| OLD | NEW |
| (Empty) | |
| 1 /* Copyright (c) 2007-2008 CSIRO |
| 2 Copyright (c) 2007-2009 Xiph.Org Foundation |
| 3 Written by Jean-Marc Valin */ |
| 4 /* |
| 5 Redistribution and use in source and binary forms, with or without |
| 6 modification, are permitted provided that the following conditions |
| 7 are met: |
| 8 |
| 9 - Redistributions of source code must retain the above copyright |
| 10 notice, this list of conditions and the following disclaimer. |
| 11 |
| 12 - Redistributions in binary form must reproduce the above copyright |
| 13 notice, this list of conditions and the following disclaimer in the |
| 14 documentation and/or other materials provided with the distribution. |
| 15 |
| 16 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| 20 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 21 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 22 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 23 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 24 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 25 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 26 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 */ |
| 28 |
| 29 #ifdef HAVE_CONFIG_H |
| 30 #include "config.h" |
| 31 #endif |
| 32 |
| 33 #include <math.h> |
| 34 #include "modes.h" |
| 35 #include "cwrs.h" |
| 36 #include "arch.h" |
| 37 #include "os_support.h" |
| 38 |
| 39 #include "entcode.h" |
| 40 #include "rate.h" |
| 41 |
| 42 static const unsigned char LOG2_FRAC_TABLE[24]={ |
| 43 0, |
| 44 8,13, |
| 45 16,19,21,23, |
| 46 24,26,27,28,29,30,31,32, |
| 47 32,33,34,34,35,36,36,37,37 |
| 48 }; |
| 49 |
| 50 #ifdef CUSTOM_MODES |
| 51 |
| 52 /*Determines if V(N,K) fits in a 32-bit unsigned integer. |
| 53 N and K are themselves limited to 15 bits.*/ |
| 54 static int fits_in32(int _n, int _k) |
| 55 { |
| 56 static const opus_int16 maxN[15] = { |
| 57 32767, 32767, 32767, 1476, 283, 109, 60, 40, |
| 58 29, 24, 20, 18, 16, 14, 13}; |
| 59 static const opus_int16 maxK[15] = { |
| 60 32767, 32767, 32767, 32767, 1172, 238, 95, 53, |
| 61 36, 27, 22, 18, 16, 15, 13}; |
| 62 if (_n>=14) |
| 63 { |
| 64 if (_k>=14) |
| 65 return 0; |
| 66 else |
| 67 return _n <= maxN[_k]; |
| 68 } else { |
| 69 return _k <= maxK[_n]; |
| 70 } |
| 71 } |
| 72 |
| 73 void compute_pulse_cache(CELTMode *m, int LM) |
| 74 { |
| 75 int C; |
| 76 int i; |
| 77 int j; |
| 78 int curr=0; |
| 79 int nbEntries=0; |
| 80 int entryN[100], entryK[100], entryI[100]; |
| 81 const opus_int16 *eBands = m->eBands; |
| 82 PulseCache *cache = &m->cache; |
| 83 opus_int16 *cindex; |
| 84 unsigned char *bits; |
| 85 unsigned char *cap; |
| 86 |
| 87 cindex = opus_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2)); |
| 88 cache->index = cindex; |
| 89 |
| 90 /* Scan for all unique band sizes */ |
| 91 for (i=0;i<=LM+1;i++) |
| 92 { |
| 93 for (j=0;j<m->nbEBands;j++) |
| 94 { |
| 95 int k; |
| 96 int N = (eBands[j+1]-eBands[j])<<i>>1; |
| 97 cindex[i*m->nbEBands+j] = -1; |
