| OLD | NEW |
| (Empty) | |
| 1 /*********************************************************************** |
| 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| 3 Redistribution and use in source and binary forms, with or without |
| 4 modification, are permitted provided that the following conditions |
| 5 are met: |
| 6 - Redistributions of source code must retain the above copyright notice, |
| 7 this list of conditions and the following disclaimer. |
| 8 - Redistributions in binary form must reproduce the above copyright |
| 9 notice, this list of conditions and the following disclaimer in the |
| 10 documentation and/or other materials provided with the distribution. |
| 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
| 12 names of specific contributors, may be used to endorse or promote |
| 13 products derived from this software without specific prior written |
| 14 permission. |
| 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” |
| 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 25 POSSIBILITY OF SUCH DAMAGE. |
| 26 ***********************************************************************/ |
| 27 |
| 28 #ifdef HAVE_CONFIG_H |
| 29 #include "config.h" |
| 30 #endif |
| 31 |
| 32 #include "SigProc_FLP.h" |
| 33 #include "tuning_parameters.h" |
| 34 #include "define.h" |
| 35 |
| 36 #define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 1
6000 + 16 ) * 4 = 384*/ |
| 37 |
| 38 /* Compute reflection coefficients from input signal */ |
| 39 silk_float silk_burg_modified_FLP( /* O returns residual energy
*/ |
| 40 silk_float A[], /* O prediction coefficients (len
gth order) */ |
| 41 const silk_float x[], /* I input signal, length: nb_sub
fr*(D+L_sub) */ |
| 42 const silk_float minInvGain, /* I minimum inverse prediction g
ain */ |
| 43 const opus_int subfr_length, /* I input signal subframe length
(incl. D preceeding samples) */ |
| 44 const opus_int nb_subfr, /* I number of subframes stacked
in x */ |
| 45 const opus_int D /* I order
*/ |
| 46 ) |
| 47 { |
| 48 opus_int k, n, s, reached_max_gain; |
| 49 double C0, invGain, num, nrg_f, nrg_b, rc, Atmp, tmp1, tmp2; |
| 50 const silk_float *x_ptr; |
| 51 double C_first_row[ SILK_MAX_ORDER_LPC ], C_last_row[ SILK_MAX_ORD
ER_LPC ]; |
| 52 double CAf[ SILK_MAX_ORDER_LPC + 1 ], CAb[ SILK_MAX_ORDER_LPC + 1
]; |
| 53 double Af[ SILK_MAX_ORDER_LPC ]; |
| 54 |
| 55 silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE ); |
| 56 |
| 57 /* Compute autocorrelations, added over subframes */ |
| 58 C0 = silk_energy_FLP( x, nb_subfr * subfr_length ); |
| 59 silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( double ) ); |
| 60 for( s = 0; s < nb_subfr; s++ ) { |
| 61 x_ptr = x + s * subfr_length; |
| 62 for( n = 1; n < D + 1; n++ ) { |
| 63 C_first_row[ n - 1 ] += silk_inner_product_FLP( x_ptr, x_ptr + n, su
bfr_length - n ); |
| 64 } |
| 65 } |
| 66 silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( double )
); |
| 67 |
| 68 /* Initialize */ |
| 69 CAb[ 0 ] = CAf[ 0 ] = C0 + FIND_LPC_COND_FAC * C0 + 1e-9f; |
| 70 invGain = 1.0f; |
| 71 reached_max_gain = 0; |
| 72 for( n = 0; n < D; n++ ) { |
| 73 /* Update first row of correlation matrix (without first element) */ |
| 74 /* Update last row of correlation matrix (without last element, stored i
n reversed order) */ |
| 75 /* Update C * Af */ |
| 76 /* Update C * flipud(Af) (stored in reversed order) */ |
| 77 for( s = 0; s < nb_subfr; s++ ) { |
| 78 x_ptr = x + s * subfr_length; |
| 79 tmp1 = x_ptr[ n ]; |
