| OLD | NEW |
| (Empty) | |
| 1 /* Copyright (c) 2002-2008 Jean-Marc Valin |
| 2 Copyright (c) 2007-2008 CSIRO |
| 3 Copyright (c) 2007-2009 Xiph.Org Foundation |
| 4 Written by Jean-Marc Valin */ |
| 5 /** |
| 6 @file mathops.h |
| 7 @brief Various math functions |
| 8 */ |
| 9 /* |
| 10 Redistribution and use in source and binary forms, with or without |
| 11 modification, are permitted provided that the following conditions |
| 12 are met: |
| 13 |
| 14 - Redistributions of source code must retain the above copyright |
| 15 notice, this list of conditions and the following disclaimer. |
| 16 |
| 17 - Redistributions in binary form must reproduce the above copyright |
| 18 notice, this list of conditions and the following disclaimer in the |
| 19 documentation and/or other materials provided with the distribution. |
| 20 |
| 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| 25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 */ |
| 33 |
| 34 #ifndef MATHOPS_H |
| 35 #define MATHOPS_H |
| 36 |
| 37 #include "arch.h" |
| 38 #include "entcode.h" |
| 39 #include "os_support.h" |
| 40 |
| 41 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is impor
tant */ |
| 42 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>
15) |
| 43 |
| 44 unsigned isqrt32(opus_uint32 _val); |
| 45 |
| 46 #ifndef FIXED_POINT |
| 47 |
| 48 #define PI 3.141592653f |
| 49 #define celt_sqrt(x) ((float)sqrt(x)) |
| 50 #define celt_rsqrt(x) (1.f/celt_sqrt(x)) |
| 51 #define celt_rsqrt_norm(x) (celt_rsqrt(x)) |
| 52 #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) |
| 53 #define celt_rcp(x) (1.f/(x)) |
| 54 #define celt_div(a,b) ((a)/(b)) |
| 55 #define frac_div32(a,b) ((float)(a)/(b)) |
| 56 |
| 57 #ifdef FLOAT_APPROX |
| 58 |
| 59 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 an
d an offset of 127 |
| 60 denorm, +/- inf and NaN are *not* handled */ |
| 61 |
| 62 /** Base-2 log approximation (log2(x)). */ |
| 63 static inline float celt_log2(float x) |
| 64 { |
| 65 int integer; |
| 66 float frac; |
| 67 union { |
| 68 float f; |
| 69 opus_uint32 i; |
| 70 } in; |
| 71 in.f = x; |
| 72 integer = (in.i>>23)-127; |
| 73 in.i -= integer<<23; |
| 74 frac = in.f - 1.5f; |
| 75 frac = -0.41445418f + frac*(0.95909232f |
| 76 + frac*(-0.33951290f + frac*0.16541097f)); |
| 77 return 1+integer+frac; |
| 78 } |
| 79 |
| 80 /** Base-2 exponential approximation (2^x). */ |
| 81 static inline float celt_exp2(float x) |
| 82 { |
| 83 int integer; |
| 84 float frac; |
| 85 union { |
| 86 float f; |
| 87 opus_uint32 i; |
| 88 } res; |
| 89 integer = floor(x); |
| 90 if (integer < -50) |
| 91 return 0; |
| 92 frac = x-integer; |
| 93 /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ |
| 94 res.f = 0.99992522f + frac * (0.69583354f |
| 95 + frac * (0.22606716f + 0.078024523f*frac)); |
| 96 res.i = (res.i + (integer<<23)) & 0x7fffffff; |
| 97 return res.f; |
| 98 } |
| 99 |
| 100 #else |
| 101 #define celt_log2(x) ((float)(1.442695040888963387*log(x))) |
| 102 #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) |
| 103 #endif |
| 104 |
| 105 #endif |
| 106 |
| 107 #ifdef FIXED_POINT |
| 108 |
| 109 #include "os_support.h" |
| 110 |
| 111 #ifndef OVERRIDE_CELT_ILOG2 |
| 112 /** Integer log in base2. Undefined for zero and negative numbers */ |
| 113 static inline opus_int16 celt_ilog2(opus_int32 x) |
| 114 { |
| 115 celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers"); |
| 116 return EC_ILOG(x)-1; |
| 117 } |
| 118 #endif |
| 119 |
| 120 #ifndef OVERRIDE_CELT_MAXABS16 |
