| OLD | NEW |
| (Empty) | |
| 1 /*********************************************************************** |
| 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved. |
| 3 Redistribution and use in source and binary forms, with or without |
| 4 modification, are permitted provided that the following conditions |
| 5 are met: |
| 6 - Redistributions of source code must retain the above copyright notice, |
| 7 this list of conditions and the following disclaimer. |
| 8 - Redistributions in binary form must reproduce the above copyright |
| 9 notice, this list of conditions and the following disclaimer in the |
| 10 documentation and/or other materials provided with the distribution. |
| 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the |
| 12 names of specific contributors, may be used to endorse or promote |
| 13 products derived from this software without specific prior written |
| 14 permission. |
| 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” |
| 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 25 POSSIBILITY OF SUCH DAMAGE. |
| 26 ***********************************************************************/ |
| 27 |
| 28 #ifdef HAVE_CONFIG_H |
| 29 #include "config.h" |
| 30 #endif |
| 31 |
| 32 #include "main_FIX.h" |
| 33 #include "tuning_parameters.h" |
| 34 |
| 35 /* Compute gain to make warped filter coefficients have a zero mean log frequenc
y response on a */ |
| 36 /* non-warped frequency scale. (So that it can be implemented with a minimum-pha
se monic filter.) */ |
| 37 /* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk
we omit the first */ |
| 38 /* coefficient in an array of coefficients, for monic filters.
*/ |
| 39 static inline opus_int32 warped_gain( /* gain in Q16*/ |
| 40 const opus_int32 *coefs_Q24, |
| 41 opus_int lambda_Q16, |
| 42 opus_int order |
| 43 ) { |
| 44 opus_int i; |
| 45 opus_int32 gain_Q24; |
| 46 |
| 47 lambda_Q16 = -lambda_Q16; |
| 48 gain_Q24 = coefs_Q24[ order - 1 ]; |
| 49 for( i = order - 2; i >= 0; i-- ) { |
| 50 gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 ); |
| 51 } |
| 52 gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 ); |
| 53 return silk_INVERSE32_varQ( gain_Q24, 40 ); |
| 54 } |
| 55 |
| 56 /* Convert warped filter coefficients to monic pseudo-warped coefficients and li
mit maximum */ |
| 57 /* amplitude of monic warped coefficients by using bandwidth expansion on the tr
ue coefficients */ |
| 58 static inline void limit_warped_coefs( |
| 59 opus_int32 *coefs_syn_Q24, |
| 60 opus_int32 *coefs_ana_Q24, |
| 61 opus_int lambda_Q16, |
| 62 opus_int32 limit_Q24, |
| 63 opus_int order |
| 64 ) { |
| 65 opus_int i, iter, ind = 0; |
| 66 opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_syn_Q16, gain_ana_Q16; |
| 67 opus_int32 nom_Q16, den_Q24; |
| 68 |
| 69 /* Convert to monic coefficients */ |
| 70 lambda_Q16 = -lambda_Q16; |
| 71 for( i = order - 1; i > 0; i-- ) { |
| 72 coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_syn_
Q24[ i ], lambda_Q16 ); |
| 73 coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_ana_
Q24[ i ], lambda_Q16 ); |
| 74 } |
| 75 lambda_Q16 = -lambda_Q16; |
| 76 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16,
lambda_Q16 ); |
| 77 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], lambd
a_Q16 ); |
| 78 gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
| 79 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], lambd
a_Q16 ); |
| 80 gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
| 81 for( i = 0; i < order; i++ ) { |
| 82 coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] ); |
| 83 coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] ); |
| 84 } |
| 85 |
| 86 for( iter = 0; iter < 10; iter++ ) { |
| 87 /* Find maximum absolute value */ |
| 88 maxabs_Q24 = -1; |
| 89 for( i = 0; i < order; i++ ) { |
| 90 tmp = silk_max( silk_abs_int32( coefs_syn_Q24[ i ] ), silk_abs_int32
( coefs_ana_Q24[ i ] ) ); |
| 91 if( tmp > maxabs_Q24 ) { |
| 92 maxabs_Q24 = tmp; |
| 93 ind = i; |
| 94 } |
| 95 } |
| 96 if( maxabs_Q24 <= limit_Q24 ) { |
| 97 /* Coefficients are within range - done */ |
| 98 return; |
| 99 } |
| 100 |
| 101 /* Convert back to true warped coefficients */ |
| 102 for( i = 1; i < order; i++ ) { |
| 103 coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_
syn_Q24[ i ], lambda_Q16 ); |
| 104 coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_
ana_Q24[ i ], lambda_Q16 ); |
| 105 } |
| 106 gain_syn_Q16 = silk_INVERSE32_varQ( gain_syn_Q16, 32 ); |
| 107 gain_ana_Q16 = silk_INVERSE32_varQ( gain_ana_Q16, 32 ); |
| 108 for( i = 0; i < order; i++ ) { |
| 109 coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] )
; |
| 110 coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] )
; |
| 111 } |
| 112 |
| 113 /* Apply bandwidth expansion */ |
| 114 chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ( |
| 115 silk_SMULWB( maxabs_Q24 - limit_Q24, silk_SMLABB( SILK_FIX_CONST( 0.
