| OLD | NEW |
| (Empty) | |
| 1 /* Copyright (c) 2007-2008 CSIRO |
| 2 Copyright (c) 2007-2010 Xiph.Org Foundation |
| 3 Copyright (c) 2008 Gregory Maxwell |
| 4 Written by Jean-Marc Valin and Gregory Maxwell */ |
| 5 /* |
| 6 Redistribution and use in source and binary forms, with or without |
| 7 modification, are permitted provided that the following conditions |
| 8 are met: |
| 9 |
| 10 - Redistributions of source code must retain the above copyright |
| 11 notice, this list of conditions and the following disclaimer. |
| 12 |
| 13 - Redistributions in binary form must reproduce the above copyright |
| 14 notice, this list of conditions and the following disclaimer in the |
| 15 documentation and/or other materials provided with the distribution. |
| 16 |
| 17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 18 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 19 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 20 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER |
| 21 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 22 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 23 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 24 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 */ |
| 29 |
| 30 #ifdef HAVE_CONFIG_H |
| 31 #include "config.h" |
| 32 #endif |
| 33 |
| 34 #define CELT_C |
| 35 |
| 36 #include "os_support.h" |
| 37 #include "mdct.h" |
| 38 #include <math.h> |
| 39 #include "celt.h" |
| 40 #include "pitch.h" |
| 41 #include "bands.h" |
| 42 #include "modes.h" |
| 43 #include "entcode.h" |
| 44 #include "quant_bands.h" |
| 45 #include "rate.h" |
| 46 #include "stack_alloc.h" |
| 47 #include "mathops.h" |
| 48 #include "float_cast.h" |
| 49 #include <stdarg.h> |
| 50 #include "celt_lpc.h" |
| 51 #include "vq.h" |
| 52 |
| 53 #ifndef OPUS_VERSION |
| 54 #define OPUS_VERSION "unknown" |
| 55 #endif |
| 56 |
| 57 #ifdef CUSTOM_MODES |
| 58 #define OPUS_CUSTOM_NOSTATIC |
| 59 #else |
| 60 #define OPUS_CUSTOM_NOSTATIC static inline |
| 61 #endif |
| 62 |
| 63 static const unsigned char trim_icdf[11] = {126, 124, 119, 109, 87, 41, 19, 9, 4
, 2, 0}; |
| 64 /* Probs: NONE: 21.875%, LIGHT: 6.25%, NORMAL: 65.625%, AGGRESSIVE: 6.25% */ |
| 65 static const unsigned char spread_icdf[4] = {25, 23, 2, 0}; |
| 66 |
| 67 static const unsigned char tapset_icdf[3]={2,1,0}; |
| 68 |
| 69 #ifdef CUSTOM_MODES |
| 70 static const unsigned char toOpusTable[20] = { |
| 71 0xE0, 0xE8, 0xF0, 0xF8, |
| 72 0xC0, 0xC8, 0xD0, 0xD8, |
| 73 0xA0, 0xA8, 0xB0, 0xB8, |
| 74 0x00, 0x00, 0x00, 0x00, |
| 75 0x80, 0x88, 0x90, 0x98, |
| 76 }; |
| 77 |
| 78 static const unsigned char fromOpusTable[16] = { |
| 79 0x80, 0x88, 0x90, 0x98, |
| 80 0x40, 0x48, 0x50, 0x58, |
| 81 0x20, 0x28, 0x30, 0x38, |
| 82 0x00, 0x08, 0x10, 0x18 |
| 83 }; |
| 84 |
| 85 static inline int toOpus(unsigned char c) |
| 86 { |
| 87 int ret=0; |
| 88 if (c<0xA0) |
| 89 ret = toOpusTable[c>>3]; |
| 90 if (ret == 0) |
| 91 return -1; |
| 92 else |
| 93 return ret|(c&0x7); |
| 94 } |
| 95 |
| 96 static inline int fromOpus(unsigned char c) |
| 97 { |
| 98 if (c<0x80) |
| 99 return -1; |
| 100 else |
| 101 return fromOpusTable[(c>>3)-16] | (c&0x7); |
| 102 } |
| 103 #endif /* CUSTOM_MODES */ |
| 104 |
| 105 #define COMBFILTER_MAXPERIOD 1024 |
| 106 #define COMBFILTER_MINPERIOD 15 |
| 107 |
| 108 static int resampling_factor(opus_int32 rate) |
| 109 { |
| 110 int ret; |
| 111 switch (rate) |
| 112 { |
| 113 case 48000: |
| 114 ret = 1; |
| 115 break; |
| 116 case 24000: |
| 117 ret = 2; |
| 118 break; |
| 119 case 16000: |
| 120 ret = 3; |
| 121 break; |
| 122 case 12000: |
| 123 ret = 4; |
| 124 break; |
| 125 case 8000: |
| 126 ret = 6; |
| 127 break; |
| 128 default: |
| 129 #ifndef CUSTOM_MODES |
| 130 celt_assert(0); |
| 131 #endif |
| 132 ret = 0; |
| 133 break; |
| 134 } |
| 135 return ret; |
| 136 } |
| 137 |
| 138 /** Encoder state |
| 139 @brief Encoder state |
| 140 */ |
| 141 struct OpusCustomEncoder { |
| 142 const OpusCustomMode *mode; /**< Mode used by the encoder */ |
| 143 int overlap; |
| 144 int channels; |
| 145 int stream_channels; |
| 146 |
| 147 int force_intra; |
| 148 int clip; |
| 149 int disable_pf; |
| 150 int complexity; |
| 151 int upsample; |
| 152 int start, end; |
| 153 |
| 154 opus_int32 bitrate; |
| 155 int vbr; |
| 156 int signalling; |
| 157 int constrained_vbr; /* If zero, VBR can do whatever it likes with the r
ate */ |
| 158 int loss_rate; |
| 159 int lsb_depth; |
| 160 |
| 161 /* Everything beyond this point gets cleared on a reset */ |
| 162 #define ENCODER_RESET_START rng |
| 163 |
| 164 opus_uint32 rng; |
| 165 int spread_decision; |
| 166 opus_val32 delayedIntra; |