| 80 tmp2 = x_ptr[ subfr_length - n - 1 ]; |
| 81 for( k = 0; k < n; k++ ) { |
| 82 C_first_row[ k ] -= x_ptr[ n ] * x_ptr[ n - k - 1 ]; |
| 83 C_last_row[ k ] -= x_ptr[ subfr_length - n - 1 ] * x_ptr[ subfr
_length - n + k ]; |
| 84 Atmp = Af[ k ]; |
| 85 tmp1 += x_ptr[ n - k - 1 ] * Atmp; |
| 86 tmp2 += x_ptr[ subfr_length - n + k ] * Atmp; |
| 87 } |
| 88 for( k = 0; k <= n; k++ ) { |
| 89 CAf[ k ] -= tmp1 * x_ptr[ n - k ]; |
| 90 CAb[ k ] -= tmp2 * x_ptr[ subfr_length - n + k - 1 ]; |
| 91 } |
| 92 } |
| 93 tmp1 = C_first_row[ n ]; |
| 94 tmp2 = C_last_row[ n ]; |
| 95 for( k = 0; k < n; k++ ) { |
| 96 Atmp = Af[ k ]; |
| 97 tmp1 += C_last_row[ n - k - 1 ] * Atmp; |
| 98 tmp2 += C_first_row[ n - k - 1 ] * Atmp; |
| 99 } |
| 100 CAf[ n + 1 ] = tmp1; |
| 101 CAb[ n + 1 ] = tmp2; |
| 102 |
| 103 /* Calculate nominator and denominator for the next order reflection (pa
rcor) coefficient */ |
| 104 num = CAb[ n + 1 ]; |
| 105 nrg_b = CAb[ 0 ]; |
| 106 nrg_f = CAf[ 0 ]; |
| 107 for( k = 0; k < n; k++ ) { |
| 108 Atmp = Af[ k ]; |
| 109 num += CAb[ n - k ] * Atmp; |
| 110 nrg_b += CAb[ k + 1 ] * Atmp; |
| 111 nrg_f += CAf[ k + 1 ] * Atmp; |
| 112 } |
| 113 silk_assert( nrg_f > 0.0 ); |
| 114 silk_assert( nrg_b > 0.0 ); |
| 115 |
| 116 /* Calculate the next order reflection (parcor) coefficient */ |
| 117 rc = -2.0 * num / ( nrg_f + nrg_b ); |
| 118 silk_assert( rc > -1.0 && rc < 1.0 ); |
| 119 |
| 120 /* Update inverse prediction gain */ |
| 121 tmp1 = invGain * ( 1.0 - rc * rc ); |
| 122 if( tmp1 <= minInvGain ) { |
| 123 /* Max prediction gain exceeded; set reflection coefficient such tha
t max prediction gain is exactly hit */ |
| 124 rc = sqrt( 1.0 - minInvGain / invGain ); |
| 125 if( num > 0 ) { |
| 126 /* Ensure adjusted reflection coefficients has the original sign
*/ |
| 127 rc = -rc; |
| 128 } |
| 129 invGain = minInvGain; |
| 130 reached_max_gain = 1; |
| 131 } else { |
| 132 invGain = tmp1; |
| 133 } |
| 134 |
| 135 /* Update the AR coefficients */ |
| 136 for( k = 0; k < (n + 1) >> 1; k++ ) { |
| 137 tmp1 = Af[ k ]; |
| 138 tmp2 = Af[ n - k - 1 ]; |
| 139 Af[ k ] = tmp1 + rc * tmp2; |
| 140 Af[ n - k - 1 ] = tmp2 + rc * tmp1; |
| 141 } |
| 142 Af[ n ] = rc; |
| 143 |
| 144 if( reached_max_gain ) { |
| 145 /* Reached max prediction gain; set remaining coefficients to zero a
nd exit loop */ |
| 146 for( k = n + 1; k < D; k++ ) { |
| 147 Af[ k ] = 0.0; |
| 148 } |
| 149 break; |
| 150 } |
| 151 |
| 152 /* Update C * Af and C * Ab */ |
| 153 for( k = 0; k <= n + 1; k++ ) { |
| 154 tmp1 = CAf[ k ]; |
| 155 CAf[ k ] += rc * CAb[ n - k + 1 ]; |
| 156 CAb[ n - k + 1 ] += rc * tmp1; |
| 157 } |
| 158 } |
| 159 |
| 160 if( reached_max_gain ) { |
| 161 /* Convert to silk_float */ |
| 162 for( k = 0; k < D; k++ ) { |
| 163 A[ k ] = (silk_float)( -Af[ k ] ); |
| 164 } |
| 165 /* Subtract energy of preceeding samples from C0 */ |
| 166 for( s = 0; s < nb_subfr; s++ ) { |
| 167 C0 -= silk_energy_FLP( x + s * subfr_length, D ); |
| 168 } |
| 169 /* Approximate residual energy */ |
| 170 nrg_f = C0 * invGain; |
| 171 } else { |
| 172 /* Compute residual energy and store coefficients as silk_float */ |
| 173 nrg_f = CAf[ 0 ]; |
| 174 tmp1 = 1.0; |
| 175 for( k = 0; k < D; k++ ) { |
| 176 Atmp = Af[ k ]; |
| 177 nrg_f += CAf[ k + 1 ] * Atmp; |
| 178 tmp1 += Atmp * Atmp; |
| 179 A[ k ] = (silk_float)(-Atmp); |
| 180 } |
| 181 nrg_f -= FIND_LPC_COND_FAC * C0 * tmp1; |
| 182 } |
| 183 |
| 184 /* Return residual energy */ |
| 185 return (silk_float)nrg_f; |
| 186 } |
| OLD | NEW |