8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ), |
| 116 silk_MUL( maxabs_Q24, ind + 1 ), 22 ); |
| 117 silk_bwexpander_32( coefs_syn_Q24, order, chirp_Q16 ); |
| 118 silk_bwexpander_32( coefs_ana_Q24, order, chirp_Q16 ); |
| 119 |
| 120 /* Convert to monic warped coefficients */ |
| 121 lambda_Q16 = -lambda_Q16; |
| 122 for( i = order - 1; i > 0; i-- ) { |
| 123 coefs_syn_Q24[ i - 1 ] = silk_SMLAWB( coefs_syn_Q24[ i - 1 ], coefs_
syn_Q24[ i ], lambda_Q16 ); |
| 124 coefs_ana_Q24[ i - 1 ] = silk_SMLAWB( coefs_ana_Q24[ i - 1 ], coefs_
ana_Q24[ i ], lambda_Q16 ); |
| 125 } |
| 126 lambda_Q16 = -lambda_Q16; |
| 127 nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q
16, lambda_Q16 ); |
| 128 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_syn_Q24[ 0 ], l
ambda_Q16 ); |
| 129 gain_syn_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
| 130 den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_ana_Q24[ 0 ], l
ambda_Q16 ); |
| 131 gain_ana_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 ); |
| 132 for( i = 0; i < order; i++ ) { |
| 133 coefs_syn_Q24[ i ] = silk_SMULWW( gain_syn_Q16, coefs_syn_Q24[ i ] )
; |
| 134 coefs_ana_Q24[ i ] = silk_SMULWW( gain_ana_Q16, coefs_ana_Q24[ i ] )
; |
| 135 } |
| 136 } |
| 137 silk_assert( 0 ); |
| 138 } |
| 139 |
| 140 /**************************************************************/ |
| 141 /* Compute noise shaping coefficients and initial gain values */ |
| 142 /**************************************************************/ |
| 143 void silk_noise_shape_analysis_FIX( |
| 144 silk_encoder_state_FIX *psEnc, /* I
/O Encoder state FIX
*/ |
| 145 silk_encoder_control_FIX *psEncCtrl, /* I
/O Encoder control FIX
*/ |
| 146 const opus_int16 *pitch_res, /* I
LPC residual from pitch analysis
*/ |
| 147 const opus_int16 *x /* I
Input signal [ frame_length + la_shape ]
*/ |
| 148 ) |
| 149 { |
| 150 silk_shape_state_FIX *psShapeSt = &psEnc->sShape; |
| 151 opus_int k, i, nSamples, Qnrg, b_Q14, warping_Q16, scale = 0; |
| 152 opus_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp3
2; |
| 153 opus_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_var
iation_Q7; |
| 154 opus_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16,
strength_Q16, b_Q8; |
| 155 opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ]; |
| 156 opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ]; |
| 157 opus_int32 AR1_Q24[ MAX_SHAPE_LPC_ORDER ]; |
| 158 opus_int32 AR2_Q24[ MAX_SHAPE_LPC_ORDER ]; |
| 159 opus_int16 x_windowed[ SHAPE_LPC_WIN_MAX ]; |
| 160 const opus_int16 *x_ptr, *pitch_res_ptr; |
| 161 |
| 162 /* Point to start of first LPC analysis block */ |
| 163 x_ptr = x - psEnc->sCmn.la_shape; |
| 164 |
| 165 /****************/ |
| 166 /* GAIN CONTROL */ |
| 167 /****************/ |
| 168 SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7; |
| 169 |
| 170 /* Input quality is the average of the quality in the lowest two VAD bands *
/ |
| 171 psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->s
Cmn.input_quality_bands_Q15[ 0 ] |
| 172 + psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 ); |
| 173 |
| 174 /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ |
| 175 psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUN
D( SNR_adj_dB_Q7 - |
| 176 SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 ); |
| 177 |
| 178 /* Reduce coding SNR during low speech activity */ |
| 179 if( psEnc->sCmn.useCBR == 0 ) { |
| 180 b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8; |
| 181 b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 ); |