| 167 int tonal_average; |
| 168 int lastCodedBands; |
| 169 int hf_average; |
| 170 int tapset_decision; |
| 171 |
| 172 int prefilter_period; |
| 173 opus_val16 prefilter_gain; |
| 174 int prefilter_tapset; |
| 175 #ifdef RESYNTH |
| 176 int prefilter_period_old; |
| 177 opus_val16 prefilter_gain_old; |
| 178 int prefilter_tapset_old; |
| 179 #endif |
| 180 int consec_transient; |
| 181 |
| 182 opus_val32 preemph_memE[2]; |
| 183 opus_val32 preemph_memD[2]; |
| 184 |
| 185 /* VBR-related parameters */ |
| 186 opus_int32 vbr_reservoir; |
| 187 opus_int32 vbr_drift; |
| 188 opus_int32 vbr_offset; |
| 189 opus_int32 vbr_count; |
| 190 |
| 191 #ifdef RESYNTH |
| 192 celt_sig syn_mem[2][2*MAX_PERIOD]; |
| 193 #endif |
| 194 |
| 195 celt_sig in_mem[1]; /* Size = channels*mode->overlap */ |
| 196 /* celt_sig prefilter_mem[], Size = channels*COMBFILTER_PERIOD */ |
| 197 /* celt_sig overlap_mem[], Size = channels*mode->overlap */ |
| 198 /* opus_val16 oldEBands[], Size = 2*channels*mode->nbEBands */ |
| 199 }; |
| 200 |
| 201 int celt_encoder_get_size(int channels) |
| 202 { |
| 203 CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); |
| 204 return opus_custom_encoder_get_size(mode, channels); |
| 205 } |
| 206 |
| 207 OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_get_size(const CELTMode *mode, int
channels) |
| 208 { |
| 209 int size = sizeof(struct CELTEncoder) |
| 210 + (2*channels*mode->overlap-1)*sizeof(celt_sig) |
| 211 + channels*COMBFILTER_MAXPERIOD*sizeof(celt_sig) |
| 212 + 3*channels*mode->nbEBands*sizeof(opus_val16); |
| 213 return size; |
| 214 } |
| 215 |
| 216 #ifdef CUSTOM_MODES |
| 217 CELTEncoder *opus_custom_encoder_create(const CELTMode *mode, int channels, int
*error) |
| 218 { |
| 219 int ret; |
| 220 CELTEncoder *st = (CELTEncoder *)opus_alloc(opus_custom_encoder_get_size(mode
, channels)); |
| 221 /* init will handle the NULL case */ |
| 222 ret = opus_custom_encoder_init(st, mode, channels); |
| 223 if (ret != OPUS_OK) |
| 224 { |
| 225 opus_custom_encoder_destroy(st); |
| 226 st = NULL; |
| 227 } |
| 228 if (error) |
| 229 *error = ret; |
| 230 return st; |
| 231 } |
| 232 #endif /* CUSTOM_MODES */ |
| 233 |
| 234 int celt_encoder_init(CELTEncoder *st, opus_int32 sampling_rate, int channels) |
| 235 { |
| 236 int ret; |
| 237 ret = opus_custom_encoder_init(st, opus_custom_mode_create(48000, 960, NULL),
channels); |
| 238 if (ret != OPUS_OK) |
| 239 return ret; |
| 240 st->upsample = resampling_factor(sampling_rate); |
| 241 return OPUS_OK; |
| 242 } |
| 243 |
| 244 OPUS_CUSTOM_NOSTATIC int opus_custom_encoder_init(CELTEncoder *st, const CELTMod
e *mode, int channels) |
| 245 { |
| 246 if (channels < 0 || channels > 2) |
| 247 return OPUS_BAD_ARG; |
| 248 |
| 249 if (st==NULL || mode==NULL) |
| 250 return OPUS_ALLOC_FAIL; |
| 251 |
| 252 OPUS_CLEAR((char*)st, opus_custom_encoder_get_size(mode, channels)); |
| 253 |
| 254 st->mode = mode; |
| 255 st->overlap = mode->overlap; |
| 256 st->stream_channels = st->channels = channels; |
| 257 |
| 258 st->upsample = 1; |
| 259 st->start = 0; |
| 260 st->end = st->mode->effEBands; |
| 261 st->signalling = 1; |
| 262 |
| 263 st->constrained_vbr = 1; |
| 264 st->clip = 1; |
| 265 |
| 266 st->bitrate = OPUS_BITRATE_MAX; |
| 267 st->vbr = 0; |
| 268 st->force_intra = 0; |
| 269 st->complexity = 5; |
| 270 st->lsb_depth=24; |
| 271 |
| 272 opus_custom_encoder_ctl(st, OPUS_RESET_STATE); |
| 273 |
| 274 return OPUS_OK; |
| 275 } |
| 276 |
| 277 #ifdef CUSTOM_MODES |
| 278 void opus_custom_encoder_destroy(CELTEncoder *st) |
| 279 { |
| 280 opus_free(st); |
| 281 } |
| 282 #endif /* CUSTOM_MODES */ |
| 283 |
| 284 static inline opus_val16 SIG2WORD16(celt_sig x) |
| 285 { |
| 286 #ifdef FIXED_POINT |
| 287 x = PSHR32(x, SIG_SHIFT); |
| 288 x = MAX32(x, -32768); |
| 289 x = MIN32(x, 32767); |
| 290 return EXTRACT16(x); |
| 291 #else |
| 292 return (opus_val16)x; |
| 293 #endif |
| 294 } |
| 295 |
| 296 static int transient_analysis(const opus_val32 * OPUS_RESTRICT in, int len, int
C, |
| 297 int overlap) |
| 298 { |
| 299 int i; |
| 300 VARDECL(opus_val16, tmp); |
| 301 opus_val32 mem0=0,mem1=0; |
| 302 int is_transient = 0; |
| 303 int block; |
| 304 int N; |
| 305 VARDECL(opus_val16, bins); |
| 306 SAVE_STACK; |
| 307 ALLOC(tmp, len, opus_val16); |
| 308 |
| 309 block = overlap/2; |
| 310 N=len/block; |
| 311 ALLOC(bins, N, opus_val16); |
| 312 if (C==1) |
| 313 { |
| 314 for (i=0;i<len;i++) |
| 315 tmp[i] = SHR32(in[i],SIG_SHIFT); |
| 316 } else { |
| 317 for (i=0;i<len;i++) |
| 318 tmp[i] = SHR32(ADD32(in[i],in[i+len]), SIG_SHIFT+1); |
| 319 } |
| 320 |
| 321 /* High-pass filter: (1 - 2*z^-1 + z^-2) / (1 - z^-1 + .5*z^-2) */ |
