| Index: src/gpu/GrPath.cpp
|
| diff --git a/src/gpu/GrPath.cpp b/src/gpu/GrPath.cpp
|
| index e76bdf2466208384ba453e0f21c4a827a4a6e3f1..5b75683628f427301b03103501a60ac0cf2bc32f 100644
|
| --- a/src/gpu/GrPath.cpp
|
| +++ b/src/gpu/GrPath.cpp
|
| @@ -7,14 +7,168 @@
|
|
|
| #include "GrPath.h"
|
|
|
| -void GrPath::ComputeKey(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key) {
|
| - static const GrUniqueKey::Domain kPathDomain = GrUniqueKey::GenerateDomain();
|
| +namespace {
|
| +// Verb count limit for generating path key from content of a volatile path.
|
| +// The value should accomodate at least simple rects and rrects.
|
| +static const int kSimpleVolatilePathVerbLimit = 10;
|
| +
|
| +inline static bool compute_key_for_line_path(const SkPath& path, const GrStrokeInfo& stroke,
|
| + GrUniqueKey* key) {
|
| + SkPoint pts[2];
|
| + if (!path.isLine(pts)) {
|
| + return false;
|
| + }
|
| + SK_COMPILE_ASSERT((sizeof(pts) % sizeof(uint32_t)) == 0 && sizeof(pts) > sizeof(uint32_t),
|
| + pts_needs_padding);
|
| +
|
| + const int kBaseData32Cnt = 1 + sizeof(pts) / sizeof(uint32_t);
|
| + int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
|
| + static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain();
|
| + GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + strokeDataCnt);
|
| + builder[0] = path.getFillType();
|
| + memcpy(&builder[1], &pts, sizeof(pts));
|
| + if (strokeDataCnt > 0) {
|
| + stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +inline static bool compute_key_for_oval_path(const SkPath& path, const GrStrokeInfo& stroke,
|
| + GrUniqueKey* key) {
|
| + SkRect rect;
|
| + if (!path.isOval(&rect)) {
|
| + return false;
|
| + }
|
| + SK_COMPILE_ASSERT((sizeof(rect) % sizeof(uint32_t)) == 0 && sizeof(rect) > sizeof(uint32_t),
|
| + rect_needs_padding);
|
| +
|
| + const int kBaseData32Cnt = 1 + sizeof(rect) / sizeof(uint32_t);
|
| int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
|
| - GrUniqueKey::Builder builder(key, kPathDomain, 2 + strokeDataCnt);
|
| + static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain();
|
| + GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + strokeDataCnt);
|
| + builder[0] = path.getFillType();
|
| + memcpy(&builder[1], &rect, sizeof(rect));
|
| + if (strokeDataCnt > 0) {
|
| + stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// Encodes the full path data to the unique key for very small, volatile paths. This is typically
|
| +// hit when clipping stencils the clip stack. Intention is that this handles rects too, since
|
| +// SkPath::isRect seems to do non-trivial amount of work.
|
| +inline static bool compute_key_for_simple_path(const SkPath& path, const GrStrokeInfo& stroke,
|
| + GrUniqueKey* key) {
|
| + if (!path.isVolatile()) {
|
| + return false;
|
| + }
|
| +
|
| + // The check below should take care of negative values casted positive.
|
| + const int verbCnt = path.countVerbs();
|
| + if (verbCnt > kSimpleVolatilePathVerbLimit) {
|
| + return false;
|
| + }
|
| +
|
| + // If somebody goes wild with the constant, it might cause an overflow.
|
| + SK_COMPILE_ASSERT(kSimpleVolatilePathVerbLimit <= 100,
|
| + big_simple_volatile_path_verb_limit_may_cause_overflow);
|
| +
|
| + const int pointCnt = path.countPoints();
|
| + if (pointCnt < 0) {
|
| + SkASSERT(false);
|
| + return false;
|
| + }
|
| +
|
| + // Construct counts that align as uint32_t counts.
