| OLD | NEW |
| (Empty) | |
| 1 /* Copyright (c) 2007-2008 CSIRO |
| 2 Copyright (c) 2007-2009 Xiph.Org Foundation |
| 3 Copyright (c) 2007-2009 Timothy B. Terriberry |
| 4 Written by Timothy B. Terriberry and Jean-Marc Valin */ |
| 5 /* |
| 6 Redistribution and use in source and binary forms, with or without |
| 7 modification, are permitted provided that the following conditions |
| 8 are met: |
| 9 |
| 10 - Redistributions of source code must retain the above copyright |
| 11 notice, this list of conditions and the following disclaimer. |
| 12 |
| 13 - Redistributions in binary form must reproduce the above copyright |
| 14 notice, this list of conditions and the following disclaimer in the |
| 15 documentation and/or other materials provided with the distribution. |
| 16 |
| 17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 18 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 19 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 20 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| 21 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 22 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 23 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 24 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 */ |
| 29 |
| 30 #ifdef HAVE_CONFIG_H |
| 31 #include "config.h" |
| 32 #endif |
| 33 |
| 34 #include "os_support.h" |
| 35 #include "cwrs.h" |
| 36 #include "mathops.h" |
| 37 #include "arch.h" |
| 38 |
| 39 #ifdef CUSTOM_MODES |
| 40 |
| 41 /*Guaranteed to return a conservatively large estimate of the binary logarithm |
| 42 with frac bits of fractional precision. |
| 43 Tested for all possible 32-bit inputs with frac=4, where the maximum |
| 44 overestimation is 0.06254243 bits.*/ |
| 45 int log2_frac(opus_uint32 val, int frac) |
| 46 { |
| 47 int l; |
| 48 l=EC_ILOG(val); |
| 49 if(val&(val-1)){ |
| 50 /*This is (val>>l-16), but guaranteed to round up, even if adding a bias |
| 51 before the shift would cause overflow (e.g., for 0xFFFFxxxx). |
| 52 Doesn't work for val=0, but that case fails the test above.*/ |
| 53 if(l>16)val=((val-1)>>(l-16))+1; |
| 54 else val<<=16-l; |
| 55 l=(l-1)<<frac; |
| 56 /*Note that we always need one iteration, since the rounding up above means |
| 57 that we might need to adjust the integer part of the logarithm.*/ |
| 58 do{ |
| 59 int b; |
| 60 b=(int)(val>>16); |
| 61 l+=b<<frac; |
| 62 val=(val+b)>>b; |
| 63 val=(val*val+0x7FFF)>>15; |
| 64 } |
| 65 while(frac-->0); |
| 66 /*If val is not exactly 0x8000, then we have to round up the remainder.*/ |
| 67 return l+(val>0x8000); |
| 68 } |
| 69 /*Exact powers of two require no rounding.*/ |
| 70 else return (l-1)<<frac; |
| 71 } |
| 72 #endif |
| 73 |
| 74 #ifndef SMALL_FOOTPRINT |
| 75 |
| 76 #define MASK32 (0xFFFFFFFF) |
| 77 |
| 78 /*INV_TABLE[i] holds the multiplicative inverse of (2*i+1) mod 2**32.*/ |
| 79 static const opus_uint32 INV_TABLE[53]={ |
| 80 0x00000001,0xAAAAAAAB,0xCCCCCCCD,0xB6DB6DB7, |
| 81 0x38E38E39,0xBA2E8BA3,0xC4EC4EC5,0xEEEEEEEF, |
| 82 0xF0F0F0F1,0x286BCA1B,0x3CF3CF3D,0xE9BD37A7, |
| 83 0xC28F5C29,0x684BDA13,0x4F72C235,0xBDEF7BDF, |
| 84 0x3E0F83E1,0x8AF8AF8B,0x914C1BAD,0x96F96F97, |
| 85 0xC18F9C19,0x2FA0BE83,0xA4FA4FA5,0x677D46CF, |
| 86 0x1A1F58D1,0xFAFAFAFB,0x8C13521D,0x586FB587, |
| 87 0xB823EE09,0xA08AD8F3,0xC10C9715,0xBEFBEFBF, |