| 322 for (i=0;i<len;i++) |
| 323 { |
| 324 opus_val32 x,y; |
| 325 x = tmp[i]; |
| 326 y = ADD32(mem0, x); |
| 327 #ifdef FIXED_POINT |
| 328 mem0 = mem1 + y - SHL32(x,1); |
| 329 mem1 = x - SHR32(y,1); |
| 330 #else |
| 331 mem0 = mem1 + y - 2*x; |
| 332 mem1 = x - .5f*y; |
| 333 #endif |
| 334 tmp[i] = EXTRACT16(SHR32(y,2)); |
| 335 } |
| 336 /* First few samples are bad because we don't propagate the memory */ |
| 337 for (i=0;i<12;i++) |
| 338 tmp[i] = 0; |
| 339 |
| 340 for (i=0;i<N;i++) |
| 341 { |
| 342 int j; |
| 343 opus_val16 max_abs=0; |
| 344 for (j=0;j<block;j++) |
| 345 max_abs = MAX16(max_abs, ABS16(tmp[i*block+j])); |
| 346 bins[i] = max_abs; |
| 347 } |
| 348 for (i=0;i<N;i++) |
| 349 { |
| 350 int j; |
| 351 int conseq=0; |
| 352 opus_val16 t1, t2, t3; |
| 353 |
| 354 t1 = MULT16_16_Q15(QCONST16(.15f, 15), bins[i]); |
| 355 t2 = MULT16_16_Q15(QCONST16(.4f, 15), bins[i]); |
| 356 t3 = MULT16_16_Q15(QCONST16(.15f, 15), bins[i]); |
| 357 for (j=0;j<i;j++) |
| 358 { |
| 359 if (bins[j] < t1) |
| 360 conseq++; |
| 361 if (bins[j] < t2) |
| 362 conseq++; |
| 363 else |
| 364 conseq = 0; |
| 365 } |
| 366 if (conseq>=3) |
| 367 is_transient=1; |
| 368 conseq = 0; |
| 369 for (j=i+1;j<N;j++) |
| 370 { |
| 371 if (bins[j] < t3) |
| 372 conseq++; |
| 373 else |
| 374 conseq = 0; |
| 375 } |
| 376 if (conseq>=7) |
| 377 is_transient=1; |
| 378 } |
| 379 RESTORE_STACK; |
| 380 #ifdef FUZZING |
| 381 is_transient = rand()&0x1; |
| 382 #endif |
| 383 return is_transient; |
| 384 } |
| 385 |
| 386 /** Apply window and compute the MDCT for all sub-frames and |
| 387 all channels in a frame */ |
| 388 static void compute_mdcts(const CELTMode *mode, int shortBlocks, celt_sig * OPUS
_RESTRICT in, celt_sig * OPUS_RESTRICT out, int C, int LM) |
| 389 { |
| 390 if (C==1 && !shortBlocks) |
| 391 { |
| 392 const int overlap = OVERLAP(mode); |
| 393 clt_mdct_forward(&mode->mdct, in, out, mode->window, overlap, mode->maxLM-
LM, 1); |
| 394 } else { |
| 395 const int overlap = OVERLAP(mode); |
| 396 int N = mode->shortMdctSize<<LM; |
| 397 int B = 1; |
| 398 int b, c; |
| 399 if (shortBlocks) |
| 400 { |
| 401 N = mode->shortMdctSize; |
| 402 B = shortBlocks; |
| 403 } |
| 404 c=0; do { |
| 405 for (b=0;b<B;b++) |
| 406 { |
| 407 /* Interleaving the sub-frames while doing the MDCTs */ |
| 408 clt_mdct_forward(&mode->mdct, in+c*(B*N+overlap)+b*N, &out[b+c*N*B],
mode->window, overlap, shortBlocks ? mode->maxLM : mode->maxLM-LM, B); |
| 409 } |
| 410 } while (++c<C); |
| 411 } |
| 412 } |
| 413 |
| 414 /** Compute the IMDCT and apply window for all sub-frames and |
| 415 all channels in a frame */ |
| 416 static void compute_inv_mdcts(const CELTMode *mode, int shortBlocks, celt_sig *X
, |
| 417 celt_sig * OPUS_RESTRICT out_mem[], |
| 418 celt_sig * OPUS_RESTRICT overlap_mem[], int C, int LM) |
| 419 { |
| 420 int c; |
| 421 const int N = mode->shortMdctSize<<LM; |
| 422 const int overlap = OVERLAP(mode); |
| 423 VARDECL(opus_val32, x); |
| 424 SAVE_STACK; |
| 425 |
| 426 ALLOC(x, N+overlap, opus_val32); |
| 427 c=0; do { |
| 428 int j; |
| 429 int b; |
| 430 int N2 = N; |
| 431 int B = 1; |
| 432 |
| 433 if (shortBlocks) |
| 434 { |
| 435 N2 = mode->shortMdctSize; |
| 436 B = shortBlocks; |
| 437 } |
| 438 /* Prevents problems from the imdct doing the overlap-add */ |
| 439 OPUS_CLEAR(x, overlap); |
| 440 |
| 441 for (b=0;b<B;b++) |
| 442 { |
| 443 /* IMDCT on the interleaved the sub-frames */ |
| 444 clt_mdct_backward(&mode->mdct, &X[b+c*N2*B], x+N2*b, mode->window, over
lap, shortBlocks ? mode->maxLM : mode->maxLM-LM, B); |
| 445 } |
| 446 |
| 447 for (j=0;j<overlap;j++) |
| 448 out_mem[c][j] = x[j] + overlap_mem[c][j]; |
| 449 for (;j<N;j++) |
| 450 out_mem[c][j] = x[j]; |
| 451 for (j=0;j<overlap;j++) |
| 452 overlap_mem[c][j] = x[N+j]; |
| 453 } while (++c<C); |
| 454 RESTORE_STACK; |
| 455 } |
| 456 |
| 457 static void deemphasis(celt_sig *in[], opus_val16 *pcm, int N, int C, int downsa
mple, const opus_val16 *coef, celt_sig *mem) |
| 458 { |
| 459 int c; |
| 460 int count=0; |
| 461 c=0; do { |
| 462 int j; |
| 463 celt_sig * OPUS_RESTRICT x; |
| 464 opus_val16 * OPUS_RESTRICT y; |
| 465 celt_sig m = mem[c]; |
| 466 x =in[c]; |
| 467 y = pcm+c; |
| 468 for (j=0;j<N;j++) |
| 469 { |
| 470 celt_sig tmp = *x + m; |
| 471 m = MULT16_32_Q15(coef[0], tmp) |
| 472 - MULT16_32_Q15(coef[1], *x); |
| 473 tmp = SHL32(MULT16_32_Q15(coef[3], tmp), 2); |
| 474 x++; |
| 475 /* Technically the store could be moved outside of the if because |
| 476 the stores we don't want will just be overwritten */ |
| 477 if (count==0) |
| 478 *y = SCALEOUT(SIG2WORD16(tmp)); |
| 479 if (++count==downsample) |
| 480 { |
| 481 y+=C; |
