| Index: source/libvpx/vp9/encoder/vp9_ssim.c
|
| diff --git a/source/libvpx/vp9/encoder/vp9_ssim.c b/source/libvpx/vp9/encoder/vp9_ssim.c
|
| index 5dbfbf53bbcc3c9fb0b920e09e330be37a7ec65e..88db5dda06d1a7fbbc714290bbb8fda0b98de331 100644
|
| --- a/source/libvpx/vp9/encoder/vp9_ssim.c
|
| +++ b/source/libvpx/vp9/encoder/vp9_ssim.c
|
| @@ -8,8 +8,8 @@
|
| * be found in the AUTHORS file in the root of the source tree.
|
| */
|
|
|
| +#include <math.h>
|
| #include "./vp9_rtcd.h"
|
| -
|
| #include "vp9/encoder/vp9_ssim.h"
|
|
|
| void vp9_ssim_parms_16x16_c(uint8_t *s, int sp, uint8_t *r,
|
| @@ -201,6 +201,251 @@ double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
|
| return ssim_all;
|
| }
|
|
|
| +// traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
|
| +//
|
| +// Re working out the math ->
|
| +//
|
| +// ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
|
| +// ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
|
| +//
|
| +// mean(x) = sum(x) / n
|
| +//
|
| +// cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
|
| +//
|
| +// var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
|
| +//
|
| +// ssim(x,y) =
|
| +// (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
|
| +// (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
|
| +// ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
|
| +// (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
|
| +//
|
| +// factoring out n*n
|
| +//
|
| +// ssim(x,y) =
|
| +// (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
|
| +// (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
|
| +// (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
|
| +//
|
| +// Replace c1 with n*n * c1 for the final step that leads to this code:
|
| +// The final step scales by 12 bits so we don't lose precision in the constants.
|
| +
|
| +double ssimv_similarity(Ssimv *sv, int64_t n) {
|
| + // Scale the constants by number of pixels.
|
| + const int64_t c1 = (cc1 * n * n) >> 12;
|
| + const int64_t c2 = (cc2 * n * n) >> 12;
|
| +
|
| + const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
|
| + (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
|
| +
|
| + // Since these variables are unsigned sums, convert to double so
|
| + // math is done in double arithmetic.
|
| + const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
|
| + / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r
|
| + - sv->sum_r * sv->sum_r + c2);
|
| +
|
| + return l * v;
|
| +}
|
| +
|
| +// The first term of the ssim metric is a luminance factor.
|
| +//
|
| +// (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
|
| +//
|
| +// This luminance factor is super sensitive to the dark side of luminance
|
| +// values and completely insensitive on the white side. check out 2 sets
|
| +// (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
|
| +// 2*250*252/ (250^2+252^2) => .99999997
|
| +//
|
| +// As a result in this tweaked version of the calculation in which the
|
| +// luminance is taken as percentage off from peak possible.
|
| +//
|
| +// 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
|
| +//
|
| +double ssimv_similarity2(Ssimv *sv, int64_t n) {
|
| + // Scale the constants by number of pixels.
|
| + const int64_t c1 = (cc1 * n * n) >> 12;
|
| + const int64_t c2 = (cc2 * n * n) >> 12;
|
| +
|
| + const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
|
| + const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
|
| +
|
| + // Since these variables are unsigned, sums convert to double so
|
| + // math is done in double arithmetic.
|
| + const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
|
| + / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
|
| + n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
|
| +
|
| + return l * v;
|
| +}
|
| +void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, int img2_pitch,
|
| + Ssimv *sv) {
|
| + vp9_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch,
|
| + &sv->sum_s, &sv->sum_r, &sv->sum_sq_s, &sv->sum_sq_r,
|
| + &sv->sum_sxr);
|
| +}
|
| +
|
| +double vp9_get_ssim_metrics(uint8_t *img1, int img1_pitch,
|
| + uint8_t *img2, int img2_pitch,
|
| + int width, int height,
|
| + Ssimv *sv2, Metrics *m,
|
| + int do_inconsistency) {
|
| + double dssim_total = 0;
|
| + double ssim_total = 0;
|
| + double ssim2_total = 0;
|
| + double inconsistency_total = 0;
|
| + int i, j;
|
| + int c = 0;
|
| + double norm;
|
| + double old_ssim_total = 0;
|
| + vp9_clear_system_state();
|
| + // We can sample points as frequently as we like start with 1 per 4x4.
|
| + for (i = 0; i < height; i += 4,
|
| + img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
|
| + for (j = 0; j < width; j += 4, ++c) {
|
| + Ssimv sv = {0};
|
| + double ssim;
|
| + double ssim2;
|
| + double dssim;
|
| + uint32_t var_new;
|
| + uint32_t var_old;
|
| + uint32_t mean_new;
|
| + uint32_t mean_old;
|
| + double ssim_new;
|
| + double ssim_old;
|
| +
|
| + // Not sure there's a great way to handle the edge pixels
|
| + // in ssim when using a window. Seems biased against edge pixels
|
| + // however you handle this. This uses only samples that are
|
| + // fully in the frame.
|
| + if (j + 8 <= width && i + 8 <= height) {
|
| + ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
|
| + }
|
| +
|
| + ssim = ssimv_similarity(&sv, 64);
|
| + ssim2 = ssimv_similarity2(&sv, 64);
|
| +
|
| + sv.ssim = ssim2;
|
| +
|
| + // dssim is calculated to use as an actual error metric and
|
| + // is scaled up to the same range as sum square error.
