OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "effects/GrPorterDuffXferProcessor.h" | 8 #include "effects/GrPorterDuffXferProcessor.h" |
9 | 9 |
10 #include "GrBlend.h" | 10 #include "GrBlend.h" |
11 #include "GrDrawTargetCaps.h" | 11 #include "GrDrawTargetCaps.h" |
12 #include "GrProcessor.h" | 12 #include "GrProcessor.h" |
13 #include "GrProcOptInfo.h" | 13 #include "GrProcOptInfo.h" |
14 #include "GrTypes.h" | 14 #include "GrTypes.h" |
15 #include "GrXferProcessor.h" | 15 #include "GrXferProcessor.h" |
16 #include "gl/GrGLXferProcessor.h" | 16 #include "gl/GrGLXferProcessor.h" |
17 #include "gl/builders/GrGLFragmentShaderBuilder.h" | 17 #include "gl/builders/GrGLFragmentShaderBuilder.h" |
18 #include "gl/builders/GrGLProgramBuilder.h" | 18 #include "gl/builders/GrGLProgramBuilder.h" |
19 | 19 |
20 static bool can_tweak_alpha_for_coverage(GrBlendCoeff dstCoeff) { | 20 /** |
21 /* | 21 * Wraps the shader outputs and HW blend state that comprise a Porter Duff blend mode with coverage. |
22 The fractional coverage is f. | 22 */ |
23 The src and dst coeffs are Cs and Cd. | 23 struct BlendFormula { |
24 The dst and src colors are S and D. | 24 public: |
25 We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the sou rce color's alpha | 25 /** |
26 we're replacing S with S'=fS. It's obvious that that first term will always be ok. The second | 26 * Values the shader can write to primary and secondary outputs. These must all be modulated by |
27 term can be rearranged as [1-(1-Cd)f]D. By substituting in the various poss ibilities for Cd we | 27 * coverage to support mixed samples. The XP will ignore the multiplies when not using coverage. |
28 find that only 1, ISA, and ISC produce the correct destination when applied to S' and D. | |
29 */ | 28 */ |
30 return kOne_GrBlendCoeff == dstCoeff || | 29 enum OutputType { |
31 kISA_GrBlendCoeff == dstCoeff || | 30 kNone_OutputType, //<! 0 |
32 kISC_GrBlendCoeff == dstCoeff; | 31 kCoverage_OutputType, //<! inputCoverage |
32 kModulate_OutputType, //<! inputColor * inputCoverage | |
33 kISAModulate_OutputType, //<! (1 - inputColor.a) * inputCoverage | |
34 kISCModulate_OutputType, //<! (1 - inputColor) * inputCoverage | |
35 | |
36 kLast_OutputType = kISCModulate_OutputType | |
37 }; | |
38 | |
39 enum Properties { | |
40 kModifiesDst_Property = 1, | |
41 kUsesDstColor_Property = 1 << 1, | |
42 kUsesGrPaintColor_Property = 1 << 2, | |
43 kCanTweakAlphaForCoverage_Property = 1 << 3, | |
44 | |
45 kLast_Property = kCanTweakAlphaForCoverage_Property | |
46 }; | |
47 | |
48 BlendFormula& operator =(const BlendFormula& other) { | |
49 fData = other.fData; | |
50 return *this; | |
51 } | |
52 | |
53 bool operator ==(const BlendFormula& other) const { | |
54 return fData == other.fData; | |
55 } | |
56 | |
57 bool hasSecondaryOutput() const { return kNone_OutputType != fSecondaryOutpu tType; } | |
58 bool modifiesDst() const { return fProps & kModifiesDst_Property; } | |
59 bool usesDstColor() const { return fProps & kUsesDstColor_Property; } | |
60 bool usesGrPaintColor() const { return fProps & kUsesGrPaintColor_Property; } | |
61 bool canTweakAlphaForCoverage() const { return fProps & kCanTweakAlphaForCov erage_Property; } | |
62 | |
63 /** | |
64 * Deduce the properties of a compile-time constant BlendFormula. | |
65 */ | |
66 template<OutputType PrimaryOut, OutputType SecondaryOut, | |
67 GrBlendEquation BlendEquation, GrBlendCoeff SrcCoeff, GrBlendCoeff DstCoeff> | |
68 struct get_properties : SkTIntegralConstant<Properties, static_cast<Properti es>( | |
69 | |
70 (GR_BLEND_MODIFIES_DST(BlendEquation, SrcCoeff, DstCoeff) ? | |
71 kModifiesDst_Property : 0) | | |
72 | |
73 (GR_BLEND_COEFFS_USE_DST_COLOR(SrcCoeff, DstCoeff) ? | |
74 kUsesDstColor_Property : 0) | | |
75 | |
76 ((PrimaryOut >= kModulate_OutputType && GR_BLEND_COEFFS_USE_SRC_COLOR(Sr cCoeff,DstCoeff)) || | |
77 (SecondaryOut >= kModulate_OutputType && GR_BLEND_COEFF_REFS_SRC2(DstCo eff)) ? | |
78 kUsesGrPaintColor_Property : 0) | // We assert later that SrcCoeff doesn't ref src2. | |
79 | |
80 (kModulate_OutputType == PrimaryOut && | |
81 kNone_OutputType == SecondaryOut && | |
82 GR_BLEND_CAN_TWEAK_ALPHA_FOR_COVERAGE(BlendEquation, SrcCoeff, DstCoeff ) ? | |
83 kCanTweakAlphaForCoverage_Property : 0))> { | |
84 | |
85 // The provided formula should already be optimized. | |
86 GR_STATIC_ASSERT((kNone_OutputType == PrimaryOut) == | |
87 !GR_BLEND_COEFFS_USE_SRC_COLOR(SrcCoeff, DstCoeff)); | |
88 GR_STATIC_ASSERT(!GR_BLEND_COEFF_REFS_SRC2(SrcCoeff)); | |
89 GR_STATIC_ASSERT((kNone_OutputType == SecondaryOut) == | |
90 !GR_BLEND_COEFF_REFS_SRC2(DstCoeff)); | |
91 GR_STATIC_ASSERT(PrimaryOut != SecondaryOut || kNone_OutputType == Prima ryOut); | |
92 GR_STATIC_ASSERT(kNone_OutputType != PrimaryOut || kNone_OutputType == S econdaryOut); | |
93 }; | |
94 | |
95 union { | |
96 struct { | |
97 OutputType fPrimaryOutputType : 3; | |
98 OutputType fSecondaryOutputType : 3; | |
99 GrBlendEquation fBlendEquation : 5; | |
100 GrBlendCoeff fSrcCoeff : 5; | |
101 GrBlendCoeff fDstCoeff : 5; | |
102 Properties fProps : (32 - 3 - 3 - 5 - 5 - 5); | |
103 }; | |
104 uint32_t fData; | |
105 }; | |
106 }; | |
107 | |
108 GR_STATIC_ASSERT(4 == sizeof(BlendFormula)); | |
109 | |
110 GR_MAKE_BITFIELD_OPS(BlendFormula::Properties); | |
111 | |
112 /** | |
113 * Initialize a compile-time constant BlendFormula and automatically deduce fPro ps. | |
114 */ | |
115 #define INIT_BLEND_FORMULA(PRIMARY_OUT, SECONDARY_OUT, BLEND_EQUATION, SRC_COEFF , DST_COEFF) \ | |
116 {PRIMARY_OUT, \ | |
117 SECONDARY_OUT, \ | |
118 BLEND_EQUATION, SRC_COEFF, DST_COEFF, \ | |
119 BlendFormula::get_properties<PRIMARY_OUT, SECONDARY_OUT, \ | |
120 BLEND_EQUATION, SRC_COEFF, DST_COEFF>::value} | |
121 | |
122 /** | |
123 * When there is no coverage, or the blend mode can tweak alpha for coverage, we use the standard | |
124 * Porter Duff formula. | |
125 */ | |
126 #define COEFF_FORMULA(SRC_COEFF, DST_COEFF) \ | |
127 INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ | |
128 BlendFormula::kNone_OutputType, \ | |
129 kAdd_GrBlendEquation, SRC_COEFF, DST_COEFF) | |
130 | |
131 /** | |
132 * When the coeffs are (Zero, Zero), we clear the dst. This formula has its own macro so we can set | |
133 * the primary output type to none. | |
Chris Dalton
2015/05/19 21:47:13
<copying this comment from before so it doesn't ge
| |
134 * | |
135 * Xfer modes: clear, dst-out (Sa=1) | |
136 */ | |
137 #define DST_CLEAR_FORMULA \ | |
138 INIT_BLEND_FORMULA(BlendFormula::kNone_OutputType, \ | |
139 BlendFormula::kNone_OutputType, \ | |
140 kAdd_GrBlendEquation, kZero_GrBlendCoeff, kZero_GrBlendCo eff) | |
141 | |
142 /** | |
143 * When the coeffs are (Zero, One), we don't write to the dst at all. This formu la has its own macro | |
144 * so we can set the primary output type to none. | |
145 * | |
146 * Xfer modes: dst, dst-in (Sa=1), modulate (Sc=1) | |
147 */ | |
148 #define NO_DST_WRITE_FORMULA \ | |
149 INIT_BLEND_FORMULA(BlendFormula::kNone_OutputType, \ | |
150 BlendFormula::kNone_OutputType, \ | |
151 kAdd_GrBlendEquation, kZero_GrBlendCoeff, kOne_GrBlendCoe ff) | |
152 | |
153 /** | |
154 * When there is coverage, the equation with f=coverage is: | |
155 * | |
156 * D' = f * (S * srcCoeff + D * dstCoeff) + (1-f) * D | |
157 * | |
158 * This can be rewritten as: | |
159 * | |
160 * D' = f * S * srcCoeff + D * (1 - [f * (1 - dstCoeff)]) | |
161 * | |
162 * To implement this formula, we output [f * (1 - dstCoeff)] for the secondary c olor and replace the | |
163 * HW dst coeff with IS2C. | |
164 * | |
165 * Xfer modes: dst-atop (Sa!=1) | |
166 */ | |