| 482 count=0; |
| 483 } |
| 484 } |
| 485 mem[c] = m; |
| 486 } while (++c<C); |
| 487 } |
| 488 |
| 489 static void comb_filter(opus_val32 *y, opus_val32 *x, int T0, int T1, int N, |
| 490 opus_val16 g0, opus_val16 g1, int tapset0, int tapset1, |
| 491 const opus_val16 *window, int overlap) |
| 492 { |
| 493 int i; |
| 494 /* printf ("%d %d %f %f\n", T0, T1, g0, g1); */ |
| 495 opus_val16 g00, g01, g02, g10, g11, g12; |
| 496 static const opus_val16 gains[3][3] = { |
| 497 {QCONST16(0.3066406250f, 15), QCONST16(0.2170410156f, 15), QCONST16(0.1
296386719f, 15)}, |
| 498 {QCONST16(0.4638671875f, 15), QCONST16(0.2680664062f, 15), QCONST16(0.f
, 15)}, |
| 499 {QCONST16(0.7998046875f, 15), QCONST16(0.1000976562f, 15), QCONST16(0.f
, 15)}}; |
| 500 g00 = MULT16_16_Q15(g0, gains[tapset0][0]); |
| 501 g01 = MULT16_16_Q15(g0, gains[tapset0][1]); |
| 502 g02 = MULT16_16_Q15(g0, gains[tapset0][2]); |
| 503 g10 = MULT16_16_Q15(g1, gains[tapset1][0]); |
| 504 g11 = MULT16_16_Q15(g1, gains[tapset1][1]); |
| 505 g12 = MULT16_16_Q15(g1, gains[tapset1][2]); |
| 506 for (i=0;i<overlap;i++) |
| 507 { |
| 508 opus_val16 f; |
| 509 f = MULT16_16_Q15(window[i],window[i]); |
| 510 y[i] = x[i] |
| 511 + MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g00),x[i-T0]) |
| 512 + MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g01),x[i-T0-1]) |
| 513 + MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g01),x[i-T0+1]) |
| 514 + MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g02),x[i-T0-2]) |
| 515 + MULT16_32_Q15(MULT16_16_Q15((Q15ONE-f),g02),x[i-T0+2]) |
| 516 + MULT16_32_Q15(MULT16_16_Q15(f,g10),x[i-T1]) |
| 517 + MULT16_32_Q15(MULT16_16_Q15(f,g11),x[i-T1-1]) |
| 518 + MULT16_32_Q15(MULT16_16_Q15(f,g11),x[i-T1+1]) |
| 519 + MULT16_32_Q15(MULT16_16_Q15(f,g12),x[i-T1-2]) |
| 520 + MULT16_32_Q15(MULT16_16_Q15(f,g12),x[i-T1+2]); |
| 521 |
| 522 } |
| 523 for (i=overlap;i<N;i++) |
| 524 y[i] = x[i] |
| 525 + MULT16_32_Q15(g10,x[i-T1]) |
| 526 + MULT16_32_Q15(g11,x[i-T1-1]) |
| 527 + MULT16_32_Q15(g11,x[i-T1+1]) |
| 528 + MULT16_32_Q15(g12,x[i-T1-2]) |
| 529 + MULT16_32_Q15(g12,x[i-T1+2]); |
| 530 } |
| 531 |
| 532 static const signed char tf_select_table[4][8] = { |
| 533 {0, -1, 0, -1, 0,-1, 0,-1}, |
| 534 {0, -1, 0, -2, 1, 0, 1,-1}, |
| 535 {0, -2, 0, -3, 2, 0, 1,-1}, |
| 536 {0, -2, 0, -3, 3, 0, 1,-1}, |
| 537 }; |
| 538 |
| 539 static opus_val32 l1_metric(const celt_norm *tmp, int N, int LM, int width) |
| 540 { |
| 541 int i, j; |
| 542 static const opus_val16 sqrtM_1[4] = {Q15ONE, QCONST16(.70710678f,15), QCONST
16(0.5f,15), QCONST16(0.35355339f,15)}; |
| 543 opus_val32 L1; |
| 544 opus_val16 bias; |
| 545 L1=0; |
| 546 for (i=0;i<1<<LM;i++) |
| 547 { |
| 548 opus_val32 L2 = 0; |
| 549 for (j=0;j<N>>LM;j++) |
| 550 L2 = MAC16_16(L2, tmp[(j<<LM)+i], tmp[(j<<LM)+i]); |
| 551 L1 += celt_sqrt(L2); |
| 552 } |
| 553 L1 = MULT16_32_Q15(sqrtM_1[LM], L1); |
| 554 if (width==1) |
| 555 bias = QCONST16(.12f,15)*LM; |
| 556 else if (width==2) |
| 557 bias = QCONST16(.05f,15)*LM; |
| 558 else |
| 559 bias = QCONST16(.02f,15)*LM; |
| 560 L1 = MAC16_32_Q15(L1, bias, L1); |
| 561 return L1; |
| 562 } |
| 563 |
| 564 static int tf_analysis(const CELTMode *m, int len, int C, int isTransient, |
| 565 int *tf_res, int nbCompressedBytes, celt_norm *X, int N0, int LM, |
| 566 int *tf_sum) |
| 567 { |
| 568 int i; |
| 569 VARDECL(int, metric); |
| 570 int cost0; |
| 571 int cost1; |
| 572 VARDECL(int, path0); |
| 573 VARDECL(int, path1); |
| 574 VARDECL(celt_norm, tmp); |
| 575 int lambda; |
| 576 int tf_select=0; |
| 577 SAVE_STACK; |
| 578 |
| 579 if (nbCompressedBytes<15*C) |
| 580 { |
| 581 *tf_sum = 0; |
| 582 for (i=0;i<len;i++) |
| 583 tf_res[i] = isTransient; |
| 584 return 0; |
| 585 } |
| 586 if (nbCompressedBytes<40) |
| 587 lambda = 12; |
| 588 else if (nbCompressedBytes<60) |
| 589 lambda = 6; |
| 590 else if (nbCompressedBytes<100) |
| 591 lambda = 4; |
| 592 else |
| 593 lambda = 3; |
| 594 |
| 595 ALLOC(metric, len, int); |
| 596 ALLOC(tmp, (m->eBands[len]-m->eBands[len-1])<<LM, celt_norm); |
| 597 ALLOC(path0, len, int); |
| 598 ALLOC(path1, len, int); |
| 599 |
| 600 *tf_sum = 0; |
| 601 for (i=0;i<len;i++) |
| 602 { |
| 603 int j, k, N; |
| 604 opus_val32 L1, best_L1; |
| 605 int best_level=0; |
| 606 N = (m->eBands[i+1]-m->eBands[i])<<LM; |
| 607 for (j=0;j<N;j++) |
| 608 tmp[j] = X[j+(m->eBands[i]<<LM)]; |
| 609 /* Just add the right channel if we're in stereo */ |
| 610 if (C==2) |
| 611 for (j=0;j<N;j++) |
| 612 tmp[j] = ADD16(SHR16(tmp[j], 1),SHR16(X[N0+j+(m->eBands[i]<<LM)], 1)
); |
| 613 L1 = l1_metric(tmp, N, isTransient ? LM : 0, N>>LM); |
| 614 best_L1 = L1; |
| 615 /*printf ("%f ", L1);*/ |