| 98 /* Find other bands that have the same size */ |
| 99 for (k=0;k<=i;k++) |
| 100 { |
| 101 int n; |
| 102 for (n=0;n<m->nbEBands && (k!=i || n<j);n++) |
| 103 { |
| 104 if (N == (eBands[n+1]-eBands[n])<<k>>1) |
| 105 { |
| 106 cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n]; |
| 107 break; |
| 108 } |
| 109 } |
| 110 } |
| 111 if (cache->index[i*m->nbEBands+j] == -1 && N!=0) |
| 112 { |
| 113 int K; |
| 114 entryN[nbEntries] = N; |
| 115 K = 0; |
| 116 while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO) |
| 117 K++; |
| 118 entryK[nbEntries] = K; |
| 119 cindex[i*m->nbEBands+j] = curr; |
| 120 entryI[nbEntries] = curr; |
| 121 |
| 122 curr += K+1; |
| 123 nbEntries++; |
| 124 } |
| 125 } |
| 126 } |
| 127 bits = opus_alloc(sizeof(unsigned char)*curr); |
| 128 cache->bits = bits; |
| 129 cache->size = curr; |
| 130 /* Compute the cache for all unique sizes */ |
| 131 for (i=0;i<nbEntries;i++) |
| 132 { |
| 133 unsigned char *ptr = bits+entryI[i]; |
| 134 opus_int16 tmp[MAX_PULSES+1]; |
| 135 get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES); |
| 136 for (j=1;j<=entryK[i];j++) |
| 137 ptr[j] = tmp[get_pulses(j)]-1; |
| 138 ptr[0] = entryK[i]; |
| 139 } |
| 140 |
| 141 /* Compute the maximum rate for each band at which we'll reliably use as |
| 142 many bits as we ask for. */ |
| 143 cache->caps = cap = opus_alloc(sizeof(cache->caps[0])*(LM+1)*2*m->nbEBands); |
| 144 for (i=0;i<=LM;i++) |
| 145 { |
| 146 for (C=1;C<=2;C++) |
| 147 { |
| 148 for (j=0;j<m->nbEBands;j++) |
| 149 { |
| 150 int N0; |
| 151 int max_bits; |
| 152 N0 = m->eBands[j+1]-m->eBands[j]; |
| 153 /* N=1 bands only have a sign bit and fine bits. */ |
| 154 if (N0<<i == 1) |
| 155 max_bits = C*(1+MAX_FINE_BITS)<<BITRES; |
| 156 else |
| 157 { |
| 158 const unsigned char *pcache; |
| 159 opus_int32 num; |
| 160 opus_int32 den; |
| 161 int LM0; |
| 162 int N; |
| 163 int offset; |
| 164 int ndof; |
| 165 int qb; |
| 166 int k; |
| 167 LM0 = 0; |
| 168 /* Even-sized bands bigger than N=2 can be split one more time. |
| 169 As of commit 44203907 all bands >1 are even, including custom
modes.*/ |
| 170 if (N0 > 2) |
| 171 { |
| 172 N0>>=1; |
| 173 LM0--; |
| 174 } |
| 175 /* N0=1 bands can't be split down to N<2. */ |
| 176 else if (N0 <= 1) |
| 177 { |
| 178 LM0=IMIN(i,1); |
| 179 N0<<=LM0; |
| 180 } |
| 181 /* Compute the cost for the lowest-level PVQ of a fully split |
| 182 band. */ |
| 183 pcache = bits + cindex[(LM0+1)*m->nbEBands+j]; |
| 184 max_bits = pcache[pcache[0]]+1; |
| 185 /* Add in the cost of coding regular splits. */ |
| 186 N = N0; |
| 187 for(k=0;k<i-LM0;k++){ |
| 188 max_bits <<= 1; |
| 189 /* Offset the number of qtheta bits by log2(N)/2 |
| 190 + QTHETA_OFFSET compared to their "fair share" of |
| 191 total/N */ |
| 192 offset = ((m->logN[j]+((LM0+k)<<BITRES))>>1)-QTHETA_OFFSET; |
| 193 /* The number of qtheta bits we'll allocate if the remainder |
| 194 is to be max_bits. |
| 195 The average measured cost for theta is 0.89701 times qb, |