| 182 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, |
| 183 silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8
), /* Q11*/ |
| 184 silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q1
4, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/ |
| 185 } |
| 186 |
| 187 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
| 188 /* Reduce gains for periodic signals */ |
| 189 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INC
R_dB, 8 ), psEnc->LTPCorr_Q15 ); |
| 190 } else { |
| 191 /* For unvoiced signals and low-quality input, adjust the quality slower
than SNR_dB setting */ |
| 192 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, |
| 193 silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), p
sEnc->sCmn.SNR_dB_Q7 ), |
| 194 SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 ); |
| 195 } |
| 196 |
| 197 /*************************/ |
| 198 /* SPARSENESS PROCESSING */ |
| 199 /*************************/ |
| 200 /* Set quantizer offset */ |
| 201 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
| 202 /* Initally set to 0; may be overruled in process_gains(..) */ |
| 203 psEnc->sCmn.indices.quantOffsetType = 0; |
| 204 psEncCtrl->sparseness_Q8 = 0; |
| 205 } else { |
| 206 /* Sparseness measure, based on relative fluctuations of energy per 2 mi
lliseconds */ |
| 207 nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); |
| 208 energy_variation_Q7 = 0; |
| 209 log_energy_prev_Q7 = 0; |
| 210 pitch_res_ptr = pitch_res; |
| 211 for( k = 0; k < silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr )
/ 2; k++ ) { |
| 212 silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); |
| 213 nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/ |
| 214 |
| 215 log_energy_Q7 = silk_lin2log( nrg ); |
| 216 if( k > 0 ) { |
| 217 energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev
_Q7 ); |
| 218 } |
| 219 log_energy_prev_Q7 = log_energy_Q7; |
| 220 pitch_res_ptr += nSamples; |
| 221 } |
| 222 |
| 223 psEncCtrl->sparseness_Q8 = silk_RSHIFT( silk_sigm_Q15( silk_SMULWB( ener
gy_variation_Q7 - |
| 224 SILK_FIX_CONST( 5.0, 7 ), SILK_FIX_CONST( 0.1, 16 ) ) ), 7 ); |
| 225 |
| 226 /* Set quantization offset depending on sparseness measure */ |
| 227 if( psEncCtrl->sparseness_Q8 > SILK_FIX_CONST( SPARSENESS_THRESHOLD_QNT_
OFFSET, 8 ) ) { |
| 228 psEnc->sCmn.indices.quantOffsetType = 0; |
| 229 } else { |
| 230 psEnc->sCmn.indices.quantOffsetType = 1; |
| 231 } |
| 232 |
| 233 /* Increase coding SNR for sparse signals */ |
| 234 SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( SPARSE_SNR_I
NCR_dB, 15 ), psEncCtrl->sparseness_Q8 - SILK_FIX_CONST( 0.5, 8 ) ); |
| 235 } |
| 236 |
| 237 /*******************************/ |
| 238 /* Control bandwidth expansion */ |
| 239 /*******************************/ |
| 240 /* More BWE for signals with high prediction gain */ |
| 241 strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PI
TCH_WHITE_NOISE_FRACTION, 16 ) ); |
| 242 BWExp1_Q16 = BWExp2_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSI
ON, 16 ), |
| 243 silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16
); |
| 244 delta_Q16 = silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - silk_SMULBB( 3, psEncC
trl->coding_quality_Q14 ), |
| 245 SILK_FIX_CONST( LOW_RATE_BANDWIDTH_EXPANSION_DELTA, 16 ) ); |
| 246 BWExp1_Q16 = silk_SUB32( BWExp1_Q16, delta_Q16 ); |
| 247 BWExp2_Q16 = silk_ADD32( BWExp2_Q16, delta_Q16 ); |
| 248 /* BWExp1 will be applied after BWExp2, so make it relative */ |
| 249 BWExp1_Q16 = silk_DIV32_16( silk_LSHIFT( BWExp1_Q16, 14 ), silk_RSHIFT( BWEx
p2_Q16, 2 ) ); |