| 616 for (k=0;k<LM;k++) |
| 617 { |
| 618 int B; |
| 619 |
| 620 if (isTransient) |
| 621 B = (LM-k-1); |
| 622 else |
| 623 B = k+1; |
| 624 |
| 625 if (isTransient) |
| 626 haar1(tmp, N>>(LM-k), 1<<(LM-k)); |
| 627 else |
| 628 haar1(tmp, N>>k, 1<<k); |
| 629 |
| 630 L1 = l1_metric(tmp, N, B, N>>LM); |
| 631 |
| 632 if (L1 < best_L1) |
| 633 { |
| 634 best_L1 = L1; |
| 635 best_level = k+1; |
| 636 } |
| 637 } |
| 638 /*printf ("%d ", isTransient ? LM-best_level : best_level);*/ |
| 639 if (isTransient) |
| 640 metric[i] = best_level; |
| 641 else |
| 642 metric[i] = -best_level; |
| 643 *tf_sum += metric[i]; |
| 644 } |
| 645 /*printf("\n");*/ |
| 646 /* NOTE: Future optimized implementations could detect extreme transients and
set |
| 647 tf_select = 1 but so far we have not found a reliable way of making this u
seful */ |
| 648 tf_select = 0; |
| 649 |
| 650 cost0 = 0; |
| 651 cost1 = isTransient ? 0 : lambda; |
| 652 /* Viterbi forward pass */ |
| 653 for (i=1;i<len;i++) |
| 654 { |
| 655 int curr0, curr1; |
| 656 int from0, from1; |
| 657 |
| 658 from0 = cost0; |
| 659 from1 = cost1 + lambda; |
| 660 if (from0 < from1) |
| 661 { |
| 662 curr0 = from0; |
| 663 path0[i]= 0; |
| 664 } else { |
| 665 curr0 = from1; |
| 666 path0[i]= 1; |
| 667 } |
| 668 |
| 669 from0 = cost0 + lambda; |
| 670 from1 = cost1; |
| 671 if (from0 < from1) |
| 672 { |
| 673 curr1 = from0; |
| 674 path1[i]= 0; |
| 675 } else { |
| 676 curr1 = from1; |
| 677 path1[i]= 1; |
| 678 } |
| 679 cost0 = curr0 + abs(metric[i]-tf_select_table[LM][4*isTransient+2*tf_selec
t+0]); |
| 680 cost1 = curr1 + abs(metric[i]-tf_select_table[LM][4*isTransient+2*tf_selec
t+1]); |
| 681 } |
| 682 tf_res[len-1] = cost0 < cost1 ? 0 : 1; |
| 683 /* Viterbi backward pass to check the decisions */ |
| 684 for (i=len-2;i>=0;i--) |
| 685 { |
| 686 if (tf_res[i+1] == 1) |
| 687 tf_res[i] = path1[i+1]; |
| 688 else |
| 689 tf_res[i] = path0[i+1]; |
| 690 } |
| 691 RESTORE_STACK; |
| 692 #ifdef FUZZING |
| 693 tf_select = rand()&0x1; |
| 694 tf_res[0] = rand()&0x1; |
| 695 for (i=1;i<len;i++) |
| 696 tf_res[i] = tf_res[i-1] ^ ((rand()&0xF) == 0); |
| 697 #endif |
| 698 return tf_select; |
| 699 } |
| 700 |
| 701 static void tf_encode(int start, int end, int isTransient, int *tf_res, int LM,
int tf_select, ec_enc *enc) |
| 702 { |
| 703 int curr, i; |
| 704 int tf_select_rsv; |
| 705 int tf_changed; |
| 706 int logp; |
| 707 opus_uint32 budget; |
| 708 opus_uint32 tell; |
| 709 budget = enc->storage*8; |
| 710 tell = ec_tell(enc); |
| 711 logp = isTransient ? 2 : 4; |
| 712 /* Reserve space to code the tf_select decision. */ |
| 713 tf_select_rsv = LM>0 && tell+logp+1 <= budget; |
| 714 budget -= tf_select_rsv; |
| 715 curr = tf_changed = 0; |
| 716 for (i=start;i<end;i++) |
| 717 { |
| 718 if (tell+logp<=budget) |
| 719 { |
| 720 ec_enc_bit_logp(enc, tf_res[i] ^ curr, logp); |
| 721 tell = ec_tell(enc); |
| 722 curr = tf_res[i]; |
| 723 tf_changed |= curr; |
| 724 } |
| 725 else |
| 726 tf_res[i] = curr; |
| 727 logp = isTransient ? 4 : 5; |
| 728 } |
| 729 /* Only code tf_select if it would actually make a difference. */ |
| 730 if (tf_select_rsv && |
| 731 tf_select_table[LM][4*isTransient+0+tf_changed]!= |
| 732 tf_select_table[LM][4*isTransient+2+tf_changed]) |
| 733 ec_enc_bit_logp(enc, tf_select, 1); |
| 734 else |
| 735 tf_select = 0; |
| 736 for (i=start;i<end;i++) |
| 737 tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; |
| 738 /*printf("%d %d ", isTransient, tf_select); for(i=0;i<end;i++)printf("%d ", t
f_res[i]);printf("\n");*/ |
| 739 } |
| 740 |
| 741 static void tf_decode(int start, int end, int isTransient, int *tf_res, int LM,
ec_dec *dec) |
| 742 { |
| 743 int i, curr, tf_select; |
| 744 int tf_select_rsv; |
| 745 int tf_changed; |
| 746 int logp; |
| 747 opus_uint32 budget; |
| 748 opus_uint32 tell; |
| 749 |
| 750 budget = dec->storage*8; |
| 751 tell = ec_tell(dec); |
| 752 logp = isTransient ? 2 : 4; |
| 753 tf_select_rsv = LM>0 && tell+logp+1<=budget; |
| 754 budget -= tf_select_rsv; |
| 755 tf_changed = curr = 0; |
| 756 for (i=start;i<end;i++) |
| 757 { |
| 758 if (tell+logp<=budget) |
| 759 { |
| 760 curr ^= ec_dec_bit_logp(dec, logp); |
| 761 tell = ec_tell(dec); |
| 762 tf_changed |= curr; |
| 763 } |
| 764 tf_res[i] = curr; |
| 765 logp = isTransient ? 4 : 5; |
| 766 } |
| 767 tf_select = 0; |
| 768 if (tf_select_rsv && |
| 769 tf_select_table[LM][4*isTransient+0+tf_changed] != |
| 770 tf_select_table[LM][4*isTransient+2+tf_changed]) |
| 771 { |
| 772 tf_select = ec_dec_bit_logp(dec, 1); |
| 773 } |
| 774 for (i=start;i<end;i++) |
| 775 { |
| 776 tf_res[i] = tf_select_table[LM][4*isTransient+2*tf_select+tf_res[i]]; |
