| OLD | NEW |
| (Empty) | |
| 1 /*********************************************************************** |
| 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| 3 Redistribution and use in source and binary forms, with or without |
| 4 modification, are permitted provided that the following conditions |
| 5 are met: |
| 6 - Redistributions of source code must retain the above copyright notice, |
| 7 this list of conditions and the following disclaimer. |
| 8 - Redistributions in binary form must reproduce the above copyright |
| 9 notice, this list of conditions and the following disclaimer in the |
| 10 documentation and/or other materials provided with the distribution. |
| 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
| 12 names of specific contributors, may be used to endorse or promote |
| 13 products derived from this software without specific prior written |
| 14 permission. |
| 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” |
| 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 25 POSSIBILITY OF SUCH DAMAGE. |
| 26 ***********************************************************************/ |
| 27 |
| 28 #ifdef HAVE_CONFIG_H |
| 29 #include "config.h" |
| 30 #endif |
| 31 |
| 32 #include "main_FIX.h" |
| 33 #include "tuning_parameters.h" |
| 34 |
| 35 /*****************************/ |
| 36 /* Internal function headers */ |
| 37 /*****************************/ |
| 38 |
| 39 typedef struct { |
| 40 opus_int32 Q36_part; |
| 41 opus_int32 Q48_part; |
| 42 } inv_D_t; |
| 43 |
| 44 /* Factorize square matrix A into LDL form */ |
| 45 static inline void silk_LDL_factorize_FIX( |
| 46 opus_int32 *A, /* I/O Pointer to Symetric Square Matrix
*/ |
| 47 opus_int M, /* I Size of Matrix
*/ |
| 48 opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Ma
trix */ |
| 49 inv_D_t *inv_D /* I/O Pointer to vector holding inverted di
agonal elements of D */ |
| 50 ); |
| 51 |
| 52 /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ |
| 53 static inline void silk_LS_SolveFirst_FIX( |
| 54 const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix
*/ |
| 55 opus_int M, /* I Dim of Matrix equation
*/ |
| 56 const opus_int32 *b, /* I b Vector
*/ |
| 57 opus_int32 *x_Q16 /* O x Vector
*/ |
| 58 ); |
| 59 |
| 60 /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ |
| 61 static inline void silk_LS_SolveLast_FIX( |
| 62 const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix
*/ |
| 63 const opus_int M, /* I Dim of Matrix equation
*/ |
| 64 const opus_int32 *b, /* I b Vector
*/ |
| 65 opus_int32 *x_Q16 /* O x Vector
*/ |
| 66 ); |
| 67 |
| 68 static inline void silk_LS_divide_Q16_FIX( |
| 69 opus_int32 T[], /* I/O Numenator vector
*/ |
| 70 inv_D_t *inv_D, /* I 1 / D vector
*/ |
| 71 opus_int M /* I dimension
*/ |
| 72 ); |
| 73 |
| 74 /* Solves Ax = b, assuming A is symmetric */ |
| 75 void silk_solve_LDL_FIX( |
| 76 opus_int32 *A, /* I
Pointer to symetric square matrix A
*/ |
| 77 opus_int M, /* I
Size of matrix
*/ |
| 78 const opus_int32 *b, /* I
Pointer to b vector
*/ |
| 79 opus_int32 *x_Q16 /* O
Pointer to x solution vector
*/ |
| 80 ) |
| 81 { |
| 82 opus_int32 L_Q16[ MAX_MATRIX_SIZE * MAX_MATRIX_SIZE ]; |
| 83 opus_int32 Y[ MAX_MATRIX_SIZE ]; |
| 84 inv_D_t inv_D[ MAX_MATRIX_SIZE ]; |
| 85 |
| 86 silk_assert( M <= MAX_MATRIX_SIZE ); |
| 87 |
| 88 /*************************************************** |
| 89 Factorize A by LDL such that A = L*D*L', |
| 90 where L is lower triangular with ones on diagonal |
| 91 ****************************************************/ |
| 92 silk_LDL_factorize_FIX( A, M, L_Q16, inv_D ); |
| 93 |
| 94 /**************************************************** |
| 95 * substitute D*L'*x = Y. ie: |
| 96 L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b |
| 97 ******************************************************/ |
| 98 silk_LS_SolveFirst_FIX( L_Q16, M, b, Y ); |
| 99 |
| 100 /**************************************************** |
| 101 D*L'*x = Y <=> L'*x = inv(D)*Y, because D is |
| 102 diagonal just multiply with 1/d_i |
| 103 ****************************************************/ |
| 104 silk_LS_divide_Q16_FIX( Y, inv_D, M ); |
| 105 |
| 106 /**************************************************** |
| 107 x = inv(L') * inv(D) * Y |
| 108 *****************************************************/ |
| 109 silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 ); |
| 110 } |
| 111 |
| 112 static inline void silk_LDL_factorize_FIX( |
| 113 opus_int32 *A, /* I/O Pointer to Symetric Square Matrix
*/ |
| 114 opus_int M, /* I Size of Matrix
*/ |
| 115 opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Ma
trix */ |
| 116 inv_D_t *inv_D /* I/O Pointer to vector holding inverted di
agonal elements of D */ |
| 117 ) |
| 118 { |