| 196 approximated here as 459/512. */ |
| 197 num=459*(opus_int32)((2*N-1)*offset+max_bits); |
| 198 den=((opus_int32)(2*N-1)<<9)-459; |
| 199 qb = IMIN((num+(den>>1))/den, 57); |
| 200 celt_assert(qb >= 0); |
| 201 max_bits += qb; |
| 202 N <<= 1; |
| 203 } |
| 204 /* Add in the cost of a stereo split, if necessary. */ |
| 205 if (C==2) |
| 206 { |
| 207 max_bits <<= 1; |
| 208 offset = ((m->logN[j]+(i<<BITRES))>>1)-(N==2?QTHETA_OFFSET_TWO
PHASE:QTHETA_OFFSET); |
| 209 ndof = 2*N-1-(N==2); |
| 210 /* The average measured cost for theta with the step PDF is |
| 211 0.95164 times qb, approximated here as 487/512. */ |
| 212 num = (N==2?512:487)*(opus_int32)(max_bits+ndof*offset); |
| 213 den = ((opus_int32)ndof<<9)-(N==2?512:487); |
| 214 qb = IMIN((num+(den>>1))/den, (N==2?64:61)); |
| 215 celt_assert(qb >= 0); |
| 216 max_bits += qb; |
| 217 } |
| 218 /* Add the fine bits we'll use. */ |
| 219 /* Compensate for the extra DoF in stereo */ |
| 220 ndof = C*N + ((C==2 && N>2) ? 1 : 0); |
| 221 /* Offset the number of fine bits by log2(N)/2 + FINE_OFFSET |
| 222 compared to their "fair share" of total/N */ |
| 223 offset = ((m->logN[j] + (i<<BITRES))>>1)-FINE_OFFSET; |
| 224 /* N=2 is the only point that doesn't match the curve */ |
| 225 if (N==2) |
| 226 offset += 1<<BITRES>>2; |
| 227 /* The number of fine bits we'll allocate if the remainder is |
| 228 to be max_bits. */ |
| 229 num = max_bits+ndof*offset; |
| 230 den = (ndof-1)<<BITRES; |
| 231 qb = IMIN((num+(den>>1))/den, MAX_FINE_BITS); |
| 232 celt_assert(qb >= 0); |
| 233 max_bits += C*qb<<BITRES; |
| 234 } |
| 235 max_bits = (4*max_bits/(C*((m->eBands[j+1]-m->eBands[j])<<i)))-64; |
| 236 celt_assert(max_bits >= 0); |
| 237 celt_assert(max_bits < 256); |
| 238 *cap++ = (unsigned char)max_bits; |
| 239 } |
| 240 } |
| 241 } |
| 242 } |
| 243 |
| 244 #endif /* CUSTOM_MODES */ |
| 245 |
| 246 #define ALLOC_STEPS 6 |
| 247 |
| 248 static inline int interp_bits2pulses(const CELTMode *m, int start, int end, int
skip_start, |
| 249 const int *bits1, const int *bits2, const int *thresh, const int *cap, opu
s_int32 total, opus_int32 *_balance, |
| 250 int skip_rsv, int *intensity, int intensity_rsv, int *dual_stereo, int dua
l_stereo_rsv, int *bits, |
| 251 int *ebits, int *fine_priority, int C, int LM, ec_ctx *ec, int encode, int
prev) |
| 252 { |
| 253 opus_int32 psum; |
| 254 int lo, hi; |
| 255 int i, j; |
| 256 int logM; |
| 257 int stereo; |
| 258 int codedBands=-1; |
| 259 int alloc_floor; |
| 260 opus_int32 left, percoeff; |
| 261 int done; |
| 262 int balance; |
| 263 SAVE_STACK; |
| 264 |
| 265 alloc_floor = C<<BITRES; |
| 266 stereo = C>1; |
| 267 |
| 268 logM = LM<<BITRES; |
| 269 lo = 0; |
| 270 hi = 1<<ALLOC_STEPS; |
| 271 for (i=0;i<ALLOC_STEPS;i++) |
| 272 { |
| 273 int mid = (lo+hi)>>1; |
| 274 psum = 0; |
| 275 done = 0; |
| 276 for (j=end;j-->start;) |
| 277 { |
| 278 int tmp = bits1[j] + (mid*(opus_int32)bits2[j]>>ALLOC_STEPS); |
| 279 if (tmp >= thresh[j] || done) |
