| OLD | NEW |
| (Empty) | |
| 1 /*********************************************************************** |
| 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| 3 Redistribution and use in source and binary forms, with or without |
| 4 modification, are permitted provided that the following conditions |
| 5 are met: |
| 6 - Redistributions of source code must retain the above copyright notice, |
| 7 this list of conditions and the following disclaimer. |
| 8 - Redistributions in binary form must reproduce the above copyright |
| 9 notice, this list of conditions and the following disclaimer in the |
| 10 documentation and/or other materials provided with the distribution. |
| 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
| 12 names of specific contributors, may be used to endorse or promote |
| 13 products derived from this software without specific prior written |
| 14 permission. |
| 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” |
| 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 25 POSSIBILITY OF SUCH DAMAGE. |
| 26 ***********************************************************************/ |
| 27 |
| 28 #ifdef HAVE_CONFIG_H |
| 29 #include "config.h" |
| 30 #endif |
| 31 |
| 32 /* |
| 33 * Matrix of resampling methods used: |
| 34 * Fs_out (kHz) |
| 35 * 8 12 16 24 48 |
| 36 * |
| 37 * 8 C UF U UF UF |
| 38 * 12 AF C UF U UF |
| 39 * Fs_in (kHz) 16 D AF C UF UF |
| 40 * 24 AF D AF C U |
| 41 * 48 AF AF AF D C |
| 42 * |
| 43 * C -> Copy (no resampling) |
| 44 * D -> Allpass-based 2x downsampling |
| 45 * U -> Allpass-based 2x upsampling |
| 46 * UF -> Allpass-based 2x upsampling followed by FIR interpolation |
| 47 * AF -> AR2 filter followed by FIR interpolation |
| 48 */ |
| 49 |
| 50 #include "resampler_private.h" |
| 51 |
| 52 /* Tables with delay compensation values to equalize total delay for different m
odes */ |
| 53 static const opus_int8 delay_matrix_enc[ 5 ][ 3 ] = { |
| 54 /* in \ out 8 12 16 */ |
| 55 /* 8 */ { 6, 0, 3 }, |
| 56 /* 12 */ { 0, 7, 3 }, |
| 57 /* 16 */ { 0, 1, 10 }, |
| 58 /* 24 */ { 0, 2, 6 }, |
| 59 /* 48 */ { 18, 10, 12 } |
| 60 }; |
| 61 |
| 62 static const opus_int8 delay_matrix_dec[ 3 ][ 5 ] = { |
| 63 /* in \ out 8 12 16 24 48 */ |
| 64 /* 8 */ { 4, 0, 2, 0, 0 }, |
| 65 /* 12 */ { 0, 9, 4, 7, 4 }, |
| 66 /* 16 */ { 0, 3, 12, 7, 7 } |
| 67 }; |
| 68 |
| 69 /* Simple way to make [8000, 12000, 16000, 24000, 48000] to [0, 1, 2, 3, 4] */ |
| 70 #define rateID(R) ( ( ( ((R)>>12) - ((R)>16000) ) >> ((R)>24000) ) - 1 ) |
| 71 |
| 72 #define USE_silk_resampler_copy (0) |
| 73 #define USE_silk_resampler_private_up2_HQ_wrapper (1) |
| 74 #define USE_silk_resampler_private_IIR_FIR (2) |
| 75 #define USE_silk_resampler_private_down_FIR (3) |
| 76 |
| 77 /* Initialize/reset the resampler state for a given pair of input/output samplin
g rates */ |
| 78 opus_int silk_resampler_init( |
| 79 silk_resampler_state_struct *S, /* I/O Resampler state
*/ |
| 80 opus_int32 Fs_Hz_in, /* I Input sampling rate
(Hz) */ |