| 250 |
| 251 if( psEnc->sCmn.warping_Q16 > 0 ) { |
| 252 /* Slightly more warping in analysis will move quantization noise up in
frequency, where it's better masked */ |
| 253 warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtr
l->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) ); |
| 254 } else { |
| 255 warping_Q16 = 0; |
| 256 } |
| 257 |
| 258 /********************************************/ |
| 259 /* Compute noise shaping AR coefs and gains */ |
| 260 /********************************************/ |
| 261 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
| 262 /* Apply window: sine slope followed by flat part followed by cosine slo
pe */ |
| 263 opus_int shift, slope_part, flat_part; |
| 264 flat_part = psEnc->sCmn.fs_kHz * 3; |
| 265 slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 ); |
| 266 |
| 267 silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part ); |
| 268 shift = slope_part; |
| 269 silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_
int16) ); |
| 270 shift += flat_part; |
| 271 silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part
); |
| 272 |
| 273 /* Update pointer: next LPC analysis block */ |
| 274 x_ptr += psEnc->sCmn.subfr_length; |
| 275 |
| 276 if( psEnc->sCmn.warping_Q16 > 0 ) { |
| 277 /* Calculate warped auto correlation */ |
| 278 silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warp
ing_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder ); |
| 279 } else { |
| 280 /* Calculate regular auto correlation */ |
| 281 silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLe
ngth, psEnc->sCmn.shapingLPCOrder + 1 ); |
| 282 } |
| 283 |
| 284 /* Add white noise, as a fraction of energy */ |
| 285 auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_
RSHIFT( auto_corr[ 0 ], 4 ), |
| 286 SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) ); |
| 287 |
| 288 /* Calculate the reflection coefficients using schur */ |
| 289 nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrde
r ); |
| 290 silk_assert( nrg >= 0 ); |
| 291 |
| 292 /* Convert reflection coefficients to prediction coefficients */ |
| 293 silk_k2a_Q16( AR2_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); |
| 294 |
| 295 Qnrg = -scale; /* range: -12...30*/ |
| 296 silk_assert( Qnrg >= -12 ); |
| 297 silk_assert( Qnrg <= 30 ); |
| 298 |
| 299 /* Make sure that Qnrg is an even number */ |
| 300 if( Qnrg & 1 ) { |
| 301 Qnrg -= 1; |
| 302 nrg >>= 1; |
| 303 } |
| 304 |
| 305 tmp32 = silk_SQRT_APPROX( nrg ); |
| 306 Qnrg >>= 1; /* range: -6...15*/ |
| 307 |
| 308 psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg ); |
| 309 |
| 310 if( psEnc->sCmn.warping_Q16 > 0 ) { |
| 311 /* Adjust gain for warping */ |
| 312 gain_mult_Q16 = warped_gain( AR2_Q24, warping_Q16, psEnc->sCmn.shapi
ngLPCOrder ); |
| 313 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); |
| 314 if ( silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ),
gain_mult_Q16 ) >= ( silk_int32_MAX >> 1 ) ) { |
| 315 psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX; |
| 316 } else { |
| 317 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k
], gain_mult_Q16 ); |
| 318 } |
| 319 } |
| 320 |
| 321 /* Bandwidth expansion for synthesis filter shaping */ |
| 322 silk_bwexpander_32( AR2_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 ); |
| 323 |
| 324 /* Compute noise shaping filter coefficients */ |
| 325 silk_memcpy( AR1_Q24, AR2_Q24, psEnc->sCmn.shapingLPCOrder * sizeof( opu
s_int32 ) ); |
| 326 |
| 327 /* Bandwidth expansion for analysis filter shaping */ |