| 280 { |
| 281 done = 1; |
| 282 /* Don't allocate more than we can actually use */ |
| 283 psum += IMIN(tmp, cap[j]); |
| 284 } else { |
| 285 if (tmp >= alloc_floor) |
| 286 psum += alloc_floor; |
| 287 } |
| 288 } |
| 289 if (psum > total) |
| 290 hi = mid; |
| 291 else |
| 292 lo = mid; |
| 293 } |
| 294 psum = 0; |
| 295 /*printf ("interp bisection gave %d\n", lo);*/ |
| 296 done = 0; |
| 297 for (j=end;j-->start;) |
| 298 { |
| 299 int tmp = bits1[j] + (lo*bits2[j]>>ALLOC_STEPS); |
| 300 if (tmp < thresh[j] && !done) |
| 301 { |
| 302 if (tmp >= alloc_floor) |
| 303 tmp = alloc_floor; |
| 304 else |
| 305 tmp = 0; |
| 306 } else |
| 307 done = 1; |
| 308 /* Don't allocate more than we can actually use */ |
| 309 tmp = IMIN(tmp, cap[j]); |
| 310 bits[j] = tmp; |
| 311 psum += tmp; |
| 312 } |
| 313 |
| 314 /* Decide which bands to skip, working backwards from the end. */ |
| 315 for (codedBands=end;;codedBands--) |
| 316 { |
| 317 int band_width; |
| 318 int band_bits; |
| 319 int rem; |
| 320 j = codedBands-1; |
| 321 /* Never skip the first band, nor a band that has been boosted by |
| 322 dynalloc. |
| 323 In the first case, we'd be coding a bit to signal we're going to waste |
| 324 all the other bits. |
| 325 In the second case, we'd be coding a bit to redistribute all the bits |
| 326 we just signaled should be cocentrated in this band. */ |
| 327 if (j<=skip_start) |
| 328 { |
| 329 /* Give the bit we reserved to end skipping back. */ |
| 330 total += skip_rsv; |
| 331 break; |
| 332 } |
| 333 /*Figure out how many left-over bits we would be adding to this band. |
| 334 This can include bits we've stolen back from higher, skipped bands.*/ |
| 335 left = total-psum; |
| 336 percoeff = left/(m->eBands[codedBands]-m->eBands[start]); |
| 337 left -= (m->eBands[codedBands]-m->eBands[start])*percoeff; |
| 338 rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0); |
| 339 band_width = m->eBands[codedBands]-m->eBands[j]; |
| 340 band_bits = (int)(bits[j] + percoeff*band_width + rem); |
| 341 /*Only code a skip decision if we're above the threshold for this band. |
| 342 Otherwise it is force-skipped. |
| 343 This ensures that we have enough bits to code the skip flag.*/ |
| 344 if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES))) |
| 345 { |
| 346 if (encode) |
| 347 { |
| 348 /*This if() block is the only part of the allocation function that |
| 349 is not a mandatory part of the bitstream: any bands we choose to |
| 350 skip here must be explicitly signaled.*/ |
| 351 /*Choose a threshold with some hysteresis to keep bands from |
| 352 fluctuating in and out.*/ |
| 353 #ifdef FUZZING |
| 354 if ((rand()&0x1) == 0) |
| 355 #else |
| 356 if (band_bits > ((j<prev?7:9)*band_width<<LM<<BITRES)>>4) |
| 357 #endif |
| 358 { |
| 359 ec_enc_bit_logp(ec, 1, 1); |
| 360 break; |
| 361 } |
| 362 ec_enc_bit_logp(ec, 0, 1); |
| 363 } else if (ec_dec_bit_logp(ec, 1)) { |
| 364 break; |
| 365 } |
| 366 /*We used a bit to skip this band.*/ |