| 81 opus_int32 Fs_Hz_out, /* I Output sampling rate
(Hz) */ |
| 82 opus_int forEnc /* I If 1: encoder; if 0:
decoder */ |
| 83 ) |
| 84 { |
| 85 opus_int up2x; |
| 86 |
| 87 /* Clear state */ |
| 88 silk_memset( S, 0, sizeof( silk_resampler_state_struct ) ); |
| 89 |
| 90 /* Input checking */ |
| 91 if( forEnc ) { |
| 92 if( ( Fs_Hz_in != 8000 && Fs_Hz_in != 12000 && Fs_Hz_in != 16000 && F
s_Hz_in != 24000 && Fs_Hz_in != 48000 ) || |
| 93 ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 ) )
{ |
| 94 silk_assert( 0 ); |
| 95 return -1; |
| 96 } |
| 97 S->inputDelay = delay_matrix_enc[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_ou
t ) ]; |
| 98 } else { |
| 99 if( ( Fs_Hz_in != 8000 && Fs_Hz_in != 12000 && Fs_Hz_in != 16000 ) || |
| 100 ( Fs_Hz_out != 8000 && Fs_Hz_out != 12000 && Fs_Hz_out != 16000 && F
s_Hz_out != 24000 && Fs_Hz_out != 48000 ) ) { |
| 101 silk_assert( 0 ); |
| 102 return -1; |
| 103 } |
| 104 S->inputDelay = delay_matrix_dec[ rateID( Fs_Hz_in ) ][ rateID( Fs_Hz_ou
t ) ]; |
| 105 } |
| 106 |
| 107 S->Fs_in_kHz = silk_DIV32_16( Fs_Hz_in, 1000 ); |
| 108 S->Fs_out_kHz = silk_DIV32_16( Fs_Hz_out, 1000 ); |
| 109 |
| 110 /* Number of samples processed per batch */ |
| 111 S->batchSize = S->Fs_in_kHz * RESAMPLER_MAX_BATCH_SIZE_MS; |
| 112 |
| 113 /* Find resampler with the right sampling ratio */ |
| 114 up2x = 0; |
| 115 if( Fs_Hz_out > Fs_Hz_in ) { |
| 116 /* Upsample */ |
| 117 if( Fs_Hz_out == silk_MUL( Fs_Hz_in, 2 ) ) {
/* Fs_out : Fs_in = 2 : 1 */ |
| 118 /* Special case: directly use 2x upsampler */ |
| 119 S->resampler_function = USE_silk_resampler_private_up2_HQ_wrapper; |
| 120 } else { |
| 121 /* Default resampler */ |
| 122 S->resampler_function = USE_silk_resampler_private_IIR_FIR; |
| 123 up2x = 1; |
| 124 } |
| 125 } else if ( Fs_Hz_out < Fs_Hz_in ) { |
| 126 /* Downsample */ |
| 127 S->resampler_function = USE_silk_resampler_private_down_FIR; |
| 128 if( silk_MUL( Fs_Hz_out, 4 ) == silk_MUL( Fs_Hz_in, 3 ) ) {
/* Fs_out : Fs_in = 3 : 4 */ |
| 129 S->FIR_Fracs = 3; |
| 130 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0; |
| 131 S->Coefs = silk_Resampler_3_4_COEFS; |
| 132 } else if( silk_MUL( Fs_Hz_out, 3 ) == silk_MUL( Fs_Hz_in, 2 ) ) {
/* Fs_out : Fs_in = 2 : 3 */ |
| 133 S->FIR_Fracs = 2; |
| 134 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR0; |
| 135 S->Coefs = silk_Resampler_2_3_COEFS; |
| 136 } else if( silk_MUL( Fs_Hz_out, 2 ) == Fs_Hz_in ) {
/* Fs_out : Fs_in = 1 : 2 */ |
| 137 S->FIR_Fracs = 1; |
| 138 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR1; |
| 139 S->Coefs = silk_Resampler_1_2_COEFS; |
| 140 } else if( silk_MUL( Fs_Hz_out, 3 ) == Fs_Hz_in ) {
/* Fs_out : Fs_in = 1 : 3 */ |
| 141 S->FIR_Fracs = 1; |
| 142 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2; |
| 143 S->Coefs = silk_Resampler_1_3_COEFS; |
| 144 } else if( silk_MUL( Fs_Hz_out, 4 ) == Fs_Hz_in ) {
/* Fs_out : Fs_in = 1 : 4 */ |
| 145 S->FIR_Fracs = 1; |
| 146 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2; |