| 88 0xC0FC0FC1,0x07A44C6B,0xA33F128D,0xE327A977, |
| 89 0xC7E3F1F9,0x962FC963,0x3F2B3885,0x613716AF, |
| 90 0x781948B1,0x2B2E43DB,0xFCFCFCFD,0x6FD0EB67, |
| 91 0xFA3F47E9,0xD2FD2FD3,0x3F4FD3F5,0xD4E25B9F, |
| 92 0x5F02A3A1,0xBF5A814B,0x7C32B16D,0xD3431B57, |
| 93 0xD8FD8FD9, |
| 94 }; |
| 95 |
| 96 /*Computes (_a*_b-_c)/(2*_d+1) when the quotient is known to be exact. |
| 97 _a, _b, _c, and _d may be arbitrary so long as the arbitrary precision result |
| 98 fits in 32 bits, but currently the table for multiplicative inverses is only |
| 99 valid for _d<=52.*/ |
| 100 static inline opus_uint32 imusdiv32odd(opus_uint32 _a,opus_uint32 _b, |
| 101 opus_uint32 _c,int _d){ |
| 102 celt_assert(_d<=52); |
| 103 return (_a*_b-_c)*INV_TABLE[_d]&MASK32; |
| 104 } |
| 105 |
| 106 /*Computes (_a*_b-_c)/_d when the quotient is known to be exact. |
| 107 _d does not actually have to be even, but imusdiv32odd will be faster when |
| 108 it's odd, so you should use that instead. |
| 109 _a and _d are assumed to be small (e.g., _a*_d fits in 32 bits; currently the |
| 110 table for multiplicative inverses is only valid for _d<=54). |
| 111 _b and _c may be arbitrary so long as the arbitrary precision reuslt fits in |
| 112 32 bits.*/ |
| 113 static inline opus_uint32 imusdiv32even(opus_uint32 _a,opus_uint32 _b, |
| 114 opus_uint32 _c,int _d){ |
| 115 opus_uint32 inv; |
| 116 int mask; |
| 117 int shift; |
| 118 int one; |
| 119 celt_assert(_d>0); |
| 120 celt_assert(_d<=54); |
| 121 shift=EC_ILOG(_d^(_d-1)); |
| 122 inv=INV_TABLE[(_d-1)>>shift]; |
| 123 shift--; |
| 124 one=1<<shift; |
| 125 mask=one-1; |
| 126 return (_a*(_b>>shift)-(_c>>shift)+ |
| 127 ((_a*(_b&mask)+one-(_c&mask))>>shift)-1)*inv&MASK32; |
| 128 } |
| 129 |
| 130 #endif /* SMALL_FOOTPRINT */ |
| 131 |
| 132 /*Although derived separately, the pulse vector coding scheme is equivalent to |
| 133 a Pyramid Vector Quantizer \cite{Fis86}. |
| 134 Some additional notes about an early version appear at |
| 135 http://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering |
| 136 and the definitions of some terms have evolved since that was written. |
| 137 |
| 138 The conversion from a pulse vector to an integer index (encoding) and back |
| 139 (decoding) is governed by two related functions, V(N,K) and U(N,K). |
| 140 |
| 141 V(N,K) = the number of combinations, with replacement, of N items, taken K |
| 142 at a time, when a sign bit is added to each item taken at least once (i.e., |
| 143 the number of N-dimensional unit pulse vectors with K pulses). |
| 144 One way to compute this is via |
| 145 V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1, |
| 146 where choose() is the binomial function. |
| 147 A table of values for N<10 and K<10 looks like: |
| 148 V[10][10] = { |
| 149 {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 150 {1, 2, 2, 2, 2, 2, 2, 2, 2, 2}, |
| 151 {1, 4, 8, 12, 16, 20, 24, 28, 32, 36}, |
| 152 {1, 6, 18, 38, 66, 102, 146, 198, 258, 326}, |
| 153 {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992}, |
| 154 {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290}, |
| 155 {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436}, |
| 156 {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598}, |