| 777 } |
| 778 } |
| 779 |
| 780 static void init_caps(const CELTMode *m,int *cap,int LM,int C) |
| 781 { |
| 782 int i; |
| 783 for (i=0;i<m->nbEBands;i++) |
| 784 { |
| 785 int N; |
| 786 N=(m->eBands[i+1]-m->eBands[i])<<LM; |
| 787 cap[i] = (m->cache.caps[m->nbEBands*(2*LM+C-1)+i]+64)*C*N>>2; |
| 788 } |
| 789 } |
| 790 |
| 791 static int alloc_trim_analysis(const CELTMode *m, const celt_norm *X, |
| 792 const opus_val16 *bandLogE, int end, int LM, int C, int N0) |
| 793 { |
| 794 int i; |
| 795 opus_val32 diff=0; |
| 796 int c; |
| 797 int trim_index = 5; |
| 798 if (C==2) |
| 799 { |
| 800 opus_val16 sum = 0; /* Q10 */ |
| 801 /* Compute inter-channel correlation for low frequencies */ |
| 802 for (i=0;i<8;i++) |
| 803 { |
| 804 int j; |
| 805 opus_val32 partial = 0; |
| 806 for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
| 807 partial = MAC16_16(partial, X[j], X[N0+j]); |
| 808 sum = ADD16(sum, EXTRACT16(SHR32(partial, 18))); |
| 809 } |
| 810 sum = MULT16_16_Q15(QCONST16(1.f/8, 15), sum); |
| 811 /*printf ("%f\n", sum);*/ |
| 812 if (sum > QCONST16(.995f,10)) |
| 813 trim_index-=4; |
| 814 else if (sum > QCONST16(.92f,10)) |
| 815 trim_index-=3; |
| 816 else if (sum > QCONST16(.85f,10)) |
| 817 trim_index-=2; |
| 818 else if (sum > QCONST16(.8f,10)) |
| 819 trim_index-=1; |
| 820 } |
| 821 |
| 822 /* Estimate spectral tilt */ |
| 823 c=0; do { |
| 824 for (i=0;i<end-1;i++) |
| 825 { |
| 826 diff += bandLogE[i+c*m->nbEBands]*(opus_int32)(2+2*i-m->nbEBands); |
| 827 } |
| 828 } while (++c<C); |
| 829 /* We divide by two here to avoid making the tilt larger for stereo as a |
| 830 result of a bug in the loop above */ |
| 831 diff /= 2*C*(end-1); |
| 832 /*printf("%f\n", diff);*/ |
| 833 if (diff > QCONST16(2.f, DB_SHIFT)) |
| 834 trim_index--; |
| 835 if (diff > QCONST16(8.f, DB_SHIFT)) |
| 836 trim_index--; |
| 837 if (diff < -QCONST16(4.f, DB_SHIFT)) |
| 838 trim_index++; |
| 839 if (diff < -QCONST16(10.f, DB_SHIFT)) |
| 840 trim_index++; |
| 841 |
| 842 if (trim_index<0) |
| 843 trim_index = 0; |
| 844 if (trim_index>10) |
| 845 trim_index = 10; |
| 846 #ifdef FUZZING |
| 847 trim_index = rand()%11; |
| 848 #endif |
| 849 return trim_index; |
| 850 } |
| 851 |
| 852 static int stereo_analysis(const CELTMode *m, const celt_norm *X, |
| 853 int LM, int N0) |
| 854 { |
| 855 int i; |
| 856 int thetas; |
| 857 opus_val32 sumLR = EPSILON, sumMS = EPSILON; |
| 858 |
| 859 /* Use the L1 norm to model the entropy of the L/R signal vs the M/S signal *
/ |
| 860 for (i=0;i<13;i++) |
| 861 { |
| 862 int j; |
| 863 for (j=m->eBands[i]<<LM;j<m->eBands[i+1]<<LM;j++) |
| 864 { |
| 865 opus_val32 L, R, M, S; |
| 866 /* We cast to 32-bit first because of the -32768 case */ |
| 867 L = EXTEND32(X[j]); |
| 868 R = EXTEND32(X[N0+j]); |
| 869 M = ADD32(L, R); |
| 870 S = SUB32(L, R); |
| 871 sumLR = ADD32(sumLR, ADD32(ABS32(L), ABS32(R))); |
| 872 sumMS = ADD32(sumMS, ADD32(ABS32(M), ABS32(S))); |
| 873 } |
| 874 } |
| 875 sumMS = MULT16_32_Q15(QCONST16(0.707107f, 15), sumMS); |
| 876 thetas = 13; |
| 877 /* We don't need thetas for lower bands with LM<=1 */ |
| 878 if (LM<=1) |
| 879 thetas -= 8; |
| 880 return MULT16_32_Q15((m->eBands[13]<<(LM+1))+thetas, sumMS) |
| 881 > MULT16_32_Q15(m->eBands[13]<<(LM+1), sumLR); |
| 882 } |
| 883 |
| 884 int celt_encode_with_ec(CELTEncoder * OPUS_RESTRICT st, const opus_val16 * pcm,
int frame_size, unsigned char *compressed, int nbCompressedBytes, ec_enc *enc) |
| 885 { |
| 886 int i, c, N; |
| 887 opus_int32 bits; |
| 888 ec_enc _enc; |
| 889 VARDECL(celt_sig, in); |
| 890 VARDECL(celt_sig, freq); |
| 891 VARDECL(celt_norm, X); |
| 892 VARDECL(celt_ener, bandE); |
| 893 VARDECL(opus_val16, bandLogE); |
| 894 VARDECL(int, fine_quant); |
| 895 VARDECL(opus_val16, error); |
| 896 VARDECL(int, pulses); |
| 897 VARDECL(int, cap); |
| 898 VARDECL(int, offsets); |
| 899 VARDECL(int, fine_priority); |
| 900 VARDECL(int, tf_res); |
| 901 VARDECL(unsigned char, collapse_masks); |
| 902 celt_sig *prefilter_mem; |
| 903 opus_val16 *oldBandE, *oldLogE, *oldLogE2; |
| 904 int shortBlocks=0; |
| 905 int isTransient=0; |
| 906 const int CC = st->channels; |
| 907 const int C = st->stream_channels; |
| 908 int LM, M; |
| 909 int tf_select; |
| 910 int nbFilledBytes, nbAvailableBytes; |
| 911 int effEnd; |
| 912 int codedBands; |
| 913 int tf_sum; |
| 914 int alloc_trim; |
| 915 int pitch_index=COMBFILTER_MINPERIOD; |
| 916 opus_val16 gain1 = 0; |
| 917 int intensity=0; |
| 918 int dual_stereo=0; |
| 919 int effectiveBytes; |
| 920 opus_val16 pf_threshold; |
| 921 int dynalloc_logp; |
| 922 opus_int32 vbr_rate; |
| 923 opus_int32 total_bits; |