| 367 psum += 1<<BITRES; |
| 368 band_bits -= 1<<BITRES; |
| 369 } |
| 370 /*Reclaim the bits originally allocated to this band.*/ |
| 371 psum -= bits[j]+intensity_rsv; |
| 372 if (intensity_rsv > 0) |
| 373 intensity_rsv = LOG2_FRAC_TABLE[j-start]; |
| 374 psum += intensity_rsv; |
| 375 if (band_bits >= alloc_floor) |
| 376 { |
| 377 /*If we have enough for a fine energy bit per channel, use it.*/ |
| 378 psum += alloc_floor; |
| 379 bits[j] = alloc_floor; |
| 380 } else { |
| 381 /*Otherwise this band gets nothing at all.*/ |
| 382 bits[j] = 0; |
| 383 } |
| 384 } |
| 385 |
| 386 celt_assert(codedBands > start); |
| 387 /* Code the intensity and dual stereo parameters. */ |
| 388 if (intensity_rsv > 0) |
| 389 { |
| 390 if (encode) |
| 391 { |
| 392 *intensity = IMIN(*intensity, codedBands); |
| 393 ec_enc_uint(ec, *intensity-start, codedBands+1-start); |
| 394 } |
| 395 else |
| 396 *intensity = start+ec_dec_uint(ec, codedBands+1-start); |
| 397 } |
| 398 else |
| 399 *intensity = 0; |
| 400 if (*intensity <= start) |
| 401 { |
| 402 total += dual_stereo_rsv; |
| 403 dual_stereo_rsv = 0; |
| 404 } |
| 405 if (dual_stereo_rsv > 0) |
| 406 { |
| 407 if (encode) |
| 408 ec_enc_bit_logp(ec, *dual_stereo, 1); |
| 409 else |
| 410 *dual_stereo = ec_dec_bit_logp(ec, 1); |
| 411 } |
| 412 else |
| 413 *dual_stereo = 0; |
| 414 |
| 415 /* Allocate the remaining bits */ |
| 416 left = total-psum; |
| 417 percoeff = left/(m->eBands[codedBands]-m->eBands[start]); |
| 418 left -= (m->eBands[codedBands]-m->eBands[start])*percoeff; |
| 419 for (j=start;j<codedBands;j++) |
| 420 bits[j] += ((int)percoeff*(m->eBands[j+1]-m->eBands[j])); |
| 421 for (j=start;j<codedBands;j++) |
| 422 { |
| 423 int tmp = (int)IMIN(left, m->eBands[j+1]-m->eBands[j]); |
| 424 bits[j] += tmp; |
| 425 left -= tmp; |
| 426 } |
| 427 /*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/ |
| 428 |
| 429 balance = 0; |
| 430 for (j=start;j<codedBands;j++) |
| 431 { |
| 432 int N0, N, den; |
| 433 int offset; |
| 434 int NClogN; |
| 435 int excess; |
| 436 |
| 437 celt_assert(bits[j] >= 0); |
| 438 N0 = m->eBands[j+1]-m->eBands[j]; |
| 439 N=N0<<LM; |
| 440 bits[j] += balance; |
| 441 |
| 442 if (N>1) |
| 443 { |
| 444 excess = IMAX(bits[j]-cap[j],0); |
| 445 bits[j] -= excess; |
| 446 |
| 447 /* Compensate for the extra DoF in stereo */ |
| 448 den=(C*N+ ((C==2 && N>2 && !*dual_stereo && j<*intensity) ? 1 : 0)); |
| 449 |
| 450 NClogN = den*(m->logN[j] + logM); |
| 451 |
| 452 /* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET |
| 453 compared to their "fair share" of total/N */ |
| 454 offset = (NClogN>>1)-den*FINE_OFFSET; |
| 455 |
| 456 /* N=2 is the only point that doesn't match the curve */ |
| 457 if (N==2) |
| 458 offset += den<<BITRES>>2; |
| 459 |
| 460 /* Changing the offset for allocating the second and third |
| 461 fine energy bit */ |
| 462 if (bits[j] + offset < den*2<<BITRES) |
| 463 offset += NClogN>>2; |