| 157 {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688}, |
| 158 {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146} |
| 159 }; |
| 160 |
| 161 U(N,K) = the number of such combinations wherein N-1 objects are taken at |
| 162 most K-1 at a time. |
| 163 This is given by |
| 164 U(N,K) = sum(k=0...K-1,V(N-1,k)) |
| 165 = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0. |
| 166 The latter expression also makes clear that U(N,K) is half the number of such |
| 167 combinations wherein the first object is taken at least once. |
| 168 Although it may not be clear from either of these definitions, U(N,K) is the |
| 169 natural function to work with when enumerating the pulse vector codebooks, |
| 170 not V(N,K). |
| 171 U(N,K) is not well-defined for N=0, but with the extension |
| 172 U(0,K) = K>0 ? 0 : 1, |
| 173 the function becomes symmetric: U(N,K) = U(K,N), with a similar table: |
| 174 U[10][10] = { |
| 175 {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 176 {0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, |
| 177 {0, 1, 3, 5, 7, 9, 11, 13, 15, 17}, |
| 178 {0, 1, 5, 13, 25, 41, 61, 85, 113, 145}, |
| 179 {0, 1, 7, 25, 63, 129, 231, 377, 575, 833}, |
| 180 {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649}, |
| 181 {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073}, |
| 182 {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081}, |
| 183 {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545}, |
| 184 {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729} |
| 185 }; |
| 186 |
| 187 With this extension, V(N,K) may be written in terms of U(N,K): |
| 188 V(N,K) = U(N,K) + U(N,K+1) |
| 189 for all N>=0, K>=0. |
| 190 Thus U(N,K+1) represents the number of combinations where the first element |
| 191 is positive or zero, and U(N,K) represents the number of combinations where |
| 192 it is negative. |
| 193 With a large enough table of U(N,K) values, we could write O(N) encoding |
| 194 and O(min(N*log(K),N+K)) decoding routines, but such a table would be |
| 195 prohibitively large for small embedded devices (K may be as large as 32767 |
| 196 for small N, and N may be as large as 200). |
| 197 |
| 198 Both functions obey the same recurrence relation: |
| 199 V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), |
| 200 U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1), |
| 201 for all N>0, K>0, with different initial conditions at N=0 or K=0. |
| 202 This allows us to construct a row of one of the tables above given the |
| 203 previous row or the next row. |
| 204 Thus we can derive O(NK) encoding and decoding routines with O(K) memory |
| 205 using only addition and subtraction. |
| 206 |
| 207 When encoding, we build up from the U(2,K) row and work our way forwards. |
| 208 When decoding, we need to start at the U(N,K) row and work our way backwards, |
| 209 which requires a means of computing U(N,K). |
| 210 U(N,K) may be computed from two previous values with the same N: |
| 211 U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2) |
| 212 for all N>1, and since U(N,K) is symmetric, a similar relation holds for two |
| 213 previous values with the same K: |
| 214 U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K) |
| 215 for all K>1. |
| 216 This allows us to construct an arbitrary row of the U(N,K) table by starting |