| 924 opus_int32 total_boost; |
| 925 opus_int32 balance; |
| 926 opus_int32 tell; |
| 927 int prefilter_tapset=0; |
| 928 int pf_on; |
| 929 int anti_collapse_rsv; |
| 930 int anti_collapse_on=0; |
| 931 int silence=0; |
| 932 ALLOC_STACK; |
| 933 |
| 934 if (nbCompressedBytes<2 || pcm==NULL) |
| 935 return OPUS_BAD_ARG; |
| 936 |
| 937 frame_size *= st->upsample; |
| 938 for (LM=0;LM<=st->mode->maxLM;LM++) |
| 939 if (st->mode->shortMdctSize<<LM==frame_size) |
| 940 break; |
| 941 if (LM>st->mode->maxLM) |
| 942 return OPUS_BAD_ARG; |
| 943 M=1<<LM; |
| 944 N = M*st->mode->shortMdctSize; |
| 945 |
| 946 prefilter_mem = st->in_mem+CC*(st->overlap); |
| 947 oldBandE = (opus_val16*)(st->in_mem+CC*(2*st->overlap+COMBFILTER_MAXPERIOD)); |
| 948 oldLogE = oldBandE + CC*st->mode->nbEBands; |
| 949 oldLogE2 = oldLogE + CC*st->mode->nbEBands; |
| 950 |
| 951 if (enc==NULL) |
| 952 { |
| 953 tell=1; |
| 954 nbFilledBytes=0; |
| 955 } else { |
| 956 tell=ec_tell(enc); |
| 957 nbFilledBytes=(tell+4)>>3; |
| 958 } |
| 959 |
| 960 #ifdef CUSTOM_MODES |
| 961 if (st->signalling && enc==NULL) |
| 962 { |
| 963 int tmp = (st->mode->effEBands-st->end)>>1; |
| 964 st->end = IMAX(1, st->mode->effEBands-tmp); |
| 965 compressed[0] = tmp<<5; |
| 966 compressed[0] |= LM<<3; |
| 967 compressed[0] |= (C==2)<<2; |
| 968 /* Convert "standard mode" to Opus header */ |
| 969 if (st->mode->Fs==48000 && st->mode->shortMdctSize==120) |
| 970 { |
| 971 int c0 = toOpus(compressed[0]); |
| 972 if (c0<0) |
| 973 return OPUS_BAD_ARG; |
| 974 compressed[0] = c0; |
| 975 } |
| 976 compressed++; |
| 977 nbCompressedBytes--; |
| 978 } |
| 979 #else |
| 980 celt_assert(st->signalling==0); |
| 981 #endif |
| 982 |
| 983 /* Can't produce more than 1275 output bytes */ |
| 984 nbCompressedBytes = IMIN(nbCompressedBytes,1275); |
| 985 nbAvailableBytes = nbCompressedBytes - nbFilledBytes; |
| 986 |
| 987 if (st->vbr && st->bitrate!=OPUS_BITRATE_MAX) |
| 988 { |
| 989 opus_int32 den=st->mode->Fs>>BITRES; |
| 990 vbr_rate=(st->bitrate*frame_size+(den>>1))/den; |
| 991 #ifdef CUSTOM_MODES |
| 992 if (st->signalling) |
| 993 vbr_rate -= 8<<BITRES; |
| 994 #endif |
| 995 effectiveBytes = vbr_rate>>(3+BITRES); |
| 996 } else { |
| 997 opus_int32 tmp; |
| 998 vbr_rate = 0; |
| 999 tmp = st->bitrate*frame_size; |
| 1000 if (tell>1) |
| 1001 tmp += tell; |
| 1002 if (st->bitrate!=OPUS_BITRATE_MAX) |
| 1003 nbCompressedBytes = IMAX(2, IMIN(nbCompressedBytes, |
| 1004 (tmp+4*st->mode->Fs)/(8*st->mode->Fs)-!!st->signalling)); |
| 1005 effectiveBytes = nbCompressedBytes; |
| 1006 } |
| 1007 |
| 1008 if (enc==NULL) |
| 1009 { |
| 1010 ec_enc_init(&_enc, compressed, nbCompressedBytes); |
| 1011 enc = &_enc; |
| 1012 } |
| 1013 |
| 1014 if (vbr_rate>0) |
| 1015 { |
| 1016 /* Computes the max bit-rate allowed in VBR mode to avoid violating the |
| 1017 target rate and buffering. |
| 1018 We must do this up front so that bust-prevention logic triggers |
| 1019 correctly if we don't have enough bits. */ |
| 1020 if (st->constrained_vbr) |
| 1021 { |
| 1022 opus_int32 vbr_bound; |
| 1023 opus_int32 max_allowed; |
| 1024 /* We could use any multiple of vbr_rate as bound (depending on the |
| 1025 delay). |
| 1026 This is clamped to ensure we use at least two bytes if the encoder |
| 1027 was entirely empty, but to allow 0 in hybrid mode. */ |
| 1028 vbr_bound = vbr_rate; |
| 1029 max_allowed = IMIN(IMAX(tell==1?2:0, |
| 1030 (vbr_rate+vbr_bound-st->vbr_reservoir)>>(BITRES+3)), |
| 1031 nbAvailableBytes); |
| 1032 if(max_allowed < nbAvailableBytes) |
| 1033 { |
| 1034 nbCompressedBytes = nbFilledBytes+max_allowed; |
| 1035 nbAvailableBytes = max_allowed; |
| 1036 ec_enc_shrink(enc, nbCompressedBytes); |
| 1037 } |
| 1038 } |
| 1039 } |
| 1040 total_bits = nbCompressedBytes*8; |
| 1041 |
| 1042 effEnd = st->end; |
| 1043 if (effEnd > st->mode->effEBands) |
| 1044 effEnd = st->mode->effEBands; |
| 1045 |
| 1046 ALLOC(in, CC*(N+st->overlap), celt_sig); |
| 1047 |
| 1048 /* Find pitch period and gain */ |
| 1049 { |
| 1050 VARDECL(celt_sig, _pre); |
| 1051 celt_sig *pre[2]; |
| 1052 SAVE_STACK; |
| 1053 ALLOC(_pre, CC*(N+COMBFILTER_MAXPERIOD), celt_sig); |
| 1054 |
| 1055 pre[0] = _pre; |
| 1056 pre[1] = _pre + (N+COMBFILTER_MAXPERIOD); |
| 1057 |
| 1058 silence = 1; |
| 1059 c=0; do { |
| 1060 int count = 0; |
| 1061 const opus_val16 * OPUS_RESTRICT pcmp = pcm+c; |
| 1062 celt_sig * OPUS_RESTRICT inp = in+c*(N+st->overlap)+st->overlap; |
| 1063 |
| 1064 for (i=0;i<N;i++) |
| 1065 { |
| 1066 celt_sig x, tmp; |
| 1067 |
| 1068 x = SCALEIN(*pcmp); |
| 1069 #ifndef FIXED_POINT |
| 1070 if (!(x==x)) |
| 1071 x = 0; |
| 1072 if (st->clip) |
| 1073 x = MAX32(-65536.f, MIN32(65536.f,x)); |