|
| +#define ARRAY_DATA32_COUNT(array_type, count) \
|
| + static_cast<int>((((count) * sizeof(array_type) + sizeof(uint32_t) - 1) / sizeof(uint32_t)))
|
| +
|
| + const int verbData32Cnt = ARRAY_DATA32_COUNT(uint8_t, verbCnt);
|
| + const int pointData32Cnt = ARRAY_DATA32_COUNT(SkPoint, pointCnt);
|
| +
|
| +#undef ARRAY_DATA32_COUNT
|
| +
|
| + // The unique key data is a "message" with following fragments:
|
| + // 0) domain, key length, uint32_t for fill type and uint32_t for verbCnt
|
| + // (fragment 0, fixed size)
|
| + // 1) verb and point data (varying size)
|
| + // 2) stroke data (varying size)
|
| +
|
| + const int baseData32Cnt = 2 + verbData32Cnt + pointData32Cnt;
|
| + const int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
|
| + static const GrUniqueKey::Domain kSimpleVolatilePathDomain = GrUniqueKey::GenerateDomain();
|
| + GrUniqueKey::Builder builder(key, kSimpleVolatilePathDomain, baseData32Cnt + strokeDataCnt);
|
| + int i = 0;
|
| + builder[i++] = path.getFillType();
|
| +
|
| + // Serialize the verbCnt to make the whole message unambiguous.
|
| + // We serialize two variable length fragments to the message:
|
| + // * verb and point data (fragment 1)
|
| + // * stroke data (fragment 2)
|
| + // "Proof:"
|
| + // Verb count establishes unambiguous verb data.
|
| + // Unambiguous verb data establishes unambiguous point data, making fragment 1 unambiguous.
|
| + // Unambiguous fragment 1 establishes unambiguous fragment 2, since the length of the message
|
| + // has been established.
|
| +
|
| + builder[i++] = SkToU32(verbCnt); // The path limit is compile-asserted above, so the cast is ok.
|
| +
|
| + // Fill the last uint32_t with 0 first, since the last uint8_ts of the uint32_t may be
|
| + // uninitialized. This does not produce ambiguous verb data, since we have serialized the exact
|
| + // verb count.
|
| + if (verbData32Cnt != static_cast<int>((verbCnt * sizeof(uint8_t) / sizeof(uint32_t)))) {
|
| + builder[i + verbData32Cnt - 1] = 0;
|
| + }
|
| + path.getVerbs(reinterpret_cast<uint8_t*>(&builder[i]), verbCnt);
|
| + i += verbData32Cnt;
|
| +
|
| + SK_COMPILE_ASSERT(((sizeof(SkPoint) % sizeof(uint32_t)) == 0) &&
|
| + sizeof(SkPoint) > sizeof(uint32_t), skpoint_array_needs_padding);
|
| +
|
| + // Here we assume getPoints does a memcpy, so that we do not need to worry about the alignment.
|
| + path.getPoints(reinterpret_cast<SkPoint*>(&builder[i]), pointCnt);
|
| + SkDEBUGCODE(i += pointData32Cnt);
|
| +
|
| + SkASSERT(i == baseData32Cnt);
|
| + if (strokeDataCnt > 0) {
|
| + stroke.asUniqueKeyFragment(&builder[baseData32Cnt]);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +inline static void compute_key_for_general_path(const SkPath& path, const GrStrokeInfo& stroke,
|
| + GrUniqueKey* key) {
|
| + const int kBaseData32Cnt = 2;
|
| + int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
|
| + static const GrUniqueKey::Domain kGeneralPathDomain = GrUniqueKey::GenerateDomain();
|
| + GrUniqueKey::Builder builder(key, kGeneralPathDomain, kBaseData32Cnt + strokeDataCnt);
|
| builder[0] = path.getGenerationID();
|
| builder[1] = path.getFillType();
|
| if (strokeDataCnt > 0) {
|
| - stroke.asUniqueKeyFragment(&builder[2]);
|
| + stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
|
| + }
|
| +}
|
| +
|
| +}
|
| +
|
| +void GrPath::ComputeKey(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key,
|
| + bool* outIsVolatile) {
|
| + if (compute_key_for_line_path(path, stroke, key)) {
|
| + *outIsVolatile = false;
|
| + return;
|
| }
|
| +
|
| + if (compute_key_for_oval_path(path, stroke, key)) {
|
| + *outIsVolatile = false;
|
| + return;
|
| + }
|
| +
|
| + if (compute_key_for_simple_path(path, stroke, key)) {
|
| + *outIsVolatile = false;
|
| + return;
|
| + }
|
| +
|
| + compute_key_for_general_path(path, stroke, key);
|
| + *outIsVolatile = path.isVolatile();
|
| }
|
|
|
|
|