167 #define COVERAGE_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, SRC_COEFF) \ | |
168 INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ | |
169 ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, \ | |
170 kAdd_GrBlendEquation, SRC_COEFF, kIS2C_GrBlendCoeff) | |
171 | |
172 /** | |
173 * When there is coverage and the src coeff is Zero, the equation with f=coverag e becomes: | |
174 * | |
175 * D' = f * D * dstCoeff + (1-f) * D | |
176 * | |
177 * This can be rewritten as: | |
178 * | |
179 * D' = D - D * [f * (1 - dstCoeff)] | |
180 * | |
181 * To implement this formula, we output [f * (1 - dstCoeff)] for the primary col or and use a reverse | |
182 * subtract HW blend equation with coeffs of (DC, One). | |
183 * | |
184 * Xfer modes: clear, dst-in (Sa!=1), modulate (Sc!=1) | |
185 */ | |
186 #define COVERAGE_SRC_COEFF_ZERO_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT) \ | |
187 INIT_BLEND_FORMULA(ONE_MINUS_DST_COEFF_MODULATE_OUTPUT, \ | |
188 BlendFormula::kNone_OutputType, \ | |
189 kReverseSubtract_GrBlendEquation, kDC_GrBlendCoeff, kOne_ GrBlendCoeff) | |
190 | |
191 /** | |
192 * When there is coverage and the dst coeff is Zero, the equation with f=coverag e becomes: | |
193 * | |
194 * D' = f * S * srcCoeff + (1-f) * D | |
195 * | |
196 * To implement this formula, we output [f] for the secondary color and replace the HW dst coeff | |
197 * with IS2A. (Note that we can avoid dual source blending when Sa=1 by using IS A.) | |
198 * | |
199 * Xfer modes (Sa!=1): src, src-in, src-out | |
200 */ | |
201 #define COVERAGE_DST_COEFF_ZERO_FORMULA(SRC_COEFF) \ | |
202 INIT_BLEND_FORMULA(BlendFormula::kModulate_OutputType, \ | |
203 BlendFormula::kCoverage_OutputType, \ | |
204 kAdd_GrBlendEquation, SRC_COEFF, kIS2A_GrBlendCoeff) | |
205 | |
206 /** | |
207 * This table outlines the blend formulas we use with all combinations of color, coverage, and | |
208 * Xfermode. Optimization flags are deduced at compile so there is no need for r un-time analysis. | |
209 * RGB coverage is not supported. Each entry is 32 bits so the entire table only takes up 360 bytes. | |
210 */ | |
211 static const BlendFormula gBlendTable[3][2][SkXfermode::kLastCoeffMode + 1] = { | |
212 | |
213 /*>> Has coverage, input color unknown: <<*/ {{ | |
214 | |
215 /* clear */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_Out putType), | |
216 /* src */ COVERAGE_DST_COEFF_ZERO_FORMULA(kOne_GrBlendCoeff), | |
217 /* dst */ NO_DST_WRITE_FORMULA, | |
218 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
219 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
220 /* src-in */ COVERAGE_DST_COEFF_ZERO_FORMULA(kDA_GrBlendCoeff), | |
221 /* dst-in */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISAModulate_ OutputType), | |
222 /* src-out */ COVERAGE_DST_COEFF_ZERO_FORMULA(kIDA_GrBlendCoeff), | |
223 /* dst-out */ COEFF_FORMULA( kZero_GrBlendCoeff, kISA_GrBlendCoeff), | |
224 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
225 /* dst-atop */ COVERAGE_FORMULA(BlendFormula::kISAModulate_OutputType, kID A_GrBlendCoeff), | |
226 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
227 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
228 /* modulate */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_ OutputType), | |
229 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
230 | |
231 }, /*>> No coverage, input color unknown: <<*/ { | |
232 | |
233 /* clear */ DST_CLEAR_FORMULA, | |
234 /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
235 /* dst */ NO_DST_WRITE_FORMULA, | |
236 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
237 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
238 /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
239 /* dst-in */ COEFF_FORMULA( kZero_GrBlendCoeff, kSA_GrBlendCoeff), | |
240 /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
241 /* dst-out */ COEFF_FORMULA( kZero_GrBlendCoeff, kISA_GrBlendCoeff), | |
242 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
243 /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kSA_GrBlendCoeff), | |
244 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
245 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
246 /* modulate */ COEFF_FORMULA( kZero_GrBlendCoeff, kSC_GrBlendCoeff), | |
247 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
248 | |
249 }}, /*>> Has coverage, input color opaque: <<*/ {{ | |
250 | |
251 /* clear */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_Out putType), | |
252 /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
253 /* dst */ NO_DST_WRITE_FORMULA, | |
254 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
255 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
256 /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
257 /* dst-in */ NO_DST_WRITE_FORMULA, | |
258 /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
259 /* dst-out */ COEFF_FORMULA( kZero_GrBlendCoeff, kISA_GrBlendCoeff), | |
260 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
261 /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
262 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
263 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
264 /* modulate */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kISCModulate_ OutputType), | |
265 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
266 | |
267 }, /*>> No coverage, input color opaque: <<*/ { | |
268 | |
269 /* clear */ DST_CLEAR_FORMULA, | |
270 /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
271 /* dst */ NO_DST_WRITE_FORMULA, | |
272 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
273 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
274 /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
275 /* dst-in */ NO_DST_WRITE_FORMULA, | |
276 /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
277 /* dst-out */ DST_CLEAR_FORMULA, | |
278 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
279 /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
280 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
281 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
282 /* modulate */ COEFF_FORMULA( kZero_GrBlendCoeff, kSC_GrBlendCoeff), | |
283 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
284 | |
285 }}, /*>> Has coverage, input solid white: <<*/ {{ | |
286 | |
287 /* clear */ COVERAGE_SRC_COEFF_ZERO_FORMULA(BlendFormula::kCoverage_Out putType), | |
288 /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
289 /* dst */ NO_DST_WRITE_FORMULA, | |
290 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kISA_GrBlendCoeff), | |
291 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
292 /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
293 /* dst-in */ NO_DST_WRITE_FORMULA, | |
294 /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
295 /* dst-out */ COEFF_FORMULA( kZero_GrBlendCoeff, kISA_GrBlendCoeff), | |
296 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
297 /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
298 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kISA_GrBlendCoeff), | |
299 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
300 /* modulate */ NO_DST_WRITE_FORMULA, | |
301 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kISC_GrBlendCoeff), | |
302 | |
303 }, /*>> No coverage, input solid white: <<*/ { | |
304 | |
305 /* clear */ DST_CLEAR_FORMULA, | |
306 /* src */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
307 /* dst */ NO_DST_WRITE_FORMULA, | |
308 /* src-over */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
309 /* dst-over */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
310 /* src-in */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