|
| + // Since we are subsampling every 16th point maybe this should be
|
| + // *16 ?
|
| + dssim = 255 * 255 * (1 - ssim2) / 2;
|
| +
|
| + // Here I introduce a new error metric: consistency-weighted
|
| + // SSIM-inconsistency. This metric isolates frames where the
|
| + // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
|
| + // sharper or blurrier than the others. Higher values indicate a
|
| + // temporally inconsistent SSIM. There are two ideas at work:
|
| + //
|
| + // 1) 'SSIM-inconsistency': the total inconsistency value
|
| + // reflects how much SSIM values are changing between this
|
| + // source / reference frame pair and the previous pair.
|
| + //
|
| + // 2) 'consistency-weighted': weights de-emphasize areas in the
|
| + // frame where the scene content has changed. Changes in scene
|
| + // content are detected via changes in local variance and local
|
| + // mean.
|
| + //
|
| + // Thus the overall measure reflects how inconsistent the SSIM
|
| + // values are, over consistent regions of the frame.
|
| + //
|
| + // The metric has three terms:
|
| + //
|
| + // term 1 -> uses change in scene Variance to weight error score
|
| + // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
|
| + // larger changes from one frame to the next mean we care
|
| + // less about consistency.
|
| + //
|
| + // term 2 -> uses change in local scene luminance to weight error
|
| + // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
|
| + // larger changes from one frame to the next mean we care
|
| + // less about consistency.
|
| + //
|
| + // term3 -> measures inconsistency in ssim scores between frames
|
| + // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
|
| + //
|
| + // This term compares the ssim score for the same location in 2
|
| + // subsequent frames.
|
| + var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
|
| + var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
|
| + mean_new = sv.sum_s;
|
| + mean_old = sv2[c].sum_s;
|
| + ssim_new = sv.ssim;
|
| + ssim_old = sv2[c].ssim;
|
| +
|
| + if (do_inconsistency) {
|
| + // We do the metric once for every 4x4 block in the image. Since
|
| + // we are scaling the error to SSE for use in a psnr calculation
|
| + // 1.0 = 4x4x255x255 the worst error we can possibly have.
|
| + static const double kScaling = 4. * 4 * 255 * 255;
|
| +
|
| + // The constants have to be non 0 to avoid potential divide by 0
|
| + // issues other than that they affect kind of a weighting between
|
| + // the terms. No testing of what the right terms should be has been
|
| + // done.
|
| + static const double c1 = 1, c2 = 1, c3 = 1;
|
| +
|
| + // This measures how much consistent variance is in two consecutive
|
| + // source frames. 1.0 means they have exactly the same variance.
|
| + const double variance_term = (2.0 * var_old * var_new + c1) /
|
| + (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
|
| +
|
| + // This measures how consistent the local mean are between two
|
| + // consecutive frames. 1.0 means they have exactly the same mean.
|
| + const double mean_term = (2.0 * mean_old * mean_new + c2) /
|
| + (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
|
| +
|
| + // This measures how consistent the ssims of two
|
| + // consecutive frames is. 1.0 means they are exactly the same.
|
| + double ssim_term = pow((2.0 * ssim_old * ssim_new + c3) /
|
| + (ssim_old * ssim_old + ssim_new * ssim_new + c3),
|
| + 5);
|
| +
|
| + double this_inconsistency;
|
| +
|
| + // Floating point math sometimes makes this > 1 by a tiny bit.
|
| + // We want the metric to scale between 0 and 1.0 so we can convert
|
| + // it to an snr scaled value.
|
| + if (ssim_term > 1)
|
| + ssim_term = 1;
|
| +
|
| + // This converts the consistency metric to an inconsistency metric
|
| + // ( so we can scale it like psnr to something like sum square error.
|
| + // The reason for the variance and mean terms is the assumption that
|
| + // if there are big changes in the source we shouldn't penalize
|
| + // inconsistency in ssim scores a bit less as it will be less visible
|
| + // to the user.
|
| + this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
|
| +
|
| + this_inconsistency *= kScaling;
|
| + inconsistency_total += this_inconsistency;
|
| + }
|
| + sv2[c] = sv;
|
| + ssim_total += ssim;
|
| + ssim2_total += ssim2;
|
| + dssim_total += dssim;
|
| +
|
| + old_ssim_total += ssim_old;
|
| + }
|
| + old_ssim_total += 0;
|
| + }
|
| +
|
| + norm = 1. / (width / 4) / (height / 4);
|
| + ssim_total *= norm;
|
| + ssim2_total *= norm;
|
| + m->ssim2 = ssim2_total;
|
| + m->ssim = ssim_total;
|
| + if (old_ssim_total == 0)
|
| + inconsistency_total = 0;
|
| +
|
| + m->ssimc = inconsistency_total;
|
| +
|
| + m->dssim = dssim_total;
|
| + return inconsistency_total;
|
| +}
|
| +
|
| +
|
| #if CONFIG_VP9_HIGHBITDEPTH
|
| double vp9_highbd_calc_ssim(YV12_BUFFER_CONFIG *source,
|
| YV12_BUFFER_CONFIG *dest,
|
|
|