| OLD | NEW |
| (Empty) | |
| 1 /* Copyright (c) 2002-2008 Jean-Marc Valin |
| 2 Copyright (c) 2007-2008 CSIRO |
| 3 Copyright (c) 2007-2009 Xiph.Org Foundation |
| 4 Written by Jean-Marc Valin */ |
| 5 /** |
| 6 @file mathops.h |
| 7 @brief Various math functions |
| 8 */ |
| 9 /* |
| 10 Redistribution and use in source and binary forms, with or without |
| 11 modification, are permitted provided that the following conditions |
| 12 are met: |
| 13 |
| 14 - Redistributions of source code must retain the above copyright |
| 15 notice, this list of conditions and the following disclaimer. |
| 16 |
| 17 - Redistributions in binary form must reproduce the above copyright |
| 18 notice, this list of conditions and the following disclaimer in the |
| 19 documentation and/or other materials provided with the distribution. |
| 20 |
| 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| 25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 */ |
| 33 |
| 34 #ifdef HAVE_CONFIG_H |
| 35 #include "config.h" |
| 36 #endif |
| 37 |
| 38 #include "mathops.h" |
| 39 |
| 40 /*Compute floor(sqrt(_val)) with exact arithmetic. |
| 41 This has been tested on all possible 32-bit inputs.*/ |
| 42 unsigned isqrt32(opus_uint32 _val){ |
| 43 unsigned b; |
| 44 unsigned g; |
| 45 int bshift; |
| 46 /*Uses the second method from |
| 47 http://www.azillionmonkeys.com/qed/sqroot.html |
| 48 The main idea is to search for the largest binary digit b such that |
| 49 (g+b)*(g+b) <= _val, and add it to the solution g.*/ |
| 50 g=0; |
| 51 bshift=(EC_ILOG(_val)-1)>>1; |
| 52 b=1U<<bshift; |
| 53 do{ |
| 54 opus_uint32 t; |
| 55 t=(((opus_uint32)g<<1)+b)<<bshift; |
| 56 if(t<=_val){ |
| 57 g+=b; |
| 58 _val-=t; |
| 59 } |
| 60 b>>=1; |
| 61 bshift--; |
| 62 } |
| 63 while(bshift>=0); |
| 64 return g; |
| 65 } |
| 66 |
| 67 #ifdef FIXED_POINT |
| 68 |
| 69 opus_val32 frac_div32(opus_val32 a, opus_val32 b) |
| 70 { |
| 71 opus_val16 rcp; |
| 72 opus_val32 result, rem; |
| 73 int shift = celt_ilog2(b)-29; |
| 74 a = VSHR32(a,shift); |
| 75 b = VSHR32(b,shift); |
| 76 /* 16-bit reciprocal */ |
| 77 rcp = ROUND16(celt_rcp(ROUND16(b,16)),3); |
| 78 result = MULT16_32_Q15(rcp, a); |
| 79 rem = PSHR32(a,2)-MULT32_32_Q31(result, b); |
| 80 result = ADD32(result, SHL32(MULT16_32_Q15(rcp, rem),2)); |
| 81 if (result >= 536870912) /* 2^29 */ |
| 82 return 2147483647; /* 2^31 - 1 */ |
| 83 else if (result <= -536870912) /* -2^29 */ |
| 84 return -2147483647; /* -2^31 */ |
| 85 else |
| 86 return SHL32(result, 2); |
| 87 } |
| 88 |
| 89 /** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */ |
| 90 opus_val16 celt_rsqrt_norm(opus_val32 x) |
| 91 { |
| 92 opus_val16 n; |
| 93 opus_val16 r; |
| 94 opus_val16 r2; |
| 95 opus_val16 y; |
| 96 /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */ |
| 97 n = x-32768; |
| 98 /* Get a rough initial guess for the root. |
| 99 The optimal minimax quadratic approximation (using relative error) is |
| 100 r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485). |
| 101 Coefficients here, and the final result r, are Q14.*/ |
| 102 r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713)))); |
| 103 /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14. |
| 104 We can compute the result from n and r using Q15 multiplies with some |
| 105 adjustment, carefully done to avoid overflow. |
| 106 Range of y is [-1564,1594]. */ |
| 107 r2 = MULT16_16_Q15(r, r); |