| 217 with the first two values, which are constants. |
| 218 This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K) |
| 219 multiplications. |
| 220 Similar relations can be derived for V(N,K), but are not used here. |
| 221 |
| 222 For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree |
| 223 polynomial for fixed N. |
| 224 The first few are |
| 225 U(1,K) = 1, |
| 226 U(2,K) = 2*K-1, |
| 227 U(3,K) = (2*K-2)*K+1, |
| 228 U(4,K) = (((4*K-6)*K+8)*K-3)/3, |
| 229 U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3, |
| 230 and |
| 231 V(1,K) = 2, |
| 232 V(2,K) = 4*K, |
| 233 V(3,K) = 4*K*K+2, |
| 234 V(4,K) = 8*(K*K+2)*K/3, |
| 235 V(5,K) = ((4*K*K+20)*K*K+6)/3, |
| 236 for all K>0. |
| 237 This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for |
| 238 small N (and indeed decoding is also O(N) for N<3). |
| 239 |
| 240 @ARTICLE{Fis86, |
| 241 author="Thomas R. Fischer", |
| 242 title="A Pyramid Vector Quantizer", |
| 243 journal="IEEE Transactions on Information Theory", |
| 244 volume="IT-32", |
| 245 number=4, |
| 246 pages="568--583", |
| 247 month=Jul, |
| 248 year=1986 |
| 249 }*/ |
| 250 |
| 251 #ifndef SMALL_FOOTPRINT |
| 252 /*Compute U(2,_k). |
| 253 Note that this may be called with _k=32768 (maxK[2]+1).*/ |
| 254 static inline unsigned ucwrs2(unsigned _k){ |
| 255 celt_assert(_k>0); |
| 256 return _k+(_k-1); |
| 257 } |
| 258 |
| 259 /*Compute V(2,_k).*/ |
| 260 static inline opus_uint32 ncwrs2(int _k){ |
| 261 celt_assert(_k>0); |
| 262 return 4*(opus_uint32)_k; |
| 263 } |
| 264 |
| 265 /*Compute U(3,_k). |
| 266 Note that this may be called with _k=32768 (maxK[3]+1).*/ |
| 267 static inline opus_uint32 ucwrs3(unsigned _k){ |
| 268 celt_assert(_k>0); |
| 269 return (2*(opus_uint32)_k-2)*_k+1; |
| 270 } |
| 271 |
| 272 /*Compute V(3,_k).*/ |
| 273 static inline opus_uint32 ncwrs3(int _k){ |
| 274 celt_assert(_k>0); |
| 275 return 2*(2*(unsigned)_k*(opus_uint32)_k+1); |
| 276 } |
| 277 |
| 278 /*Compute U(4,_k).*/ |
| 279 static inline opus_uint32 ucwrs4(int _k){ |
| 280 celt_assert(_k>0); |
| 281 return imusdiv32odd(2*_k,(2*_k-3)*(opus_uint32)_k+4,3,1); |
| 282 } |
| 283 |
| 284 /*Compute V(4,_k).*/ |
| 285 static inline opus_uint32 ncwrs4(int _k){ |
| 286 celt_assert(_k>0); |
| 287 return ((_k*(opus_uint32)_k+2)*_k)/3<<3; |
| 288 } |
| 289 |
| 290 #endif /* SMALL_FOOTPRINT */ |
| 291 |
| 292 /*Computes the next row/column of any recurrence that obeys the relation |
| 293 u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1]. |
| 294 _ui0 is the base case for the new row/column.*/ |
| 295 static inline void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){ |
| 296 opus_uint32 ui1; |
| 297 unsigned j; |
| 298 /*This do-while will overrun the array if we don't have storage for at least |
| 299 2 values.*/ |
| 300 j=1; do { |
| 301 ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0); |
| 302 _ui[j-1]=_ui0; |
| 303 _ui0=ui1; |
| 304 } while (++j<_len); |
| 305 _ui[j-1]=_ui0; |
| 306 } |
| 307 |
| 308 /*Computes the previous row/column of any recurrence that obeys the relation |
| 309 u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1]. |
| 310 _ui0 is the base case for the new row/column.*/ |
| 311 static inline void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){ |