311 /* dst-in */ NO_DST_WRITE_FORMULA, | |
312 /* src-out */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
313 /* dst-out */ DST_CLEAR_FORMULA, | |
314 /* src-atop */ COEFF_FORMULA( kDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
315 /* dst-atop */ COEFF_FORMULA( kIDA_GrBlendCoeff, kOne_GrBlendCoeff), | |
316 /* xor */ COEFF_FORMULA( kIDA_GrBlendCoeff, kZero_GrBlendCoeff), | |
317 /* plus */ COEFF_FORMULA( kOne_GrBlendCoeff, kOne_GrBlendCoeff), | |
318 /* modulate */ NO_DST_WRITE_FORMULA, | |
319 /* screen */ COEFF_FORMULA( kOne_GrBlendCoeff, kZero_GrBlendCoeff), | |
320 }}}; | |
321 | |
322 static BlendFormula get_unoptimized_blend_formula(SkXfermode::Mode xfermode) { | |
323 SkASSERT(xfermode >= 0 && xfermode <= SkXfermode::kLastCoeffMode); | |
324 return gBlendTable[0][0][xfermode]; | |
33 } | 325 } |
34 | 326 |
327 static BlendFormula get_blend_formula(SkXfermode::Mode xfermode, | |
328 const GrProcOptInfo& colorPOI, | |
329 const GrProcOptInfo& coveragePOI) { | |
330 SkASSERT(xfermode >= 0 && xfermode <= SkXfermode::kLastCoeffMode); | |
331 SkASSERT(!colorPOI.isSolidWhite() || colorPOI.isOpaque()); | |
332 SkASSERT(!coveragePOI.isFourChannelOutput()); | |
333 | |
334 // colorTraits: 0 - unknown, 1 - opaque, 2 - solid white. | |
335 int colorTraits = colorPOI.isOpaque() + colorPOI.isSolidWhite(); | |
336 bool fullCoverage = coveragePOI.isSolidWhite(); | |
337 return gBlendTable[colorTraits][fullCoverage][xfermode]; | |
338 } | |
339 | |
340 GR_STATIC_ASSERT(0 == SkXfermode::kClear_Mode); | |
341 GR_STATIC_ASSERT(1 == SkXfermode::kSrc_Mode); | |
342 GR_STATIC_ASSERT(2 == SkXfermode::kDst_Mode); | |
343 GR_STATIC_ASSERT(3 == SkXfermode::kSrcOver_Mode); | |
344 GR_STATIC_ASSERT(4 == SkXfermode::kDstOver_Mode); | |
345 GR_STATIC_ASSERT(5 == SkXfermode::kSrcIn_Mode); | |
346 GR_STATIC_ASSERT(6 == SkXfermode::kDstIn_Mode); | |
347 GR_STATIC_ASSERT(7 == SkXfermode::kSrcOut_Mode); | |
348 GR_STATIC_ASSERT(8 == SkXfermode::kDstOut_Mode); | |
349 GR_STATIC_ASSERT(9 == SkXfermode::kSrcATop_Mode); | |
350 GR_STATIC_ASSERT(10 == SkXfermode::kDstATop_Mode); | |
351 GR_STATIC_ASSERT(11 == SkXfermode::kXor_Mode); | |
352 GR_STATIC_ASSERT(12 == SkXfermode::kPlus_Mode); | |
353 GR_STATIC_ASSERT(13 == SkXfermode::kModulate_Mode); | |
354 GR_STATIC_ASSERT(14 == SkXfermode::kScreen_Mode); | |
355 GR_STATIC_ASSERT(15 * 2 * 3 * sizeof(BlendFormula) == sizeof(gBlendTable)); | |
356 | |
357 /////////////////////////////////////////////////////////////////////////////// | |
358 | |
35 class PorterDuffXferProcessor : public GrXferProcessor { | 359 class PorterDuffXferProcessor : public GrXferProcessor { |
36 public: | 360 public: |
37 static GrXferProcessor* Create(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend, | 361 static GrXferProcessor* Create(SkXfermode::Mode xfermode, const GrDeviceCoor dTexture* dstCopy, |
38 GrColor constant, const GrDeviceCoordTexture* dstCopy, | |
39 bool willReadDstColor) { | 362 bool willReadDstColor) { |
40 return SkNEW_ARGS(PorterDuffXferProcessor, (srcBlend, dstBlend, constant , dstCopy, | 363 return SkNEW_ARGS(PorterDuffXferProcessor, (xfermode, dstCopy, willReadD stColor)); |
41 willReadDstColor)); | |
42 } | 364 } |
43 | 365 |
44 ~PorterDuffXferProcessor() override; | 366 ~PorterDuffXferProcessor() override; |
45 | 367 |
46 const char* name() const override { return "Porter Duff"; } | 368 const char* name() const override { return "Porter Duff"; } |
47 | 369 |
48 GrGLXferProcessor* createGLInstance() const override; | 370 GrGLXferProcessor* createGLInstance() const override; |
49 | 371 |
50 bool hasSecondaryOutput() const override; | 372 bool hasSecondaryOutput() const override { |
373 return fBlendFormula.hasSecondaryOutput(); | |
374 } | |
51 | 375 |
52 /////////////////////////////////////////////////////////////////////////// | 376 SkXfermode::Mode getXfermode() const { return fXfermode; } |
53 /// @name Stage Output Types | 377 BlendFormula getBlendFormula() const { return fBlendFormula; } |
54 //// | |
55 | |
56 enum PrimaryOutputType { | |
57 kNone_PrimaryOutputType, | |
58 kColor_PrimaryOutputType, | |
59 kCoverage_PrimaryOutputType, | |
60 // Modulate color and coverage, write result as the color output. | |
61 kModulate_PrimaryOutputType, | |
62 // Custom Porter-Duff output, used for when we explictly are reading the dst and blending | |
63 // in the shader. Secondary Output must be none if you use this. The cus tom blend uses the | |
64 // equation: cov * (coeffS * S + coeffD * D) + (1 - cov) * D | |
65 kCustom_PrimaryOutputType | |
66 }; | |
67 | |
68 enum SecondaryOutputType { | |
69 // There is no secondary output | |
70 kNone_SecondaryOutputType, | |
71 // Writes coverage as the secondary output. Only set if dual source blen ding is supported | |
72 // and primary output is kModulate. | |
73 kCoverage_SecondaryOutputType, | |
74 // Writes coverage * (1 - colorA) as the secondary output. Only set if d ual source blending | |
75 // is supported and primary output is kModulate. | |
76 kCoverageISA_SecondaryOutputType, | |
77 // Writes coverage * (1 - colorRGBA) as the secondary output. Only set i f dual source | |
78 // blending is supported and primary output is kModulate. | |
79 kCoverageISC_SecondaryOutputType, | |
80 | |
81 kSecondaryOutputTypeCnt, | |
82 }; | |
83 | |
84 PrimaryOutputType primaryOutputType() const { return fPrimaryOutputType; } | |
85 SecondaryOutputType secondaryOutputType() const { return fSecondaryOutputTyp e; } | |
86 | |
87 GrBlendCoeff getSrcBlend() const { return fSrcBlend; } | |
88 GrBlendCoeff getDstBlend() const { return fDstBlend; } | |
89 | 378 |
90 private: | 379 private: |
91 PorterDuffXferProcessor(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend, GrColo r constant, | 380 PorterDuffXferProcessor(SkXfermode::Mode, const GrDeviceCoordTexture* dstCop y, |
92 const GrDeviceCoordTexture* dstCopy, bool willReadDs tColor); | 381 bool willReadDstColor); |
93 | 382 |
94 GrXferProcessor::OptFlags onGetOptimizations(const GrProcOptInfo& colorPOI, | 383 GrXferProcessor::OptFlags onGetOptimizations(const GrProcOptInfo& colorPOI, |
95 const GrProcOptInfo& coveragePO I, | 384 const GrProcOptInfo& coveragePO I, |
96 bool doesStencilWrite, | 385 bool doesStencilWrite, |
97 GrColor* overrideColor, | 386 GrColor* overrideColor, |
98 const GrCaps& caps) override; | 387 const GrCaps& caps) override; |
99 | 388 |
100 void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) c onst override; | 389 void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) c onst override; |
101 | 390 |
102 void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override { | 391 void onGetBlendInfo(GrXferProcessor::BlendInfo* blendInfo) const override { |
103 if (!this->willReadDstColor()) { | 392 if (!this->willReadDstColor()) { |
104 blendInfo->fSrcBlend = fSrcBlend; | 393 blendInfo->fEquation = fBlendFormula.fBlendEquation; |
105 blendInfo->fDstBlend = fDstBlend; | 394 blendInfo->fSrcBlend = fBlendFormula.fSrcCoeff; |
106 } else { | 395 blendInfo->fDstBlend = fBlendFormula.fDstCoeff; |
107 blendInfo->fSrcBlend = kOne_GrBlendCoeff; | 396 blendInfo->fWriteColor = fBlendFormula.modifiesDst(); |
108 blendInfo->fDstBlend = kZero_GrBlendCoeff; | |
109 } | 397 } |
110 blendInfo->fBlendConstant = fBlendConstant; | |
111 } | 398 } |
112 | 399 |
113 bool onIsEqual(const GrXferProcessor& xpBase) const override { | 400 bool onIsEqual(const GrXferProcessor& xpBase) const override { |
114 const PorterDuffXferProcessor& xp = xpBase.cast<PorterDuffXferProcessor> (); | 401 const PorterDuffXferProcessor& xp = xpBase.cast<PorterDuffXferProcessor> (); |
115 if (fSrcBlend != xp.fSrcBlend || | 402 return fXfermode == xp.fXfermode && |