| 121 static inline opus_val16 celt_maxabs16(opus_val16 *x, int len) |
| 122 { |
| 123 int i; |
| 124 opus_val16 maxval = 0; |
| 125 for (i=0;i<len;i++) |
| 126 maxval = MAX16(maxval, ABS16(x[i])); |
| 127 return maxval; |
| 128 } |
| 129 #endif |
| 130 |
| 131 #ifndef OVERRIDE_CELT_MAXABS32 |
| 132 static inline opus_val32 celt_maxabs32(opus_val32 *x, int len) |
| 133 { |
| 134 int i; |
| 135 opus_val32 maxval = 0; |
| 136 for (i=0;i<len;i++) |
| 137 maxval = MAX32(maxval, ABS32(x[i])); |
| 138 return maxval; |
| 139 } |
| 140 #endif |
| 141 |
| 142 /** Integer log in base2. Defined for zero, but not for negative numbers */ |
| 143 static inline opus_int16 celt_zlog2(opus_val32 x) |
| 144 { |
| 145 return x <= 0 ? 0 : celt_ilog2(x); |
| 146 } |
| 147 |
| 148 opus_val16 celt_rsqrt_norm(opus_val32 x); |
| 149 |
| 150 opus_val32 celt_sqrt(opus_val32 x); |
| 151 |
| 152 opus_val16 celt_cos_norm(opus_val32 x); |
| 153 |
| 154 static inline opus_val16 celt_log2(opus_val32 x) |
| 155 { |
| 156 int i; |
| 157 opus_val16 n, frac; |
| 158 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, |
| 159 0.15530808010959576, -0.08556153059057618 */ |
| 160 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545,
-1401}; |
| 161 if (x==0) |
| 162 return -32767; |
| 163 i = celt_ilog2(x); |
| 164 n = VSHR32(x,i-15)-32768-16384; |
| 165 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); |
| 166 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); |
| 167 } |
| 168 |
| 169 /* |
| 170 K0 = 1 |
| 171 K1 = log(2) |
| 172 K2 = 3-4*log(2) |
| 173 K3 = 3*log(2) - 2 |
| 174 */ |
| 175 #define D0 16383 |
| 176 #define D1 22804 |
| 177 #define D2 14819 |
| 178 #define D3 10204 |
| 179 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ |
| 180 static inline opus_val32 celt_exp2(opus_val16 x) |
| 181 { |
| 182 int integer; |
| 183 opus_val16 frac; |
| 184 integer = SHR16(x,10); |
| 185 if (integer>14) |
| 186 return 0x7f000000; |
| 187 else if (integer < -15) |
| 188 return 0; |
| 189 frac = SHL16(x-SHL16(integer,10),4); |
| 190 frac = ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 ,
MULT16_16_Q15(D3,frac)))))); |
| 191 return VSHR32(EXTEND32(frac), -integer-2); |
| 192 } |
| 193 |
| 194 opus_val32 celt_rcp(opus_val32 x); |
| 195 |
| 196 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) |
| 197 |
| 198 opus_val32 frac_div32(opus_val32 a, opus_val32 b); |
| 199 |
| 200 #define M1 32767 |
| 201 #define M2 -21 |
| 202 #define M3 -11943 |
| 203 #define M4 4936 |
| 204 |
| 205 /* Atan approximation using a 4th order polynomial. Input is in Q15 format |
| 206 and normalized by pi/4. Output is in Q15 format */ |
| 207 static inline opus_val16 celt_atan01(opus_val16 x) |
| 208 { |
| 209 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x,
ADD32(M3, MULT16_16_P15(M4, x))))))); |
| 210 } |
| 211 |
| 212 #undef M1 |
| 213 #undef M2 |
| 214 #undef M3 |
| 215 #undef M4 |
| 216 |
| 217 /* atan2() approximation valid for positive input values */ |
| 218 static inline opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) |
| 219 { |
| 220 if (y < x) |
| 221 { |
| 222 opus_val32 arg; |
| 223 arg = celt_div(SHL32(EXTEND32(y),15),x); |
| 224 if (arg >= 32767) |
| 225 arg = 32767; |
| 226 return SHR16(celt_atan01(EXTRACT16(arg)),1); |
| 227 } else { |
| 228 opus_val32 arg; |
| 229 arg = celt_div(SHL32(EXTEND32(x),15),y); |
| 230 if (arg >= 32767) |
| 231 arg = 32767; |
| 232 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); |
| 233 } |
| 234 } |
| 235 |
| 236 #endif /* FIXED_POINT */ |
| 237 #endif /* MATHOPS_H */ |
| OLD | NEW |