrBlendCoeff: | 766 case kOne_GrBlendCoeff: |
736 output->fBlendedColor = colorPOI.color(); | 767 output->fBlendedColor = colorPOI.color(); |
737 output->fBlendedColorFlags = colorPOI.validFlags(); | 768 output->fBlendedColorFlags = colorPOI.validFlags(); |
738 break; | 769 return; |
739 | 770 |
740 // The src coeff should never refer to the src and if it refers to d st then opaque | 771 // TODO: update if we ever use const color. |
741 // should have been false. | |
742 case kSC_GrBlendCoeff: | |
743 case kISC_GrBlendCoeff: | |
744 case kDC_GrBlendCoeff: | |
745 case kIDC_GrBlendCoeff: | |
746 case kSA_GrBlendCoeff: | |
747 case kISA_GrBlendCoeff: | |
748 case kDA_GrBlendCoeff: | |
749 case kIDA_GrBlendCoeff: | |
750 default: | 772 default: |
751 SkFAIL("srcCoeff should not refer to src or dst."); | 773 output->fBlendedColorFlags = kNone_GrColorComponentFlags; |
752 break; | 774 return; |
753 | |
754 // TODO: update this once GrPaint actually has a const color. | |
755 case kConstC_GrBlendCoeff: | |
756 case kIConstC_GrBlendCoeff: | |
757 case kConstA_GrBlendCoeff: | |
758 case kIConstA_GrBlendCoeff: | |
759 output->fBlendedColorFlags = 0; | |
760 break; | |
761 } | 775 } |
762 | |
763 output->fWillBlendWithDst = false; | |
764 } | 776 } |
765 | 777 |
766 bool GrPorterDuffXPFactory::willReadDstColor(const GrCaps& caps, | 778 bool GrPorterDuffXPFactory::willReadDstColor(const GrCaps& caps, |
767 const GrProcOptInfo& colorPOI, | 779 const GrProcOptInfo& colorPOI, |
768 const GrProcOptInfo& coveragePOI) c onst { | 780 const GrProcOptInfo& coveragePOI) c onst { |
769 // We can always blend correctly if we have dual source blending. | 781 // Some formulas use dual source blending, so we fall back if it is required but not supported. |
770 if (caps.shaderCaps()->dualSourceBlendingSupport()) { | 782 return !caps.shaderCaps()->dualSourceBlendingSupport() && |
771 return false; | 783 get_blend_formula(fXfermode, colorPOI, coveragePOI).hasSecondaryOutpu t(); |
772 } | |
773 | |
774 if (can_tweak_alpha_for_coverage(fDstCoeff)) { | |
775 return false; | |
776 } | |
777 | |
778 bool srcAIsOne = colorPOI.isOpaque(); | |
779 | |
780 if (kZero_GrBlendCoeff == fDstCoeff) { | |
781 if (kZero_GrBlendCoeff == fSrcCoeff || srcAIsOne) { | |
782 return false; | |
783 } | |
784 } | |
785 | |
786 // Reduces to: coeffS * (Cov*S) + D | |
787 if (kSA_GrBlendCoeff == fDstCoeff && srcAIsOne) { | |
788 return false; | |
789 } | |
790 | |
791 // We can always blend correctly if we have solid coverage. | |
792 if (coveragePOI.isSolidWhite()) { | |
793 return false; | |
794 } | |
795 | |
796 return true; | |
797 } | 784 } |
798 | 785 |
799 GR_DEFINE_XP_FACTORY_TEST(GrPorterDuffXPFactory); | 786 GR_DEFINE_XP_FACTORY_TEST(GrPorterDuffXPFactory); |
800 | 787 |
801 GrXPFactory* GrPorterDuffXPFactory::TestCreate(SkRandom* random, | 788 GrXPFactory* GrPorterDuffXPFactory::TestCreate(SkRandom* random, |
802 GrContext*, | 789 GrContext*, |
803 const GrCaps&, | 790 const GrCaps&, |
804 GrTexture*[]) { | 791 GrTexture*[]) { |
805 SkXfermode::Mode mode = SkXfermode::Mode(random->nextULessThan(SkXfermode::k LastCoeffMode)); | 792 SkXfermode::Mode mode = SkXfermode::Mode(random->nextULessThan(SkXfermode::k LastCoeffMode)); |
806 return GrPorterDuffXPFactory::Create(mode); | 793 return GrPorterDuffXPFactory::Create(mode); |
807 } | 794 } |
808 | 795 |
796 void GrPorterDuffXPFactory::TestGetXPOutputTypes(const GrXferProcessor* xp, | |
797 int* outPrimary, | |
798 int* outSecondary) { | |
799 if (!!strcmp(xp->name(), "Porter Duff")) { | |
800 *outPrimary = *outSecondary = -1; | |
801 return; | |
802 } | |
803 BlendFormula blendFormula = static_cast<const PorterDuffXferProcessor*>(xp)- >getBlendFormula(); | |
804 *outPrimary = blendFormula.fPrimaryOutputType; | |
805 *outSecondary = blendFormula.fSecondaryOutputType; | |
806 } | |
807 | |
OLD | NEW |