| 119 opus_int i, j, k, status, loop_count; |
| 120 const opus_int32 *ptr1, *ptr2; |
| 121 opus_int32 diag_min_value, tmp_32, err; |
| 122 opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ]; |
| 123 opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48; |
| 124 |
| 125 silk_assert( M <= MAX_MATRIX_SIZE ); |
| 126 |
| 127 status = 1; |
| 128 diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SM
ULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 ); |
| 129 for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) { |
| 130 status = 0; |
| 131 for( j = 0; j < M; j++ ) { |
| 132 ptr1 = matrix_adr( L_Q16, j, 0, M ); |
| 133 tmp_32 = 0; |
| 134 for( i = 0; i < j; i++ ) { |
| 135 v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 *
/ |
| 136 tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 *
/ |
| 137 } |
| 138 tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 ); |
| 139 |
| 140 if( tmp_32 < diag_min_value ) { |
| 141 tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value
), tmp_32 ); |
| 142 /* Matrix not positive semi-definite, or ill conditioned */ |
| 143 for( i = 0; i < M; i++ ) { |
| 144 matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i,
M ), tmp_32 ); |
| 145 } |
| 146 status = 1; |
| 147 break; |
| 148 } |
| 149 D_Q0[ j ] = tmp_32; /* always < max(Correlat
ion) */ |
| 150 |
| 151 /* two-step division */ |
| 152 one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 );
/* Q36 */ |
| 153 one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 );
/* Q40 */ |
| 154 err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_
diag_Q40 ) ); /* Q24 */ |
| 155 one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 );
/* Q48 */ |
| 156 |
| 157 /* Save 1/Ds */ |
| 158 inv_D[ j ].Q36_part = one_div_diag_Q36; |
| 159 inv_D[ j ].Q48_part = one_div_diag_Q48; |
| 160 |
| 161 matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */ |
| 162 ptr1 = matrix_adr( A, j, 0, M ); |
| 163 ptr2 = matrix_adr( L_Q16, j + 1, 0, M ); |
| 164 for( i = j + 1; i < M; i++ ) { |
| 165 tmp_32 = 0; |
| 166 for( k = 0; k < j; k++ ) { |
| 167 tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0
*/ |
| 168 } |
| 169 tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correl
ation) */ |
| 170 |
| 171 /* tmp_32 / D_Q0[j] : Divide to Q16 */ |
| 172 matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, o
ne_div_diag_Q48 ), |
| 173 silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); |
| 174 |
| 175 /* go to next column */ |
| 176 ptr2 += M; |
| 177 } |
| 178 } |
| 179 } |
| 180 |
| 181 silk_assert( status == 0 ); |
| 182 } |
| 183 |
| 184 static inline void silk_LS_divide_Q16_FIX( |
| 185 opus_int32 T[], /* I/O Numenator vector
*/ |
| 186 inv_D_t *inv_D, /* I 1 / D vector
*/ |
| 187 opus_int M /* I dimension
*/ |
| 188 ) |
| 189 { |
| 190 opus_int i; |
| 191 opus_int32 tmp_32; |
| 192 opus_int32 one_div_diag_Q36, one_div_diag_Q48; |
| 193 |
| 194 for( i = 0; i < M; i++ ) { |
| 195 one_div_diag_Q36 = inv_D[ i ].Q36_part; |
| 196 one_div_diag_Q48 = inv_D[ i ].Q48_part; |
| 197 |
| 198 tmp_32 = T[ i ]; |
| 199 T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT
( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) ); |
| 200 } |
| 201 } |
| 202 |
| 203 /* Solve Lx = b, when L is lower triangular and has ones on the diagonal */ |
| 204 static inline void silk_LS_SolveFirst_FIX( |
| 205 const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix
*/ |
| 206 opus_int M, /* I Dim of Matrix equation
*/ |
| 207 const opus_int32 *b, /* I b Vector
*/ |
| 208 opus_int32 *x_Q16 /* O x Vector
*/ |
| 209 ) |
| 210 { |
| 211 opus_int i, j; |
| 212 const opus_int32 *ptr32; |
| 213 opus_int32 tmp_32; |
| 214 |
| 215 for( i = 0; i < M; i++ ) { |
| 216 ptr32 = matrix_adr( L_Q16, i, 0, M ); |
| 217 tmp_32 = 0; |
| 218 for( j = 0; j < i; j++ ) { |
| 219 tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] ); |
| 220 } |
| 221 x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); |
| 222 } |
| 223 } |
| 224 |
| 225 /* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */ |
| 226 static inline void silk_LS_SolveLast_FIX( |
| 227 const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix
*/ |
| 228 const opus_int M, /* I Dim of Matrix equation
*/ |
| 229 const opus_int32 *b, /* I b Vector
*/ |
| 230 opus_int32 *x_Q16 /* O x Vector
*/ |
| 231 ) |
| 232 { |
| 233 opus_int i, j; |
| 234 const opus_int32 *ptr32; |
| 235 opus_int32 tmp_32; |
| 236 |
| 237 for( i = M - 1; i >= 0; i-- ) { |
| 238 ptr32 = matrix_adr( L_Q16, 0, i, M ); |
| 239 tmp_32 = 0; |
| 240 for( j = M - 1; j > i; j-- ) { |
| 241 tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j
] ); |
| 242 } |
| 243 x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 ); |
| 244 } |
| 245 } |
| OLD | NEW |