| 147 S->Coefs = silk_Resampler_1_4_COEFS; |
| 148 } else if( silk_MUL( Fs_Hz_out, 6 ) == Fs_Hz_in ) {
/* Fs_out : Fs_in = 1 : 6 */ |
| 149 S->FIR_Fracs = 1; |
| 150 S->FIR_Order = RESAMPLER_DOWN_ORDER_FIR2; |
| 151 S->Coefs = silk_Resampler_1_6_COEFS; |
| 152 } else { |
| 153 /* None available */ |
| 154 silk_assert( 0 ); |
| 155 return -1; |
| 156 } |
| 157 } else { |
| 158 /* Input and output sampling rates are equal: copy */ |
| 159 S->resampler_function = USE_silk_resampler_copy; |
| 160 } |
| 161 |
| 162 /* Ratio of input/output samples */ |
| 163 S->invRatio_Q16 = silk_LSHIFT32( silk_DIV32( silk_LSHIFT32( Fs_Hz_in, 14 + u
p2x ), Fs_Hz_out ), 2 ); |
| 164 /* Make sure the ratio is rounded up */ |
| 165 while( silk_SMULWW( S->invRatio_Q16, Fs_Hz_out ) < silk_LSHIFT32( Fs_Hz_in,
up2x ) ) { |
| 166 S->invRatio_Q16++; |
| 167 } |
| 168 |
| 169 return 0; |
| 170 } |
| 171 |
| 172 /* Resampler: convert from one sampling rate to another */ |
| 173 /* Input and output sampling rate are at most 48000 Hz */ |
| 174 opus_int silk_resampler( |
| 175 silk_resampler_state_struct *S, /* I/O Resampler state
*/ |
| 176 opus_int16 out[], /* O Output signal
*/ |
| 177 const opus_int16 in[], /* I Input signal
*/ |
| 178 opus_int32 inLen /* I Number of input samp
les */ |
| 179 ) |
| 180 { |
| 181 opus_int nSamples; |
| 182 |
| 183 /* Need at least 1 ms of input data */ |
| 184 silk_assert( inLen >= S->Fs_in_kHz ); |
| 185 /* Delay can't exceed the 1 ms of buffering */ |
| 186 silk_assert( S->inputDelay <= S->Fs_in_kHz ); |
| 187 |
| 188 nSamples = S->Fs_in_kHz - S->inputDelay; |
| 189 |
| 190 /* Copy to delay buffer */ |
| 191 silk_memcpy( &S->delayBuf[ S->inputDelay ], in, nSamples * sizeof( opus_int1
6 ) ); |
| 192 |
| 193 switch( S->resampler_function ) { |
| 194 case USE_silk_resampler_private_up2_HQ_wrapper: |
| 195 silk_resampler_private_up2_HQ_wrapper( S, out, S->delayBuf, S->Fs_in
_kHz ); |
| 196 silk_resampler_private_up2_HQ_wrapper( S, &out[ S->Fs_out_kHz ], &in
[ nSamples ], inLen - S->Fs_in_kHz ); |
| 197 break; |
| 198 case USE_silk_resampler_private_IIR_FIR: |
| 199 silk_resampler_private_IIR_FIR( S, out, S->delayBuf, S->Fs_in_kHz ); |
| 200 silk_resampler_private_IIR_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSamp
les ], inLen - S->Fs_in_kHz ); |
| 201 break; |
| 202 case USE_silk_resampler_private_down_FIR: |
| 203 silk_resampler_private_down_FIR( S, out, S->delayBuf, S->Fs_in_kHz )
; |
| 204 silk_resampler_private_down_FIR( S, &out[ S->Fs_out_kHz ], &in[ nSam
ples ], inLen - S->Fs_in_kHz ); |
| 205 break; |
| 206 default: |
| 207 silk_memcpy( out, S->delayBuf, S->Fs_in_kHz * sizeof( opus_int16 ) )
; |
| 208 silk_memcpy( &out[ S->Fs_out_kHz ], &in[ nSamples ], ( inLen - S->Fs
_in_kHz ) * sizeof( opus_int16 ) ); |
| 209 } |
| 210 |
| 211 /* Copy to delay buffer */ |
| 212 silk_memcpy( S->delayBuf, &in[ inLen - S->inputDelay ], S->inputDelay * size
of( opus_int16 ) ); |
| 213 |
| 214 return 0; |
| 215 } |
| OLD | NEW |