116 fDstBlend != xp.fDstBlend || | 403 fBlendFormula == xp.fBlendFormula; |
117 fBlendConstant != xp.fBlendConstant || | |
118 fPrimaryOutputType != xp.fPrimaryOutputType || | |
119 fSecondaryOutputType != xp.fSecondaryOutputType) { | |
120 return false; | |
121 } | |
122 return true; | |
123 } | 404 } |
124 | 405 |
125 GrXferProcessor::OptFlags internalGetOptimizations(const GrProcOptInfo& colo rPOI, | 406 SkXfermode::Mode fXfermode; |
126 const GrProcOptInfo& cove ragePOI, | 407 BlendFormula fBlendFormula; |
127 bool doesStencilWrite); | |
128 | |
129 void calcOutputTypes(GrXferProcessor::OptFlags blendOpts, const GrCaps& caps , | |
130 bool hasSolidCoverage); | |
131 | |
132 GrBlendCoeff fSrcBlend; | |
133 GrBlendCoeff fDstBlend; | |
134 GrColor fBlendConstant; | |
135 PrimaryOutputType fPrimaryOutputType; | |
136 SecondaryOutputType fSecondaryOutputType; | |
137 | 408 |
138 typedef GrXferProcessor INHERITED; | 409 typedef GrXferProcessor INHERITED; |
139 }; | 410 }; |
140 | 411 |
141 /////////////////////////////////////////////////////////////////////////////// | 412 /////////////////////////////////////////////////////////////////////////////// |
142 | 413 |
143 bool append_porterduff_term(GrGLXPFragmentBuilder* fsBuilder, GrBlendCoeff coeff , | 414 void append_color_output(const PorterDuffXferProcessor& xp, GrGLXPFragmentBuilde r* fsBuilder, |
415 BlendFormula::OutputType outputType, const char* output , | |
416 const char* inColor, const char* inCoverage) { | |
417 switch (outputType) { | |
418 case BlendFormula::kNone_OutputType: | |
419 fsBuilder->codeAppendf("%s = vec4(0.0);", output); | |
420 break; | |
421 case BlendFormula::kCoverage_OutputType: | |
422 fsBuilder->codeAppendf("%s = %s;", | |
423 output, xp.readsCoverage() ? inCoverage : "ve c4(1.0)"); | |
424 break; | |
425 case BlendFormula::kModulate_OutputType: | |
426 if (xp.readsCoverage()) { | |
427 fsBuilder->codeAppendf("%s = %s * %s;", output, inColor, inCover age); | |
428 } else { | |
429 fsBuilder->codeAppendf("%s = %s;", output, inColor); | |
430 } | |
431 break; | |
432 case BlendFormula::kISAModulate_OutputType: | |
433 if (xp.readsCoverage()) { | |
434 fsBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", output, inColo r, inCoverage); | |
435 } else { | |
436 fsBuilder->codeAppendf("%s = vec4(1.0 - %s.a);", output, inColor ); | |
437 } | |
438 break; | |
439 case BlendFormula::kISCModulate_OutputType: | |
440 if (xp.readsCoverage()) { | |
441 fsBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;", output, in Color, inCoverage); | |
442 } else { | |
443 fsBuilder->codeAppendf("%s = vec4(1.0) - %s;", output, inColor); | |
444 } | |
445 break; | |
446 default: | |
447 SkFAIL("Unsupported output type."); | |
448 break; | |
449 } | |
450 } | |
451 | |
452 bool append_porterduff_term(GrGLXPFragmentBuilder* fsBuilder, SkXfermode::Coeff coeff, | |
144 const char* colorName, const char* srcColorName, | 453 const char* colorName, const char* srcColorName, |
145 const char* dstColorName, bool hasPrevious) { | 454 const char* dstColorName, bool hasPrevious) { |
146 if (kZero_GrBlendCoeff == coeff) { | 455 if (SkXfermode::kZero_Coeff == coeff) { |
147 return hasPrevious; | 456 return hasPrevious; |
148 } else { | 457 } else { |
149 if (hasPrevious) { | 458 if (hasPrevious) { |
150 fsBuilder->codeAppend(" + "); | 459 fsBuilder->codeAppend(" + "); |
151 } | 460 } |
152 fsBuilder->codeAppendf("%s", colorName); | 461 fsBuilder->codeAppendf("%s", colorName); |
153 switch (coeff) { | 462 switch (coeff) { |
154 case kOne_GrBlendCoeff: | 463 case SkXfermode::kOne_Coeff: |
155 break; | 464 break; |
156 case kSC_GrBlendCoeff: | 465 case SkXfermode::kSC_Coeff: |
157 fsBuilder->codeAppendf(" * %s", srcColorName); | 466 fsBuilder->codeAppendf(" * %s", srcColorName); |
158 break; | 467 break; |
159 case kISC_GrBlendCoeff: | 468 case SkXfermode::kISC_Coeff: |
160 fsBuilder->codeAppendf(" * (vec4(1.0) - %s)", srcColorName); | 469 fsBuilder->codeAppendf(" * (vec4(1.0) - %s)", srcColorName); |
161 break; | 470 break; |
162 case kDC_GrBlendCoeff: | 471 case SkXfermode::kDC_Coeff: |
163 fsBuilder->codeAppendf(" * %s", dstColorName); | 472 fsBuilder->codeAppendf(" * %s", dstColorName); |
164 break; | 473 break; |
165 case kIDC_GrBlendCoeff: | 474 case SkXfermode::kIDC_Coeff: |
166 fsBuilder->codeAppendf(" * (vec4(1.0) - %s)", dstColorName); | 475 fsBuilder->codeAppendf(" * (vec4(1.0) - %s)", dstColorName); |
167 break; | 476 break; |
168 case kSA_GrBlendCoeff: | 477 case SkXfermode::kSA_Coeff: |
169 fsBuilder->codeAppendf(" * %s.a", srcColorName); | 478 fsBuilder->codeAppendf(" * %s.a", srcColorName); |
170 break; | 479 break; |
171 case kISA_GrBlendCoeff: | 480 case SkXfermode::kISA_Coeff: |
172 fsBuilder->codeAppendf(" * (1.0 - %s.a)", srcColorName); | 481 fsBuilder->codeAppendf(" * (1.0 - %s.a)", srcColorName); |
173 break; | 482 break; |
174 case kDA_GrBlendCoeff: | 483 case SkXfermode::kDA_Coeff: |
175 fsBuilder->codeAppendf(" * %s.a", dstColorName); | 484 fsBuilder->codeAppendf(" * %s.a", dstColorName); |
176 break; | 485 break; |
177 case kIDA_GrBlendCoeff: | 486 case SkXfermode::kIDA_Coeff: |
178 fsBuilder->codeAppendf(" * (1.0 - %s.a)", dstColorName); | 487 fsBuilder->codeAppendf(" * (1.0 - %s.a)", dstColorName); |
179 break; | 488 break; |
180 default: | 489 default: |
181 SkFAIL("Unsupported Blend Coeff"); | 490 SkFAIL("Unsupported Blend Coeff"); |
182 } | 491 } |
183 return true; | 492 return true; |
184 } | 493 } |
185 } | 494 } |
186 | 495 |
187 class GLPorterDuffXferProcessor : public GrGLXferProcessor { | 496 class GLPorterDuffXferProcessor : public GrGLXferProcessor { |
188 public: | 497 public: |
189 GLPorterDuffXferProcessor(const GrProcessor&) {} | 498 GLPorterDuffXferProcessor(const GrProcessor&) {} |
190 | 499 |
191 virtual ~GLPorterDuffXferProcessor() {} | 500 virtual ~GLPorterDuffXferProcessor() {} |
192 | 501 |
193 static void GenKey(const GrProcessor& processor, const GrGLSLCaps& caps, | 502 static void GenKey(const GrProcessor& processor, const GrGLSLCaps& caps, |
194 GrProcessorKeyBuilder* b) { | 503 GrProcessorKeyBuilder* b) { |
195 const PorterDuffXferProcessor& xp = processor.cast<PorterDuffXferProcess or>(); | 504 const PorterDuffXferProcessor& xp = processor.cast<PorterDuffXferProcess or>(); |
196 b->add32(xp.primaryOutputType()); | |
197 b->add32(xp.secondaryOutputType()); | |
198 if (xp.willReadDstColor()) { | 505 if (xp.willReadDstColor()) { |
199 b->add32(xp.getSrcBlend()); | 506 b->add32(xp.getXfermode()); // Parent class includes willReadDstCol or() in key. |
200 b->add32(xp.getDstBlend()); | 507 } else { |
508 GR_STATIC_ASSERT(BlendFormula::kLast_OutputType < 8); | |
509 b->add32(xp.readsCoverage() | | |
510 (xp.getBlendFormula().fPrimaryOutputType << 1) | | |
511 (xp.getBlendFormula().fSecondaryOutputType << 4)); | |
201 } | 512 } |
202 }; | 513 }; |
203 | 514 |
204 private: | 515 private: |
205 void onEmitCode(const EmitArgs& args) override { | 516 void onEmitCode(const EmitArgs& args) override { |
206 const PorterDuffXferProcessor& xp = args.fXP.cast<PorterDuffXferProcesso r>(); | 517 const PorterDuffXferProcessor& xp = args.fXP.cast<PorterDuffXferProcesso r>(); |
207 GrGLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); | 518 GrGLXPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
208 if (PorterDuffXferProcessor::kCustom_PrimaryOutputType != xp.primaryOutp utType()) { | 519 if (!xp.willReadDstColor()) { |
209 SkASSERT(!xp.willReadDstColor()); | 520 BlendFormula blendFormula = xp.getBlendFormula(); |
210 switch(xp.secondaryOutputType()) { | 521 if (blendFormula.hasSecondaryOutput()) { |