| 108 y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1); |
| 109 /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5). |
| 110 This yields the Q14 reciprocal square root of the Q16 x, with a maximum |
| 111 relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a |
| 112 peak absolute error of 2.26591/16384. */ |
| 113 return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y, |
| 114 SUB16(MULT16_16_Q15(y, 12288), 16384)))); |
| 115 } |
| 116 |
| 117 /** Sqrt approximation (QX input, QX/2 output) */ |
| 118 opus_val32 celt_sqrt(opus_val32 x) |
| 119 { |
| 120 int k; |
| 121 opus_val16 n; |
| 122 opus_val32 rt; |
| 123 static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664}; |
| 124 if (x==0) |
| 125 return 0; |
| 126 k = (celt_ilog2(x)>>1)-7; |
| 127 x = VSHR32(x, 2*k); |
| 128 n = x-32768; |
| 129 rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], |
| 130 MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4]))))))))); |
| 131 rt = VSHR32(rt,7-k); |
| 132 return rt; |
| 133 } |
| 134 |
| 135 #define L1 32767 |
| 136 #define L2 -7651 |
| 137 #define L3 8277 |
| 138 #define L4 -626 |
| 139 |
| 140 static inline opus_val16 _celt_cos_pi_2(opus_val16 x) |
| 141 { |
| 142 opus_val16 x2; |
| 143 |
| 144 x2 = MULT16_16_P15(x,x); |
| 145 return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MU
LT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2 |
| 146
)))))))); |
| 147 } |
| 148 |
| 149 #undef L1 |
| 150 #undef L2 |
| 151 #undef L3 |
| 152 #undef L4 |
| 153 |
| 154 opus_val16 celt_cos_norm(opus_val32 x) |
| 155 { |
| 156 x = x&0x0001ffff; |
| 157 if (x>SHL32(EXTEND32(1), 16)) |
| 158 x = SUB32(SHL32(EXTEND32(1), 17),x); |
| 159 if (x&0x00007fff) |
| 160 { |
| 161 if (x<SHL32(EXTEND32(1), 15)) |
| 162 { |
| 163 return _celt_cos_pi_2(EXTRACT16(x)); |
| 164 } else { |
| 165 return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x))); |
| 166 } |
| 167 } else { |
| 168 if (x&0x0000ffff) |
| 169 return 0; |
| 170 else if (x&0x0001ffff) |
| 171 return -32767; |
| 172 else |
| 173 return 32767; |
| 174 } |
| 175 } |
| 176 |
| 177 /** Reciprocal approximation (Q15 input, Q16 output) */ |
| 178 opus_val32 celt_rcp(opus_val32 x) |
| 179 { |
| 180 int i; |
| 181 opus_val16 n; |
| 182 opus_val16 r; |
| 183 celt_assert2(x>0, "celt_rcp() only defined for positive values"); |
| 184 i = celt_ilog2(x); |
| 185 /* n is Q15 with range [0,1). */ |
| 186 n = VSHR32(x,i-15)-32768; |
| 187 /* Start with a linear approximation: |
| 188 r = 1.8823529411764706-0.9411764705882353*n. |
| 189 The coefficients and the result are Q14 in the range [15420,30840].*/ |
| 190 r = ADD16(30840, MULT16_16_Q15(-15420, n)); |
| 191 /* Perform two Newton iterations: |
| 192 r -= r*((r*n)-1.Q15) |
| 193 = r*((r*n)+(r-1.Q15)). */ |
| 194 r = SUB16(r, MULT16_16_Q15(r, |
| 195 ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))); |
| 196 /* We subtract an extra 1 in the second iteration to avoid overflow; it also |
| 197 neatly compensates for truncation error in the rest of the process. */ |
| 198 r = SUB16(r, ADD16(1, MULT16_16_Q15(r, |
| 199 ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))))); |
| 200 /* r is now the Q15 solution to 2/(n+1), with a maximum relative error |
| 201 of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute |
| 202 error of 1.24665/32768. */ |
| 203 return VSHR32(EXTEND32(r),i-16); |
| 204 } |
| 205 |
| 206 #endif |
| OLD | NEW |