| 464 else if (bits[j] + offset < den*3<<BITRES) |
| 465 offset += NClogN>>3; |
| 466 |
| 467 /* Divide with rounding */ |
| 468 ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))) / (den<<BITRE
S)); |
| 469 |
| 470 /* Make sure not to bust */ |
| 471 if (C*ebits[j] > (bits[j]>>BITRES)) |
| 472 ebits[j] = bits[j] >> stereo >> BITRES; |
| 473 |
| 474 /* More than that is useless because that's about as far as PVQ can go
*/ |
| 475 ebits[j] = IMIN(ebits[j], MAX_FINE_BITS); |
| 476 |
| 477 /* If we rounded down or capped this band, make it a candidate for the |
| 478 final fine energy pass */ |
| 479 fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset; |
| 480 |
| 481 /* Remove the allocated fine bits; the rest are assigned to PVQ */ |
| 482 bits[j] -= C*ebits[j]<<BITRES; |
| 483 |
| 484 } else { |
| 485 /* For N=1, all bits go to fine energy except for a single sign bit */ |
| 486 excess = IMAX(0,bits[j]-(C<<BITRES)); |
| 487 bits[j] -= excess; |
| 488 ebits[j] = 0; |
| 489 fine_priority[j] = 1; |
| 490 } |
| 491 |
| 492 /* Fine energy can't take advantage of the re-balancing in |
| 493 quant_all_bands(). |
| 494 Instead, do the re-balancing here.*/ |
| 495 if(excess > 0) |
| 496 { |
| 497 int extra_fine; |
| 498 int extra_bits; |
| 499 extra_fine = IMIN(excess>>(stereo+BITRES),MAX_FINE_BITS-ebits[j]); |
| 500 ebits[j] += extra_fine; |
| 501 extra_bits = extra_fine*C<<BITRES; |
| 502 fine_priority[j] = extra_bits >= excess-balance; |
| 503 excess -= extra_bits; |
| 504 } |
| 505 balance = excess; |
| 506 |
| 507 celt_assert(bits[j] >= 0); |
| 508 celt_assert(ebits[j] >= 0); |
| 509 } |
| 510 /* Save any remaining bits over the cap for the rebalancing in |
| 511 quant_all_bands(). */ |
| 512 *_balance = balance; |
| 513 |
| 514 /* The skipped bands use all their bits for fine energy. */ |
| 515 for (;j<end;j++) |
| 516 { |
| 517 ebits[j] = bits[j] >> stereo >> BITRES; |
| 518 celt_assert(C*ebits[j]<<BITRES == bits[j]); |
| 519 bits[j] = 0; |
| 520 fine_priority[j] = ebits[j]<1; |
| 521 } |
| 522 RESTORE_STACK; |
| 523 return codedBands; |
| 524 } |
| 525 |
| 526 int compute_allocation(const CELTMode *m, int start, int end, const int *offsets
, const int *cap, int alloc_trim, int *intensity, int *dual_stereo, |
| 527 opus_int32 total, opus_int32 *balance, int *pulses, int *ebits, int *fine_
priority, int C, int LM, ec_ctx *ec, int encode, int prev) |
| 528 { |
| 529 int lo, hi, len, j; |
| 530 int codedBands; |
| 531 int skip_start; |
| 532 int skip_rsv; |
| 533 int intensity_rsv; |
| 534 int dual_stereo_rsv; |
| 535 VARDECL(int, bits1); |
| 536 VARDECL(int, bits2); |
| 537 VARDECL(int, thresh); |
| 538 VARDECL(int, trim_offset); |
| 539 SAVE_STACK; |
| 540 |
| 541 total = IMAX(total, 0); |
| 542 len = m->nbEBands; |
| 543 skip_start = start; |
| 544 /* Reserve a bit to signal the end of manually skipped bands. */ |
| 545 skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0; |
| 546 total -= skip_rsv; |
| 547 /* Reserve bits for the intensity and dual stereo parameters. */ |