| 312 opus_uint32 ui1; |
| 313 unsigned j; |
| 314 /*This do-while will overrun the array if we don't have storage for at least |
| 315 2 values.*/ |
| 316 j=1; do { |
| 317 ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0); |
| 318 _ui[j-1]=_ui0; |
| 319 _ui0=ui1; |
| 320 } while (++j<_n); |
| 321 _ui[j-1]=_ui0; |
| 322 } |
| 323 |
| 324 /*Compute V(_n,_k), as well as U(_n,0..._k+1). |
| 325 _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/ |
| 326 static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){ |
| 327 opus_uint32 um2; |
| 328 unsigned len; |
| 329 unsigned k; |
| 330 len=_k+2; |
| 331 /*We require storage at least 3 values (e.g., _k>0).*/ |
| 332 celt_assert(len>=3); |
| 333 _u[0]=0; |
| 334 _u[1]=um2=1; |
| 335 #ifndef SMALL_FOOTPRINT |
| 336 /*_k>52 doesn't work in the false branch due to the limits of INV_TABLE, |
| 337 but _k isn't tested here because k<=52 for n=7*/ |
| 338 if(_n<=6) |
| 339 #endif |
| 340 { |
| 341 /*If _n==0, _u[0] should be 1 and the rest should be 0.*/ |
| 342 /*If _n==1, _u[i] should be 1 for i>1.*/ |
| 343 celt_assert(_n>=2); |
| 344 /*If _k==0, the following do-while loop will overflow the buffer.*/ |
| 345 celt_assert(_k>0); |
| 346 k=2; |
| 347 do _u[k]=(k<<1)-1; |
| 348 while(++k<len); |
| 349 for(k=2;k<_n;k++)unext(_u+1,_k+1,1); |
| 350 } |
| 351 #ifndef SMALL_FOOTPRINT |
| 352 else{ |
| 353 opus_uint32 um1; |
| 354 opus_uint32 n2m1; |
| 355 _u[2]=n2m1=um1=(_n<<1)-1; |
| 356 for(k=3;k<len;k++){ |
| 357 /*U(N,K) = ((2*N-1)*U(N,K-1)-U(N,K-2))/(K-1) + U(N,K-2)*/ |
| 358 _u[k]=um2=imusdiv32even(n2m1,um1,um2,k-1)+um2; |
| 359 if(++k>=len)break; |
| 360 _u[k]=um1=imusdiv32odd(n2m1,um2,um1,(k-1)>>1)+um1; |
| 361 } |
| 362 } |
| 363 #endif /* SMALL_FOOTPRINT */ |
| 364 return _u[_k]+_u[_k+1]; |
| 365 } |
| 366 |
| 367 #ifndef SMALL_FOOTPRINT |
| 368 |
| 369 /*Returns the _i'th combination of _k elements (at most 32767) chosen from a |
| 370 set of size 1 with associated sign bits. |
| 371 _y: Returns the vector of pulses.*/ |
| 372 static inline void cwrsi1(int _k,opus_uint32 _i,int *_y){ |
| 373 int s; |
| 374 s=-(int)_i; |
| 375 _y[0]=(_k+s)^s; |
| 376 } |
| 377 |
| 378 /*Returns the _i'th combination of _k elements (at most 32767) chosen from a |
| 379 set of size 2 with associated sign bits. |
| 380 _y: Returns the vector of pulses.*/ |
| 381 static inline void cwrsi2(int _k,opus_uint32 _i,int *_y){ |
| 382 opus_uint32 p; |
| 383 int s; |
| 384 int yj; |
| 385 p=ucwrs2(_k+1U); |
| 386 s=-(_i>=p); |
| 387 _i-=p&s; |
| 388 yj=_k; |
| 389 _k=(_i+1)>>1; |
| 390 p=_k?ucwrs2(_k):0; |
| 391 _i-=p; |
| 392 yj-=_k; |
| 393 _y[0]=(yj+s)^s; |
| 394 cwrsi1(_k,_i,_y+1); |
| 395 } |
| 396 |
| 397 /*Returns the _i'th combination of _k elements (at most 32767) chosen from a |
| 398 set of size 3 with associated sign bits. |
| 399 _y: Returns the vector of pulses.*/ |
| 400 static void cwrsi3(int _k,opus_uint32 _i,int *_y){ |
| 401 opus_uint32 p; |
| 402 int s; |
| 403 int yj; |
| 404 p=ucwrs3(_k+1U); |
| 405 s=-(_i>=p); |
| 406 _i-=p&s; |
| 407 yj=_k; |
| 408 /*Finds the maximum _k such that ucwrs3(_k)<=_i (tested for all |
| 409 _i<2147418113=U(3,32768)).*/ |
| 410 _k=_i>0?(isqrt32(2*_i-1)+1)>>1:0; |
| 411 p=_k?ucwrs3(_k):0; |
| 412 _i-=p; |
| 413 yj-=_k; |
| 414 _y[0]=(yj+s)^s; |
| 415 cwrsi2(_k,_i,_y+1); |