211 case PorterDuffXferProcessor::kNone_SecondaryOutputType: | 522 append_color_output(xp, fsBuilder, blendFormula.fSecondaryOutput Type, |
212 break; | 523 args.fOutputSecondary, args.fInputColor, arg s.fInputCoverage); |
213 case PorterDuffXferProcessor::kCoverage_SecondaryOutputType: | |
214 fsBuilder->codeAppendf("%s = %s;", args.fOutputSecondary, | |
215 args.fInputCoverage); | |
216 break; | |
217 case PorterDuffXferProcessor::kCoverageISA_SecondaryOutputType: | |
218 fsBuilder->codeAppendf("%s = (1.0 - %s.a) * %s;", | |
219 args.fOutputSecondary, args.fInputCol or, | |
220 args.fInputCoverage); | |
221 break; | |
222 case PorterDuffXferProcessor::kCoverageISC_SecondaryOutputType: | |
223 fsBuilder->codeAppendf("%s = (vec4(1.0) - %s) * %s;", | |
224 args.fOutputSecondary, args.fInputCol or, | |
225 args.fInputCoverage); | |
226 break; | |
227 default: | |
228 SkFAIL("Unexpected Secondary Output"); | |
229 } | 524 } |
230 | 525 append_color_output(xp, fsBuilder, blendFormula.fPrimaryOutputType, |
231 switch (xp.primaryOutputType()) { | 526 args.fOutputPrimary, args.fInputColor, args.fInp utCoverage); |
232 case PorterDuffXferProcessor::kNone_PrimaryOutputType: | |
233 fsBuilder->codeAppendf("%s = vec4(0);", args.fOutputPrimary) ; | |
234 break; | |
235 case PorterDuffXferProcessor::kColor_PrimaryOutputType: | |
236 fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args .fInputColor); | |
237 break; | |
238 case PorterDuffXferProcessor::kCoverage_PrimaryOutputType: | |
239 fsBuilder->codeAppendf("%s = %s;", args.fOutputPrimary, args .fInputCoverage); | |
240 break; | |
241 case PorterDuffXferProcessor::kModulate_PrimaryOutputType: | |
242 fsBuilder->codeAppendf("%s = %s * %s;", args.fOutputPrimary, args.fInputColor, | |
243 args.fInputCoverage); | |
244 break; | |
245 default: | |
246 SkFAIL("Unexpected Primary Output"); | |
247 } | |
248 } else { | 527 } else { |
249 SkASSERT(xp.willReadDstColor()); | 528 SkASSERT(xp.willReadDstColor()); |
250 | 529 |
530 SkXfermode::Coeff srcCoeff, dstCoeff; | |
531 SkXfermode::ModeAsCoeff(xp.getXfermode(), &srcCoeff, &dstCoeff); | |
532 | |
251 const char* dstColor = fsBuilder->dstColor(); | 533 const char* dstColor = fsBuilder->dstColor(); |
252 | 534 |
253 fsBuilder->codeAppend("vec4 colorBlend ="); | 535 fsBuilder->codeAppend("vec4 colorBlend ="); |
254 // append src blend | 536 // append src blend |
255 bool didAppend = append_porterduff_term(fsBuilder, xp.getSrcBlend(), | 537 bool didAppend = append_porterduff_term(fsBuilder, srcCoeff, |
256 args.fInputColor, args.fInpu tColor, | 538 args.fInputColor, args.fInpu tColor, |
257 dstColor, false); | 539 dstColor, false); |
258 // append dst blend | 540 // append dst blend |
259 SkAssertResult(append_porterduff_term(fsBuilder, xp.getDstBlend(), | 541 SkAssertResult(append_porterduff_term(fsBuilder, dstCoeff, |
260 dstColor, args.fInputColor, | 542 dstColor, args.fInputColor, |
261 dstColor, didAppend)); | 543 dstColor, didAppend)); |
262 fsBuilder->codeAppend(";"); | 544 fsBuilder->codeAppend(";"); |
263 | 545 |
264 fsBuilder->codeAppendf("%s = %s * colorBlend + (vec4(1.0) - %s) * %s ;", | 546 fsBuilder->codeAppendf("%s = %s * colorBlend + (vec4(1.0) - %s) * %s ;", |
265 args.fOutputPrimary, args.fInputCoverage, arg s.fInputCoverage, | 547 args.fOutputPrimary, args.fInputCoverage, arg s.fInputCoverage, |
266 dstColor); | 548 dstColor); |
267 } | 549 } |
268 } | 550 } |
269 | 551 |
270 void onSetData(const GrGLProgramDataManager&, const GrXferProcessor&) overri de {}; | 552 void onSetData(const GrGLProgramDataManager&, const GrXferProcessor&) overri de {}; |
271 | 553 |
272 typedef GrGLXferProcessor INHERITED; | 554 typedef GrGLXferProcessor INHERITED; |
273 }; | 555 }; |
274 | 556 |
275 /////////////////////////////////////////////////////////////////////////////// | 557 /////////////////////////////////////////////////////////////////////////////// |
276 | 558 |
277 PorterDuffXferProcessor::PorterDuffXferProcessor(GrBlendCoeff srcBlend, | 559 PorterDuffXferProcessor::PorterDuffXferProcessor(SkXfermode::Mode xfermode, |
278 GrBlendCoeff dstBlend, | |
279 GrColor constant, | |
280 const GrDeviceCoordTexture* dst Copy, | 560 const GrDeviceCoordTexture* dst Copy, |
281 bool willReadDstColor) | 561 bool willReadDstColor) |
282 : INHERITED(dstCopy, willReadDstColor) | 562 : INHERITED(dstCopy, willReadDstColor) |
283 , fSrcBlend(srcBlend) | 563 , fXfermode(xfermode) |
284 , fDstBlend(dstBlend) | 564 , fBlendFormula(get_unoptimized_blend_formula(xfermode)) { |
egdaniel
2015/05/20 18:59:42
so what did we gain with the get_unoptimized? Seem
Chris Dalton
2015/05/21 04:00:36
That's right.. BlendFormula is 32 bits, so it prob
egdaniel
2015/05/21 18:36:45
Okay yeah I think you were right before. Our curre
Chris Dalton
2015/05/21 23:14:49
Done. Went with the coverage by default. It's slow
| |
285 , fBlendConstant(constant) | |
286 , fPrimaryOutputType(kModulate_PrimaryOutputType) | |
287 , fSecondaryOutputType(kNone_SecondaryOutputType) { | |
288 this->initClassID<PorterDuffXferProcessor>(); | 565 this->initClassID<PorterDuffXferProcessor>(); |
289 } | 566 } |
290 | 567 |
291 PorterDuffXferProcessor::~PorterDuffXferProcessor() { | 568 PorterDuffXferProcessor::~PorterDuffXferProcessor() { |
292 } | 569 } |
293 | 570 |
294 void PorterDuffXferProcessor::onGetGLProcessorKey(const GrGLSLCaps& caps, | 571 void PorterDuffXferProcessor::onGetGLProcessorKey(const GrGLSLCaps& caps, |
295 GrProcessorKeyBuilder* b) cons t { | 572 GrProcessorKeyBuilder* b) cons t { |
296 GLPorterDuffXferProcessor::GenKey(*this, caps, b); | 573 GLPorterDuffXferProcessor::GenKey(*this, caps, b); |
297 } | 574 } |
298 | 575 |
299 GrGLXferProcessor* PorterDuffXferProcessor::createGLInstance() const { | 576 GrGLXferProcessor* PorterDuffXferProcessor::createGLInstance() const { |
300 return SkNEW_ARGS(GLPorterDuffXferProcessor, (*this)); | 577 return SkNEW_ARGS(GLPorterDuffXferProcessor, (*this)); |
301 } | 578 } |
302 | 579 |
303 GrXferProcessor::OptFlags | 580 GrXferProcessor::OptFlags |
304 PorterDuffXferProcessor::onGetOptimizations(const GrProcOptInfo& colorPOI, | 581 PorterDuffXferProcessor::onGetOptimizations(const GrProcOptInfo& colorPOI, |
305 const GrProcOptInfo& coveragePOI, | 582 const GrProcOptInfo& coveragePOI, |
306 bool doesStencilWrite, | 583 bool doesStencilWrite, |
307 GrColor* overrideColor, | 584 GrColor* overrideColor, |
308 const GrCaps& caps) { | 585 const GrCaps& caps) { |
309 GrXferProcessor::OptFlags optFlags = this->internalGetOptimizations(colorPOI , | |
310 coverage POI, | |
311 doesSten cilWrite); | |
312 this->calcOutputTypes(optFlags, caps, coveragePOI.isSolidWhite()); | |
313 return optFlags; | |
314 } | |
315 | |
316 void PorterDuffXferProcessor::calcOutputTypes(GrXferProcessor::OptFlags optFlags , | |
317 const GrCaps& caps, | |
318 bool hasSolidCoverage) { | |
319 if (this->willReadDstColor()) { | |
320 fPrimaryOutputType = kCustom_PrimaryOutputType; | |
321 return; | |
322 } | |
323 | |
324 if (optFlags & kIgnoreColor_OptFlag) { | |
325 if (optFlags & kIgnoreCoverage_OptFlag) { | |
326 fPrimaryOutputType = kNone_PrimaryOutputType; | |
327 return; | |
328 } else { | |
329 fPrimaryOutputType = kCoverage_PrimaryOutputType; | |
330 return; | |
331 } | |
332 } else if (optFlags & kIgnoreCoverage_OptFlag) { | |
333 fPrimaryOutputType = kColor_PrimaryOutputType; | |
334 return; | |
335 } | |
336 | |
337 // If we do have coverage determine whether it matters. Dual source blendin g is expensive so | |
338 // we don't do it if we are doing coverage drawing. If we aren't then We al ways do dual source | |
339 // blending if we have any effective coverage stages OR the geometry process or doesn't emits | |