| 328 silk_assert( BWExp1_Q16 <= SILK_FIX_CONST( 1.0, 16 ) ); |
| 329 silk_bwexpander_32( AR1_Q24, psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 ); |
| 330 |
| 331 /* Ratio of prediction gains, in energy domain */ |
| 332 pre_nrg_Q30 = silk_LPC_inverse_pred_gain_Q24( AR2_Q24, psEnc->sCmn.shapi
ngLPCOrder ); |
| 333 nrg = silk_LPC_inverse_pred_gain_Q24( AR1_Q24, psEnc->sCmn.shapi
ngLPCOrder ); |
| 334 |
| 335 /*psEncCtrl->GainsPre[ k ] = 1.0f - 0.7f * ( 1.0f - pre_nrg / nrg ) = 0.
3f + 0.7f * pre_nrg / nrg;*/ |
| 336 pre_nrg_Q30 = silk_LSHIFT32( silk_SMULWB( pre_nrg_Q30, SILK_FIX_CONST( 0
.7, 15 ) ), 1 ); |
| 337 psEncCtrl->GainsPre_Q14[ k ] = ( opus_int ) SILK_FIX_CONST( 0.3, 14 ) +
silk_DIV32_varQ( pre_nrg_Q30, nrg, 14 ); |
| 338 |
| 339 /* Convert to monic warped prediction coefficients and limit absolute va
lues */ |
| 340 limit_warped_coefs( AR2_Q24, AR1_Q24, warping_Q16, SILK_FIX_CONST( 3.999
, 24 ), psEnc->sCmn.shapingLPCOrder ); |
| 341 |
| 342 /* Convert from Q24 to Q13 and store in int16 */ |
| 343 for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) { |
| 344 psEncCtrl->AR1_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk
_SAT16( silk_RSHIFT_ROUND( AR1_Q24[ i ], 11 ) ); |
| 345 psEncCtrl->AR2_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk
_SAT16( silk_RSHIFT_ROUND( AR2_Q24[ i ], 11 ) ); |
| 346 } |
| 347 } |
| 348 |
| 349 /*****************/ |
| 350 /* Gain tweaking */ |
| 351 /*****************/ |
| 352 /* Increase gains during low speech activity and put lower limit on gains */ |
| 353 gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_
adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) ); |
| 354 gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK
_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) ); |
| 355 silk_assert( gain_mult_Q16 > 0 ); |
| 356 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
| 357 psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain
_mult_Q16 ); |
| 358 silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 ); |
| 359 psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k
], gain_add_Q16 ); |
| 360 } |
| 361 |
| 362 gain_mult_Q16 = SILK_FIX_CONST( 1.0, 16 ) + silk_RSHIFT_ROUND( silk_MLA( SIL
K_FIX_CONST( INPUT_TILT, 26 ), |
| 363 psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( HIGH_RATE_INPUT_TILT, 12
) ), 10 ); |
| 364 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
| 365 psEncCtrl->GainsPre_Q14[ k ] = silk_SMULWB( gain_mult_Q16, psEncCtrl->Ga
insPre_Q14[ k ] ); |
| 366 } |
| 367 |
| 368 /************************************************/ |
| 369 /* Control low-frequency shaping and noise tilt */ |
| 370 /************************************************/ |
| 371 /* Less low frequency shaping for noisy inputs */ |
| 372 strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB(
SILK_FIX_CONST( 1.0, 12 ), |
| 373 SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.inp
ut_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) ); |
| 374 strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activ
ity_Q8 ), 8 ); |
| 375 if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
| 376 /* Reduce low frequencies quantization noise for periodic signals, depen
ding on pitch lag */ |
| 377 /*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs)
; axis([0, 1000, -10, 1])*/ |
| 378 opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->s
Cmn.fs_kHz ); |
| 379 for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) { |
| 380 b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEnc
Ctrl->pitchL[ k ] ); |
| 381 /* Pack two coefficients in one int32 */ |