| 416 } |
| 417 |
| 418 /*Returns the _i'th combination of _k elements (at most 1172) chosen from a set |
| 419 of size 4 with associated sign bits. |
| 420 _y: Returns the vector of pulses.*/ |
| 421 static void cwrsi4(int _k,opus_uint32 _i,int *_y){ |
| 422 opus_uint32 p; |
| 423 int s; |
| 424 int yj; |
| 425 int kl; |
| 426 int kr; |
| 427 p=ucwrs4(_k+1); |
| 428 s=-(_i>=p); |
| 429 _i-=p&s; |
| 430 yj=_k; |
| 431 /*We could solve a cubic for k here, but the form of the direct solution does |
| 432 not lend itself well to exact integer arithmetic. |
| 433 Instead we do a binary search on U(4,K).*/ |
| 434 kl=0; |
| 435 kr=_k; |
| 436 for(;;){ |
| 437 _k=(kl+kr)>>1; |
| 438 p=_k?ucwrs4(_k):0; |
| 439 if(p<_i){ |
| 440 if(_k>=kr)break; |
| 441 kl=_k+1; |
| 442 } |
| 443 else if(p>_i)kr=_k-1; |
| 444 else break; |
| 445 } |
| 446 _i-=p; |
| 447 yj-=_k; |
| 448 _y[0]=(yj+s)^s; |
| 449 cwrsi3(_k,_i,_y+1); |
| 450 } |
| 451 |
| 452 #endif /* SMALL_FOOTPRINT */ |
| 453 |
| 454 /*Returns the _i'th combination of _k elements chosen from a set of size _n |
| 455 with associated sign bits. |
| 456 _y: Returns the vector of pulses. |
| 457 _u: Must contain entries [0..._k+1] of row _n of U() on input. |
| 458 Its contents will be destructively modified.*/ |
| 459 static void cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){ |
| 460 int j; |
| 461 celt_assert(_n>0); |
| 462 j=0; |
| 463 do{ |
| 464 opus_uint32 p; |
| 465 int s; |
| 466 int yj; |
| 467 p=_u[_k+1]; |
| 468 s=-(_i>=p); |
| 469 _i-=p&s; |
| 470 yj=_k; |
| 471 p=_u[_k]; |
| 472 while(p>_i)p=_u[--_k]; |
| 473 _i-=p; |
| 474 yj-=_k; |
| 475 _y[j]=(yj+s)^s; |
| 476 uprev(_u,_k+2,0); |
| 477 } |
| 478 while(++j<_n); |
| 479 } |
| 480 |
| 481 /*Returns the index of the given combination of K elements chosen from a set |
| 482 of size 1 with associated sign bits. |
| 483 _y: The vector of pulses, whose sum of absolute values is K. |
| 484 _k: Returns K.*/ |
| 485 static inline opus_uint32 icwrs1(const int *_y,int *_k){ |
| 486 *_k=abs(_y[0]); |
| 487 return _y[0]<0; |
| 488 } |
| 489 |
| 490 #ifndef SMALL_FOOTPRINT |
| 491 |
| 492 /*Returns the index of the given combination of K elements chosen from a set |
| 493 of size 2 with associated sign bits. |
| 494 _y: The vector of pulses, whose sum of absolute values is K. |
| 495 _k: Returns K.*/ |
| 496 static inline opus_uint32 icwrs2(const int *_y,int *_k){ |
| 497 opus_uint32 i; |
| 498 int k; |
| 499 i=icwrs1(_y+1,&k); |
| 500 i+=k?ucwrs2(k):0; |
| 501 k+=abs(_y[0]); |
| 502 if(_y[0]<0)i+=ucwrs2(k+1U); |
| 503 *_k=k; |
| 504 return i; |
| 505 } |
| 506 |
| 507 /*Returns the index of the given combination of K elements chosen from a set |
| 508 of size 3 with associated sign bits. |
| 509 _y: The vector of pulses, whose sum of absolute values is K. |
| 510 _k: Returns K.*/ |
| 511 static inline opus_uint32 icwrs3(const int *_y,int *_k){ |
| 512 opus_uint32 i; |
| 513 int k; |
| 514 i=icwrs2(_y+1,&k); |
| 515 i+=k?ucwrs3(k):0; |
| 516 k+=abs(_y[0]); |
| 517 if(_y[0]<0)i+=ucwrs3(k+1U); |
| 518 *_k=k; |
| 519 return i; |
| 520 } |
| 521 |
| 522 /*Returns the index of the given combination of K elements chosen from a set |
| 523 of size 4 with associated sign bits. |
| 524 _y: The vector of pulses, whose sum of absolute values is K. |
| 525 _k: Returns K.*/ |