340 // solid coverage. | |
341 if (!(optFlags & kSetCoverageDrawing_OptFlag) && !hasSolidCoverage) { | |
342 if (caps.shaderCaps()->dualSourceBlendingSupport()) { | |
343 if (kZero_GrBlendCoeff == fDstBlend) { | |
344 // write the coverage value to second color | |
345 fSecondaryOutputType = kCoverage_SecondaryOutputType; | |
346 fDstBlend = kIS2C_GrBlendCoeff; | |
347 } else if (kSA_GrBlendCoeff == fDstBlend) { | |
348 // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered. | |
349 fSecondaryOutputType = kCoverageISA_SecondaryOutputType; | |
350 fDstBlend = kIS2C_GrBlendCoeff; | |
351 } else if (kSC_GrBlendCoeff == fDstBlend) { | |
352 // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered. | |
353 fSecondaryOutputType = kCoverageISC_SecondaryOutputType; | |
354 fDstBlend = kIS2C_GrBlendCoeff; | |
355 } | |
356 } | |
357 } | |
358 } | |
359 | |
360 GrXferProcessor::OptFlags | |
361 PorterDuffXferProcessor::internalGetOptimizations(const GrProcOptInfo& colorPOI, | |
362 const GrProcOptInfo& coverageP OI, | |
363 bool doesStencilWrite) { | |
364 if (this->willReadDstColor()) { | 586 if (this->willReadDstColor()) { |
365 return GrXferProcessor::kNone_Opt; | 587 return GrXferProcessor::kNone_Opt; |
366 } | 588 } |
367 | 589 |
368 bool srcAIsOne = colorPOI.isOpaque(); | 590 fBlendFormula = get_blend_formula(fXfermode, colorPOI, coveragePOI); |
369 bool hasCoverage = !coveragePOI.isSolidWhite(); | |
370 | 591 |
371 bool dstCoeffIsOne = kOne_GrBlendCoeff == fDstBlend || | 592 GrXferProcessor::OptFlags optFlags = GrXferProcessor::kNone_Opt; |
372 (kSA_GrBlendCoeff == fDstBlend && srcAIsOne); | 593 if (!fBlendFormula.modifiesDst()) { |
373 bool dstCoeffIsZero = kZero_GrBlendCoeff == fDstBlend || | 594 if (!doesStencilWrite) { |
374 (kISA_GrBlendCoeff == fDstBlend && srcAIsOne); | 595 optFlags |= GrXferProcessor::kSkipDraw_OptFlag; |
375 | 596 } |
376 // When coeffs are (0,1) there is no reason to draw at all, unless | 597 optFlags |= (GrXferProcessor::kIgnoreColor_OptFlag | |
377 // stenciling is enabled. Having color writes disabled is effectively | 598 GrXferProcessor::kIgnoreCoverage_OptFlag | |
378 // (0,1). | 599 GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag); |
379 if ((kZero_GrBlendCoeff == fSrcBlend && dstCoeffIsOne)) { | 600 } else { |
380 if (doesStencilWrite) { | 601 if (!fBlendFormula.usesGrPaintColor()) { |
381 return GrXferProcessor::kIgnoreColor_OptFlag | | 602 optFlags |= GrXferProcessor::kIgnoreColor_OptFlag; |
382 GrXferProcessor::kSetCoverageDrawing_OptFlag; | 603 } |
383 } else { | 604 if (coveragePOI.isSolidWhite()) { |
384 fDstBlend = kOne_GrBlendCoeff; | 605 optFlags |= GrXferProcessor::kIgnoreCoverage_OptFlag; |
385 return GrXferProcessor::kSkipDraw_OptFlag; | 606 } |
607 if (colorPOI.allStagesMultiplyInput() && fBlendFormula.canTweakAlphaForC overage()) { | |
608 optFlags |= GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; | |
386 } | 609 } |
387 } | 610 } |
388 | 611 |
389 // if we don't have coverage we can check whether the dst | 612 return optFlags; |
390 // has to read at all. If not, we'll disable blending. | |
391 if (!hasCoverage) { | |
392 if (dstCoeffIsZero) { | |
393 if (kOne_GrBlendCoeff == fSrcBlend) { | |
394 // if there is no coverage and coeffs are (1,0) then we | |
395 // won't need to read the dst at all, it gets replaced by src | |
396 fDstBlend = kZero_GrBlendCoeff; | |
397 return GrXferProcessor::kNone_Opt | | |
398 GrXferProcessor::kIgnoreCoverage_OptFlag; | |
399 } else if (kZero_GrBlendCoeff == fSrcBlend) { | |
400 // if the op is "clear" then we don't need to emit a color | |
401 // or blend, just write transparent black into the dst. | |
402 fSrcBlend = kOne_GrBlendCoeff; | |
403 fDstBlend = kZero_GrBlendCoeff; | |
404 return GrXferProcessor::kIgnoreColor_OptFlag | | |
405 GrXferProcessor::kIgnoreCoverage_OptFlag; | |
406 } | |
407 } | |
408 return GrXferProcessor::kIgnoreCoverage_OptFlag; | |
409 } | |
410 | |
411 // check whether coverage can be safely rolled into alpha | |
412 // of if we can skip color computation and just emit coverage | |
413 if (can_tweak_alpha_for_coverage(fDstBlend)) { | |
414 if (colorPOI.allStagesMultiplyInput()) { | |
415 return GrXferProcessor::kSetCoverageDrawing_OptFlag | | |
416 GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; | |
417 } else { | |
418 return GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
419 | |
420 } | |
421 } | |
422 if (dstCoeffIsZero) { | |
423 if (kZero_GrBlendCoeff == fSrcBlend) { | |
424 // the source color is not included in the blend | |
425 // the dst coeff is effectively zero so blend works out to: | |
426 // (c)(0)D + (1-c)D = (1-c)D. | |
427 fDstBlend = kISA_GrBlendCoeff; | |
428 return GrXferProcessor::kIgnoreColor_OptFlag | | |
429 GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
430 } else if (srcAIsOne) { | |
431 // the dst coeff is effectively zero so blend works out to: | |
432 // cS + (c)(0)D + (1-c)D = cS + (1-c)D. | |
433 // If Sa is 1 then we can replace Sa with c | |
434 // and set dst coeff to 1-Sa. | |
435 fDstBlend = kISA_GrBlendCoeff; | |
436 if (colorPOI.allStagesMultiplyInput()) { | |
437 return GrXferProcessor::kSetCoverageDrawing_OptFlag | | |
438 GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; | |
439 } else { | |
440 return GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
441 | |
442 } | |
443 } | |
444 } else if (dstCoeffIsOne) { | |
445 // the dst coeff is effectively one so blend works out to: | |
446 // cS + (c)(1)D + (1-c)D = cS + D. | |
447 fDstBlend = kOne_GrBlendCoeff; | |
448 if (colorPOI.allStagesMultiplyInput()) { | |
449 return GrXferProcessor::kSetCoverageDrawing_OptFlag | | |
450 GrXferProcessor::kCanTweakAlphaForCoverage_OptFlag; | |
451 } else { | |
452 return GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
453 | |
454 } | |
455 return GrXferProcessor::kSetCoverageDrawing_OptFlag; | |
456 } | |
457 | |
458 return GrXferProcessor::kNone_Opt; | |
459 } | |
460 | |
461 bool PorterDuffXferProcessor::hasSecondaryOutput() const { | |
462 return kNone_SecondaryOutputType != fSecondaryOutputType; | |
463 } | 613 } |
464 | 614 |
465 /////////////////////////////////////////////////////////////////////////////// | 615 /////////////////////////////////////////////////////////////////////////////// |
466 | 616 |
467 class PDLCDXferProcessor : public GrXferProcessor { | 617 class PDLCDXferProcessor : public GrXferProcessor { |
468 public: | 618 public: |
469 static GrXferProcessor* Create(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend, | 619 static GrXferProcessor* Create(SkXfermode::Mode xfermode, const GrProcOptInf o& colorPOI); |
470 const GrProcOptInfo& colorPOI); | |
471 | 620 |
472 ~PDLCDXferProcessor() override; | 621 ~PDLCDXferProcessor() override; |
473 | 622 |
474 const char* name() const override { return "Porter Duff LCD"; } | 623 const char* name() const override { return "Porter Duff LCD"; } |
475 | 624 |
476 GrGLXferProcessor* createGLInstance() const override; | 625 GrGLXferProcessor* createGLInstance() const override; |
477 | 626 |
478 bool hasSecondaryOutput() const override { return false; } | 627 bool hasSecondaryOutput() const override { return false; } |
479 | 628 |
480 private: | 629 private: |
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
534 }; | 683 }; |
535 | 684 |
536 /////////////////////////////////////////////////////////////////////////////// | 685 /////////////////////////////////////////////////////////////////////////////// |
537 | 686 |
538 PDLCDXferProcessor::PDLCDXferProcessor(GrColor blendConstant, uint8_t alpha) | 687 PDLCDXferProcessor::PDLCDXferProcessor(GrColor blendConstant, uint8_t alpha) |