| 382 psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 )
- b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 ); |
| 383 psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST(
1.0, 14 ) ); |
| 384 } |
| 385 silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST(
0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of a
n opus_int16*/ |
| 386 Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) - |
| 387 silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_CO
EF, 16 ), |
| 388 silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sC
mn.speech_activity_Q8 ) ); |
| 389 } else { |
| 390 b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q1
4*/ |
| 391 /* Pack two coefficients in one int32 */ |
| 392 psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b
_Q14 - |
| 393 silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b
_Q14 ) ), 16 ); |
| 394 psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0
, 14 ) ); |
| 395 for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) { |
| 396 psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ]; |
| 397 } |
| 398 Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 ); |
| 399 } |
| 400 |
| 401 /****************************/ |
| 402 /* HARMONIC SHAPING CONTROL */ |
| 403 /****************************/ |
| 404 /* Control boosting of harmonic frequencies */ |
| 405 HarmBoost_Q16 = silk_SMULWB( silk_SMULWB( SILK_FIX_CONST( 1.0, 17 ) - silk_L
SHIFT( psEncCtrl->coding_quality_Q14, 3 ), |
| 406 psEnc->LTPCorr_Q15 ), SILK_FIX_CONST( LOW_RATE_HARMONIC_BOOST, 16 ) ); |
| 407 |
| 408 /* More harmonic boost for noisy input signals */ |
| 409 HarmBoost_Q16 = silk_SMLAWB( HarmBoost_Q16, |
| 410 SILK_FIX_CONST( 1.0, 16 ) - silk_LSHIFT( psEncCtrl->input_quality_Q14, 2
), SILK_FIX_CONST( LOW_INPUT_QUALITY_HARMONIC_BOOST, 16 ) ); |
| 411 |
| 412 if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) { |
| 413 /* More harmonic noise shaping for high bitrates or noisy input */ |
| 414 HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ), |
| 415 SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18
) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ), |
| 416 psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW
_QUALITY_HARMONIC_SHAPING, 16 ) ); |
| 417 |
| 418 /* Less harmonic noise shaping for less periodic signals */ |
| 419 HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ), |
| 420 silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) ); |
| 421 } else { |
| 422 HarmShapeGain_Q16 = 0; |
| 423 } |
| 424 |
| 425 /*************************/ |
| 426 /* Smooth over subframes */ |
| 427 /*************************/ |
| 428 for( k = 0; k < MAX_NB_SUBFR; k++ ) { |
| 429 psShapeSt->HarmBoost_smth_Q16 = |
| 430 silk_SMLAWB( psShapeSt->HarmBoost_smth_Q16, HarmBoost_Q16 -
psShapeSt->HarmBoost_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
| 431 psShapeSt->HarmShapeGain_smth_Q16 = |
| 432 silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 -
psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
| 433 psShapeSt->Tilt_smth_Q16 = |
| 434 silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 -
psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) ); |
| 435 |
| 436 psEncCtrl->HarmBoost_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psSha
peSt->HarmBoost_smth_Q16, 2 ); |
| 437 psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psSha
peSt->HarmShapeGain_smth_Q16, 2 ); |
| 438 psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psSha
peSt->Tilt_smth_Q16, 2 ); |
| 439 } |
| 440 } |
| OLD | NEW |