| 526 static inline opus_uint32 icwrs4(const int *_y,int *_k){ |
| 527 opus_uint32 i; |
| 528 int k; |
| 529 i=icwrs3(_y+1,&k); |
| 530 i+=k?ucwrs4(k):0; |
| 531 k+=abs(_y[0]); |
| 532 if(_y[0]<0)i+=ucwrs4(k+1); |
| 533 *_k=k; |
| 534 return i; |
| 535 } |
| 536 |
| 537 #endif /* SMALL_FOOTPRINT */ |
| 538 |
| 539 /*Returns the index of the given combination of K elements chosen from a set |
| 540 of size _n with associated sign bits. |
| 541 _y: The vector of pulses, whose sum of absolute values must be _k. |
| 542 _nc: Returns V(_n,_k).*/ |
| 543 static inline opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y, |
| 544 opus_uint32 *_u){ |
| 545 opus_uint32 i; |
| 546 int j; |
| 547 int k; |
| 548 /*We can't unroll the first two iterations of the loop unless _n>=2.*/ |
| 549 celt_assert(_n>=2); |
| 550 _u[0]=0; |
| 551 for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1; |
| 552 i=icwrs1(_y+_n-1,&k); |
| 553 j=_n-2; |
| 554 i+=_u[k]; |
| 555 k+=abs(_y[j]); |
| 556 if(_y[j]<0)i+=_u[k+1]; |
| 557 while(j-->0){ |
| 558 unext(_u,_k+2,0); |
| 559 i+=_u[k]; |
| 560 k+=abs(_y[j]); |
| 561 if(_y[j]<0)i+=_u[k+1]; |
| 562 } |
| 563 *_nc=_u[k]+_u[k+1]; |
| 564 return i; |
| 565 } |
| 566 |
| 567 #ifdef CUSTOM_MODES |
| 568 void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){ |
| 569 int k; |
| 570 /*_maxk==0 => there's nothing to do.*/ |
| 571 celt_assert(_maxk>0); |
| 572 _bits[0]=0; |
| 573 if (_n==1) |
| 574 { |
| 575 for (k=1;k<=_maxk;k++) |
| 576 _bits[k] = 1<<_frac; |
| 577 } |
| 578 else { |
| 579 VARDECL(opus_uint32,u); |
| 580 SAVE_STACK; |
| 581 ALLOC(u,_maxk+2U,opus_uint32); |
| 582 ncwrs_urow(_n,_maxk,u); |
| 583 for(k=1;k<=_maxk;k++) |
| 584 _bits[k]=log2_frac(u[k]+u[k+1],_frac); |
| 585 RESTORE_STACK; |
| 586 } |
| 587 } |
| 588 #endif /* CUSTOM_MODES */ |
| 589 |
| 590 void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){ |
| 591 opus_uint32 i; |
| 592 celt_assert(_k>0); |
| 593 #ifndef SMALL_FOOTPRINT |
| 594 switch(_n){ |
| 595 case 2:{ |
| 596 i=icwrs2(_y,&_k); |
| 597 ec_enc_uint(_enc,i,ncwrs2(_k)); |
| 598 }break; |
| 599 case 3:{ |
| 600 i=icwrs3(_y,&_k); |
| 601 ec_enc_uint(_enc,i,ncwrs3(_k)); |
| 602 }break; |
| 603 case 4:{ |
| 604 i=icwrs4(_y,&_k); |
| 605 ec_enc_uint(_enc,i,ncwrs4(_k)); |
| 606 }break; |
| 607 default: |
| 608 { |
| 609 #endif |
| 610 VARDECL(opus_uint32,u); |
| 611 opus_uint32 nc; |
| 612 SAVE_STACK; |
| 613 ALLOC(u,_k+2U,opus_uint32); |
| 614 i=icwrs(_n,_k,&nc,_y,u); |
| 615 ec_enc_uint(_enc,i,nc); |
| 616 RESTORE_STACK; |
| 617 #ifndef SMALL_FOOTPRINT |
| 618 } |
| 619 break; |
| 620 } |
| 621 #endif |
| 622 } |
| 623 |
| 624 void decode_pulses(int *_y,int _n,int _k,ec_dec *_dec) |
| 625 { |
| 626 celt_assert(_k>0); |
| 627 #ifndef SMALL_FOOTPRINT |
| 628 switch(_n){ |
| 629 case 2:cwrsi2(_k,ec_dec_uint(_dec,ncwrs2(_k)),_y);break; |
| 630 case 3:cwrsi3(_k,ec_dec_uint(_dec,ncwrs3(_k)),_y);break; |
| 631 case 4:cwrsi4(_k,ec_dec_uint(_dec,ncwrs4(_k)),_y);break; |
| 632 default: |
| 633 { |
| 634 #endif |
| 635 VARDECL(opus_uint32,u); |
| 636 SAVE_STACK; |
| 637 ALLOC(u,_k+2U,opus_uint32); |
| 638 cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u); |
| 639 RESTORE_STACK; |
| 640 #ifndef SMALL_FOOTPRINT |
| 641 } |
| 642 break; |
| 643 } |
| 644 #endif |
| 645 } |
| OLD | NEW |