539 : fBlendConstant(blendConstant) | 688 : fBlendConstant(blendConstant) |
540 , fAlpha(alpha) { | 689 , fAlpha(alpha) { |
541 this->initClassID<PDLCDXferProcessor>(); | 690 this->initClassID<PDLCDXferProcessor>(); |
542 } | 691 } |
543 | 692 |
544 GrXferProcessor* PDLCDXferProcessor::Create(GrBlendCoeff srcBlend, GrBlendCoeff dstBlend, | 693 GrXferProcessor* PDLCDXferProcessor::Create(SkXfermode::Mode xfermode, |
545 const GrProcOptInfo& colorPOI) { | 694 const GrProcOptInfo& colorPOI) { |
546 if (kOne_GrBlendCoeff != srcBlend || kISA_GrBlendCoeff != dstBlend) { | 695 if (SkXfermode::kSrcOver_Mode != xfermode) { |
547 return NULL; | 696 return NULL; |
548 } | 697 } |
549 | 698 |
550 if (kRGBA_GrColorComponentFlags != colorPOI.validFlags()) { | 699 if (kRGBA_GrColorComponentFlags != colorPOI.validFlags()) { |
551 return NULL; | 700 return NULL; |
552 } | 701 } |
553 | 702 |
554 GrColor blendConstant = GrUnPreMulColor(colorPOI.color()); | 703 GrColor blendConstant = GrUnPreMulColor(colorPOI.color()); |
555 uint8_t alpha = GrColorUnpackA(blendConstant); | 704 uint8_t alpha = GrColorUnpackA(blendConstant); |
556 blendConstant |= (0xff << GrColor_SHIFT_A); | 705 blendConstant |= (0xff << GrColor_SHIFT_A); |
(...skipping 21 matching lines...) Expand all Loading... | |
578 const GrCaps& caps) { | 727 const GrCaps& caps) { |
579 // We want to force our primary output to be alpha * Coverage, where alp ha is the alpha | 728 // We want to force our primary output to be alpha * Coverage, where alp ha is the alpha |
580 // value of the blend the constant. We should already have valid blend c oeff's if we are at | 729 // value of the blend the constant. We should already have valid blend c oeff's if we are at |
581 // a point where we have RGB coverage. We don't need any color stages si nce the known color | 730 // a point where we have RGB coverage. We don't need any color stages si nce the known color |
582 // output is already baked into the blendConstant. | 731 // output is already baked into the blendConstant. |
583 *overrideColor = GrColorPackRGBA(fAlpha, fAlpha, fAlpha, fAlpha); | 732 *overrideColor = GrColorPackRGBA(fAlpha, fAlpha, fAlpha, fAlpha); |
584 return GrXferProcessor::kOverrideColor_OptFlag; | 733 return GrXferProcessor::kOverrideColor_OptFlag; |
585 } | 734 } |
586 | 735 |
587 /////////////////////////////////////////////////////////////////////////////// | 736 /////////////////////////////////////////////////////////////////////////////// |
588 GrPorterDuffXPFactory::GrPorterDuffXPFactory(GrBlendCoeff src, GrBlendCoeff dst) | 737 |
589 : fSrcCoeff(src), fDstCoeff(dst) { | 738 GrPorterDuffXPFactory::GrPorterDuffXPFactory(SkXfermode::Mode xfermode) |
739 : fXfermode(xfermode) { | |
590 this->initClassID<GrPorterDuffXPFactory>(); | 740 this->initClassID<GrPorterDuffXPFactory>(); |
591 } | 741 } |
592 | 742 |
593 GrXPFactory* GrPorterDuffXPFactory::Create(SkXfermode::Mode mode) { | 743 GrXPFactory* GrPorterDuffXPFactory::Create(SkXfermode::Mode xfermode) { |
594 switch (mode) { | 744 static GrPorterDuffXPFactory gClearPDXPF(SkXfermode::kClear_Mode); |
595 case SkXfermode::kClear_Mode: { | 745 static GrPorterDuffXPFactory gSrcPDXPF(SkXfermode::kSrc_Mode); |
596 static GrPorterDuffXPFactory gClearPDXPF(kZero_GrBlendCoeff, kZero_G rBlendCoeff); | 746 static GrPorterDuffXPFactory gDstPDXPF(SkXfermode::kDst_Mode); |
597 return SkRef(&gClearPDXPF); | 747 static GrPorterDuffXPFactory gSrcOverPDXPF(SkXfermode::kSrcOver_Mode); |
598 break; | 748 static GrPorterDuffXPFactory gDstOverPDXPF(SkXfermode::kDstOver_Mode); |
599 } | 749 static GrPorterDuffXPFactory gSrcInPDXPF(SkXfermode::kSrcIn_Mode); |
600 case SkXfermode::kSrc_Mode: { | 750 static GrPorterDuffXPFactory gDstInPDXPF(SkXfermode::kDstIn_Mode); |
601 static GrPorterDuffXPFactory gSrcPDXPF(kOne_GrBlendCoeff, kZero_GrBl endCoeff); | 751 static GrPorterDuffXPFactory gSrcOutPDXPF(SkXfermode::kSrcOut_Mode); |
602 return SkRef(&gSrcPDXPF); | 752 static GrPorterDuffXPFactory gDstOutPDXPF(SkXfermode::kDstOut_Mode); |
603 break; | 753 static GrPorterDuffXPFactory gSrcATopPDXPF(SkXfermode::kSrcATop_Mode); |
604 } | 754 static GrPorterDuffXPFactory gDstATopPDXPF(SkXfermode::kDstATop_Mode); |
605 case SkXfermode::kDst_Mode: { | 755 static GrPorterDuffXPFactory gXorPDXPF(SkXfermode::kXor_Mode); |
606 static GrPorterDuffXPFactory gDstPDXPF(kZero_GrBlendCoeff, kOne_GrBl endCoeff); | 756 static GrPorterDuffXPFactory gPlusPDXPF(SkXfermode::kPlus_Mode); |
607 return SkRef(&gDstPDXPF); | 757 static GrPorterDuffXPFactory gModulatePDXPF(SkXfermode::kModulate_Mode); |
608 break; | 758 static GrPorterDuffXPFactory gScreenPDXPF(SkXfermode::kScreen_Mode); |
609 } | 759 |
610 case SkXfermode::kSrcOver_Mode: { | 760 static GrPorterDuffXPFactory* gFactories[] = { |
611 static GrPorterDuffXPFactory gSrcOverPDXPF(kOne_GrBlendCoeff, kISA_G rBlendCoeff); | 761 &gClearPDXPF, &gSrcPDXPF, &gDstPDXPF, &gSrcOverPDXPF, &gDstOverPDXPF, &g SrcInPDXPF, |
612 return SkRef(&gSrcOverPDXPF); | 762 &gDstInPDXPF, &gSrcOutPDXPF, &gDstOutPDXPF, &gSrcATopPDXPF, &gDstATopPDX PF, &gXorPDXPF, |
613 break; | 763 &gPlusPDXPF, &gModulatePDXPF, &gScreenPDXPF |
614 } | 764 }; |
615 case SkXfermode::kDstOver_Mode: { | 765 GR_STATIC_ASSERT(SK_ARRAY_COUNT(gFactories) == SkXfermode::kLastCoeffMode + 1); |
616 static GrPorterDuffXPFactory gDstOverPDXPF(kIDA_GrBlendCoeff, kOne_G rBlendCoeff); | 766 |
617 return SkRef(&gDstOverPDXPF); | 767 if (xfermode < 0 || xfermode > SkXfermode::kLastCoeffMode) { |
618 break; | 768 return NULL; |
619 } | |
620 case SkXfermode::kSrcIn_Mode: { | |
621 static GrPorterDuffXPFactory gSrcInPDXPF(kDA_GrBlendCoeff, kZero_GrB lendCoeff); | |
622 return SkRef(&gSrcInPDXPF); | |
623 break; | |
624 } | |
625 case SkXfermode::kDstIn_Mode: { | |
626 static GrPorterDuffXPFactory gDstInPDXPF(kZero_GrBlendCoeff, kSA_GrB lendCoeff); | |
627 return SkRef(&gDstInPDXPF); | |
628 break; | |
629 } | |
630 case SkXfermode::kSrcOut_Mode: { | |
631 static GrPorterDuffXPFactory gSrcOutPDXPF(kIDA_GrBlendCoeff, kZero_G rBlendCoeff); | |
632 return SkRef(&gSrcOutPDXPF); | |
633 break; | |
634 } | |
635 case SkXfermode::kDstOut_Mode: { | |
636 static GrPorterDuffXPFactory gDstOutPDXPF(kZero_GrBlendCoeff, kISA_G rBlendCoeff); | |
637 return SkRef(&gDstOutPDXPF); | |
638 break; | |
639 } | |
640 case SkXfermode::kSrcATop_Mode: { | |
641 static GrPorterDuffXPFactory gSrcATopPDXPF(kDA_GrBlendCoeff, kISA_Gr BlendCoeff); | |
642 return SkRef(&gSrcATopPDXPF); | |
643 break; | |
644 } | |
645 case SkXfermode::kDstATop_Mode: { | |
646 static GrPorterDuffXPFactory gDstATopPDXPF(kIDA_GrBlendCoeff, kSA_Gr BlendCoeff); | |
647 return SkRef(&gDstATopPDXPF); | |
648 break; | |
649 } | |
650 case SkXfermode::kXor_Mode: { | |
651 static GrPorterDuffXPFactory gXorPDXPF(kIDA_GrBlendCoeff, kISA_GrBle ndCoeff); | |
652 return SkRef(&gXorPDXPF); | |
653 break; | |
654 } | |
655 case SkXfermode::kPlus_Mode: { | |
656 static GrPorterDuffXPFactory gPlusPDXPF(kOne_GrBlendCoeff, kOne_GrBl endCoeff); | |
657 return SkRef(&gPlusPDXPF); | |
658 break; | |
659 } | |
660 case SkXfermode::kModulate_Mode: { | |
661 static GrPorterDuffXPFactory gModulatePDXPF(kZero_GrBlendCoeff, kSC_ GrBlendCoeff); | |
662 return SkRef(&gModulatePDXPF); | |
663 break; | |
664 } | |
665 case SkXfermode::kScreen_Mode: { | |
666 static GrPorterDuffXPFactory gScreenPDXPF(kOne_GrBlendCoeff, kISC_Gr BlendCoeff); | |
667 return SkRef(&gScreenPDXPF); | |
668 break; | |
669 } | |
670 default: | |
671 return NULL; | |
672 } | 769 } |
770 return SkRef(gFactories[xfermode]); | |
673 } | 771 } |
674 | 772 |
675 GrXferProcessor* | 773 GrXferProcessor* |