| 548 intensity_rsv = dual_stereo_rsv = 0; |
| 549 if (C==2) |
| 550 { |
| 551 intensity_rsv = LOG2_FRAC_TABLE[end-start]; |
| 552 if (intensity_rsv>total) |
| 553 intensity_rsv = 0; |
| 554 else |
| 555 { |
| 556 total -= intensity_rsv; |
| 557 dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0; |
| 558 total -= dual_stereo_rsv; |
| 559 } |
| 560 } |
| 561 ALLOC(bits1, len, int); |
| 562 ALLOC(bits2, len, int); |
| 563 ALLOC(thresh, len, int); |
| 564 ALLOC(trim_offset, len, int); |
| 565 |
| 566 for (j=start;j<end;j++) |
| 567 { |
| 568 /* Below this threshold, we're sure not to allocate any PVQ bits */ |
| 569 thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES
)>>4); |
| 570 /* Tilt of the allocation curve */ |
| 571 trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(end-j-
1) |
| 572 *(1<<(LM+BITRES))>>6; |
| 573 /* Giving less resolution to single-coefficient bands because they get |
| 574 more benefit from having one coarse value per coefficient*/ |
| 575 if ((m->eBands[j+1]-m->eBands[j])<<LM==1) |
| 576 trim_offset[j] -= C<<BITRES; |
| 577 } |
| 578 lo = 1; |
| 579 hi = m->nbAllocVectors - 1; |
| 580 do |
| 581 { |
| 582 int done = 0; |
| 583 int psum = 0; |
| 584 int mid = (lo+hi) >> 1; |
| 585 for (j=end;j-->start;) |
| 586 { |
| 587 int bitsj; |
| 588 int N = m->eBands[j+1]-m->eBands[j]; |
| 589 bitsj = C*N*m->allocVectors[mid*len+j]<<LM>>2; |
| 590 if (bitsj > 0) |
| 591 bitsj = IMAX(0, bitsj + trim_offset[j]); |
| 592 bitsj += offsets[j]; |
| 593 if (bitsj >= thresh[j] || done) |
| 594 { |
| 595 done = 1; |
| 596 /* Don't allocate more than we can actually use */ |
| 597 psum += IMIN(bitsj, cap[j]); |
| 598 } else { |
| 599 if (bitsj >= C<<BITRES) |
| 600 psum += C<<BITRES; |
| 601 } |
| 602 } |
| 603 if (psum > total) |
| 604 hi = mid - 1; |
| 605 else |
| 606 lo = mid + 1; |
| 607 /*printf ("lo = %d, hi = %d\n", lo, hi);*/ |
| 608 } |
| 609 while (lo <= hi); |
| 610 hi = lo--; |
| 611 /*printf ("interp between %d and %d\n", lo, hi);*/ |
| 612 for (j=start;j<end;j++) |
| 613 { |
| 614 int bits1j, bits2j; |
| 615 int N = m->eBands[j+1]-m->eBands[j]; |
| 616 bits1j = C*N*m->allocVectors[lo*len+j]<<LM>>2; |
| 617 bits2j = hi>=m->nbAllocVectors ? |
| 618 cap[j] : C*N*m->allocVectors[hi*len+j]<<LM>>2; |
| 619 if (bits1j > 0) |
| 620 bits1j = IMAX(0, bits1j + trim_offset[j]); |
| 621 if (bits2j > 0) |
| 622 bits2j = IMAX(0, bits2j + trim_offset[j]); |
| 623 if (lo > 0) |
| 624 bits1j += offsets[j]; |
| 625 bits2j += offsets[j]; |
| 626 if (offsets[j]>0) |
| 627 skip_start = j; |
| 628 bits2j = IMAX(0,bits2j-bits1j); |
| 629 bits1[j] = bits1j; |
| 630 bits2[j] = bits2j; |
| 631 } |
| 632 codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thre
sh, cap, |
| 633 total, balance, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_s
tereo_rsv, |
| 634 pulses, ebits, fine_priority, C, LM, ec, encode, prev); |
| 635 RESTORE_STACK; |
| 636 return codedBands; |
| 637 } |
| 638 |
| OLD | NEW |