676 GrPorterDuffXPFactory::onCreateXferProcessor(const GrCaps& caps, | 774 GrPorterDuffXPFactory::onCreateXferProcessor(const GrCaps& caps, |
677 const GrProcOptInfo& colorPOI, | 775 const GrProcOptInfo& colorPOI, |
678 const GrProcOptInfo& covPOI, | 776 const GrProcOptInfo& covPOI, |
679 const GrDeviceCoordTexture* dstCopy ) const { | 777 const GrDeviceCoordTexture* dstCopy ) const { |
680 if (covPOI.isFourChannelOutput()) { | 778 if (covPOI.isFourChannelOutput()) { |
681 return PDLCDXferProcessor::Create(fSrcCoeff, fDstCoeff, colorPOI); | 779 return PDLCDXferProcessor::Create(fXfermode, colorPOI); |
682 } else { | 780 } else { |
683 return PorterDuffXferProcessor::Create(fSrcCoeff, fDstCoeff, 0, dstCopy, | 781 return PorterDuffXferProcessor::Create(fXfermode, dstCopy, |
684 this->willReadDstColor(caps, colo rPOI, covPOI)); | 782 this->willReadDstColor(caps, colo rPOI, covPOI)); |
685 } | 783 } |
686 } | 784 } |
687 | 785 |
688 bool GrPorterDuffXPFactory::supportsRGBCoverage(GrColor /*knownColor*/, | 786 bool GrPorterDuffXPFactory::supportsRGBCoverage(GrColor /*knownColor*/, |
689 uint32_t knownColorFlags) const { | 787 uint32_t knownColorFlags) const { |
690 if (kOne_GrBlendCoeff == fSrcCoeff && kISA_GrBlendCoeff == fDstCoeff && | 788 if (SkXfermode::kSrcOver_Mode == fXfermode && |
691 kRGBA_GrColorComponentFlags == knownColorFlags) { | 789 kRGBA_GrColorComponentFlags == knownColorFlags) { |
692 return true; | 790 return true; |
693 } | 791 } |
694 return false; | 792 return false; |
695 } | 793 } |
696 | 794 |
697 void GrPorterDuffXPFactory::getInvariantOutput(const GrProcOptInfo& colorPOI, | 795 void GrPorterDuffXPFactory::getInvariantOutput(const GrProcOptInfo& colorPOI, |
698 const GrProcOptInfo& coveragePOI, | 796 const GrProcOptInfo& coveragePOI, |
699 GrXPFactory::InvariantOutput* out put) const { | 797 GrXPFactory::InvariantOutput* out put) const { |
700 if (!coveragePOI.isSolidWhite()) { | 798 BlendFormula blendFormula = get_blend_formula(fXfermode, colorPOI, coverageP OI); |
799 | |
800 if (blendFormula.usesDstColor()) { | |
701 output->fWillBlendWithDst = true; | 801 output->fWillBlendWithDst = true; |
702 output->fBlendedColorFlags = 0; | 802 output->fBlendedColorFlags = kNone_GrColorComponentFlags; |
703 return; | 803 return; |
704 } | 804 } |
705 | 805 |
706 GrBlendCoeff srcCoeff = fSrcCoeff; | 806 SkASSERT(coveragePOI.isSolidWhite()); |
707 GrBlendCoeff dstCoeff = fDstCoeff; | 807 SkASSERT(kAdd_GrBlendEquation == blendFormula.fBlendEquation); |
708 | 808 |
709 // TODO: figure out to merge this simplify with other current optimization c ode paths and | 809 output->fWillBlendWithDst = false; |
710 // eventually remove from GrBlend | |
711 GrSimplifyBlend(&srcCoeff, &dstCoeff, colorPOI.color(), colorPOI.validFlags( ), | |
712 0, 0, 0); | |
713 | 810 |
714 if (GrBlendCoeffRefsDst(srcCoeff)) { | 811 switch (blendFormula.fSrcCoeff) { |
715 output->fWillBlendWithDst = true; | |
716 output->fBlendedColorFlags = 0; | |
717 return; | |
718 } | |
719 | |
720 if (kZero_GrBlendCoeff != dstCoeff) { | |
721 bool srcAIsOne = colorPOI.isOpaque(); | |
722 if (kISA_GrBlendCoeff != dstCoeff || !srcAIsOne) { | |
723 output->fWillBlendWithDst = true; | |
724 } | |
725 output->fBlendedColorFlags = 0; | |
726 return; | |
727 } | |
728 | |
729 switch (srcCoeff) { | |
730 case kZero_GrBlendCoeff: | 812 case kZero_GrBlendCoeff: |
731 output->fBlendedColor = 0; | 813 output->fBlendedColor = 0; |
732 output->fBlendedColorFlags = kRGBA_GrColorComponentFlags; | 814 output->fBlendedColorFlags = kRGBA_GrColorComponentFlags; |
733 break; | 815 return; |
734 | 816 |
735 case kOne_GrBlendCoeff: | 817 case kOne_GrBlendCoeff: |
736 output->fBlendedColor = colorPOI.color(); | 818 output->fBlendedColor = colorPOI.color(); |
737 output->fBlendedColorFlags = colorPOI.validFlags(); | 819 output->fBlendedColorFlags = colorPOI.validFlags(); |
738 break; | 820 return; |
739 | 821 |
740 // The src coeff should never refer to the src and if it refers to d st then opaque | 822 // TODO: update if we ever use const color. |
741 // should have been false. | |
742 case kSC_GrBlendCoeff: | |
743 case kISC_GrBlendCoeff: | |
744 case kDC_GrBlendCoeff: | |
745 case kIDC_GrBlendCoeff: | |
746 case kSA_GrBlendCoeff: | |
747 case kISA_GrBlendCoeff: | |
748 case kDA_GrBlendCoeff: | |
749 case kIDA_GrBlendCoeff: | |
750 default: | 823 default: |
751 SkFAIL("srcCoeff should not refer to src or dst."); | 824 output->fBlendedColorFlags = kNone_GrColorComponentFlags; |
752 break; | 825 return; |
753 | |
754 // TODO: update this once GrPaint actually has a const color. | |
755 case kConstC_GrBlendCoeff: | |
756 case kIConstC_GrBlendCoeff: | |
757 case kConstA_GrBlendCoeff: | |
758 case kIConstA_GrBlendCoeff: | |
759 output->fBlendedColorFlags = 0; | |
760 break; | |
761 } | 826 } |
762 | |
763 output->fWillBlendWithDst = false; | |
764 } | 827 } |
765 | 828 |
766 bool GrPorterDuffXPFactory::willReadDstColor(const GrCaps& caps, | 829 bool GrPorterDuffXPFactory::willReadDstColor(const GrCaps& caps, |
767 const GrProcOptInfo& colorPOI, | 830 const GrProcOptInfo& colorPOI, |
768 const GrProcOptInfo& coveragePOI) c onst { | 831 const GrProcOptInfo& coveragePOI) c onst { |
769 // We can always blend correctly if we have dual source blending. | 832 // Some formulas use dual source blending, so we fall back if it is required but not supported. |
770 if (caps.shaderCaps()->dualSourceBlendingSupport()) { | 833 return !caps.shaderCaps()->dualSourceBlendingSupport() && |
771 return false; | 834 get_blend_formula(fXfermode, colorPOI, coveragePOI).hasSecondaryOutpu t(); |
772 } | |
773 | |
774 if (can_tweak_alpha_for_coverage(fDstCoeff)) { | |
775 return false; | |
776 } | |
777 | |
778 bool srcAIsOne = colorPOI.isOpaque(); | |
779 | |
780 if (kZero_GrBlendCoeff == fDstCoeff) { | |
781 if (kZero_GrBlendCoeff == fSrcCoeff || srcAIsOne) { | |
782 return false; | |
783 } | |
784 } | |
785 | |
786 // Reduces to: coeffS * (Cov*S) + D | |
787 if (kSA_GrBlendCoeff == fDstCoeff && srcAIsOne) { | |
788 return false; | |
789 } | |
790 | |
791 // We can always blend correctly if we have solid coverage. | |
792 if (coveragePOI.isSolidWhite()) { | |
793 return false; | |
794 } | |
795 | |
796 return true; | |
797 } | 835 } |
798 | 836 |
799 GR_DEFINE_XP_FACTORY_TEST(GrPorterDuffXPFactory); | 837 GR_DEFINE_XP_FACTORY_TEST(GrPorterDuffXPFactory); |
800 | 838 |
801 GrXPFactory* GrPorterDuffXPFactory::TestCreate(SkRandom* random, | 839 GrXPFactory* GrPorterDuffXPFactory::TestCreate(SkRandom* random, |
802 GrContext*, | 840 GrContext*, |
803 const GrCaps&, | 841 const GrCaps&, |
804 GrTexture*[]) { | 842 GrTexture*[]) { |
805 SkXfermode::Mode mode = SkXfermode::Mode(random->nextULessThan(SkXfermode::k LastCoeffMode)); | 843 SkXfermode::Mode mode = SkXfermode::Mode(random->nextULessThan(SkXfermode::k LastCoeffMode)); |
806 return GrPorterDuffXPFactory::Create(mode); | 844 return GrPorterDuffXPFactory::Create(mode); |
807 } | 845 } |
808 | 846 |
847 int GrPorterDuffXPFactory::TestGetXPOutputPrimay(const GrXferProcessor* xp) { | |
egdaniel
2015/05/20 18:59:42
missing an r in Primay
Chris Dalton
2015/05/21 10:00:48
Done.
| |
848 if (!!strcmp(xp->name(), "Porter Duff")) { | |
849 return -1; | |
850 } | |
851 return static_cast<const PorterDuffXferProcessor*>(xp)->getBlendFormula().fP rimaryOutputType; | |
852 } | |
853 | |
854 int GrPorterDuffXPFactory::TestGetXPOutputSecondary(const GrXferProcessor* xp) { | |
855 if (!!strcmp(xp->name(), "Porter Duff")) { | |
856 return -1; | |
857 } | |
858 return static_cast<const PorterDuffXferProcessor*>(xp)->getBlendFormula().fS econdaryOutputType; | |
859 } | |
860 | |
OLD | NEW |