| 1074 #endif |
| 1075 if (++count==st->upsample) |
| 1076 { |
| 1077 count=0; |
| 1078 pcmp+=CC; |
| 1079 } else { |
| 1080 x = 0; |
| 1081 } |
| 1082 /* Apply pre-emphasis */ |
| 1083 tmp = MULT16_16(st->mode->preemph[2], x); |
| 1084 *inp = tmp + st->preemph_memE[c]; |
| 1085 st->preemph_memE[c] = MULT16_32_Q15(st->mode->preemph[1], *inp) |
| 1086 - MULT16_32_Q15(st->mode->preemph[0], tmp); |
| 1087 silence = silence && *inp == 0; |
| 1088 inp++; |
| 1089 } |
| 1090 OPUS_COPY(pre[c], prefilter_mem+c*COMBFILTER_MAXPERIOD, COMBFILTER_MAXP
ERIOD); |
| 1091 OPUS_COPY(pre[c]+COMBFILTER_MAXPERIOD, in+c*(N+st->overlap)+st->overlap
, N); |
| 1092 } while (++c<CC); |
| 1093 |
| 1094 #ifdef FUZZING |
| 1095 if ((rand()&0x3F)==0) |
| 1096 silence = 1; |
| 1097 #endif |
| 1098 if (tell==1) |
| 1099 ec_enc_bit_logp(enc, silence, 15); |
| 1100 else |
| 1101 silence=0; |
| 1102 if (silence) |
| 1103 { |
| 1104 /*In VBR mode there is no need to send more than the minimum. */ |
| 1105 if (vbr_rate>0) |
| 1106 { |
| 1107 effectiveBytes=nbCompressedBytes=IMIN(nbCompressedBytes, nbFilledByt
es+2); |
| 1108 total_bits=nbCompressedBytes*8; |
| 1109 nbAvailableBytes=2; |
| 1110 ec_enc_shrink(enc, nbCompressedBytes); |
| 1111 } |
| 1112 /* Pretend we've filled all the remaining bits with zeros |
| 1113 (that's what the initialiser did anyway) */ |
| 1114 tell = nbCompressedBytes*8; |
| 1115 enc->nbits_total+=tell-ec_tell(enc); |
| 1116 } |
| 1117 if (nbAvailableBytes>12*C && st->start==0 && !silence && !st->disable_pf &
& st->complexity >= 5) |
| 1118 { |
| 1119 VARDECL(opus_val16, pitch_buf); |
| 1120 ALLOC(pitch_buf, (COMBFILTER_MAXPERIOD+N)>>1, opus_val16); |
| 1121 |
| 1122 pitch_downsample(pre, pitch_buf, COMBFILTER_MAXPERIOD+N, CC); |
| 1123 pitch_search(pitch_buf+(COMBFILTER_MAXPERIOD>>1), pitch_buf, N, |
| 1124 COMBFILTER_MAXPERIOD-COMBFILTER_MINPERIOD, &pitch_index); |
| 1125 pitch_index = COMBFILTER_MAXPERIOD-pitch_index; |
| 1126 |
| 1127 gain1 = remove_doubling(pitch_buf, COMBFILTER_MAXPERIOD, COMBFILTER_MIN
PERIOD, |
| 1128 N, &pitch_index, st->prefilter_period, st->prefilter_gain); |
| 1129 if (pitch_index > COMBFILTER_MAXPERIOD-2) |
| 1130 pitch_index = COMBFILTER_MAXPERIOD-2; |
| 1131 gain1 = MULT16_16_Q15(QCONST16(.7f,15),gain1); |
| 1132 if (st->loss_rate>2) |
| 1133 gain1 = HALF32(gain1); |
| 1134 if (st->loss_rate>4) |
| 1135 gain1 = HALF32(gain1); |
| 1136 if (st->loss_rate>8) |
| 1137 gain1 = 0; |
| 1138 prefilter_tapset = st->tapset_decision; |
| 1139 } else { |
| 1140 gain1 = 0; |
| 1141 } |
| 1142 |
| 1143 /* Gain threshold for enabling the prefilter/postfilter */ |
| 1144 pf_threshold = QCONST16(.2f,15); |
| 1145 |
| 1146 /* Adjusting the threshold based on rate and continuity */ |
| 1147 if (abs(pitch_index-st->prefilter_period)*10>pitch_index) |
| 1148 pf_threshold += QCONST16(.2f,15); |
| 1149 if (nbAvailableBytes<25) |
| 1150 pf_threshold += QCONST16(.1f,15); |
| 1151 if (nbAvailableBytes<35) |
| 1152 pf_threshold += QCONST16(.1f,15); |
| 1153 if (st->prefilter_gain > QCONST16(.4f,15)) |
| 1154 pf_threshold -= QCONST16(.1f,15); |
| 1155 if (st->prefilter_gain > QCONST16(.55f,15)) |
| 1156 pf_threshold -= QCONST16(.1f,15); |
| 1157 |
| 1158 /* Hard threshold at 0.2 */ |
| 1159 pf_threshold = MAX16(pf_threshold, QCONST16(.2f,15)); |
| 1160 if (gain1<pf_threshold) |
| 1161 { |
| 1162 if(st->start==0 && tell+16<=total_bits) |
| 1163 ec_enc_bit_logp(enc, 0, 1); |
| 1164 gain1 = 0; |
| 1165 pf_on = 0; |
| 1166 } else { |
| 1167 /*This block is not gated by a total bits check only because |
| 1168 of the nbAvailableBytes check above.*/ |
| 1169 int qg; |
| 1170 int octave; |
| 1171 |
| 1172 if (ABS16(gain1-st->prefilter_gain)<QCONST16(.1f,15)) |
| 1173 gain1=st->prefilter_gain; |
| 1174 |
| 1175 #ifdef FIXED_POINT |
| 1176 qg = ((gain1+1536)>>10)/3-1; |
| 1177 #else |
| 1178 qg = (int)floor(.5f+gain1*32/3)-1; |
| 1179 #endif |
| 1180 qg = IMAX(0, IMIN(7, qg)); |
| 1181 ec_enc_bit_logp(enc, 1, 1); |
| 1182 pitch_index += 1; |
| 1183 octave = EC_ILOG(pitch_index)-5; |
| 1184 ec_enc_uint(enc, octave, 6); |
| 1185 ec_enc_bits(enc, pitch_index-(16<<octave), 4+octave); |
| 1186 pitch_index -= 1; |
| 1187 ec_enc_bits(enc, qg, 3); |
| 1188 if (ec_tell(enc)+2<=total_bits) |
| 1189 ec_enc_icdf(enc, prefilter_tapset, tapset_icdf, 2); |
| 1190 else |
| 1191 prefilter_tapset = 0; |
| 1192 gain1 = QCONST16(0.09375f,15)*(qg+1); |
| 1193 pf_on = 1; |
| 1194 } |
| 1195 /*printf("%d %f\n", pitch_index, gain1);*/ |
| 1196 |
| 1197 c=0; do { |
| 1198 int offset = st->mode->shortMdctSize-st->mode->overlap; |
| 1199 st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); |
| 1200 OPUS_COPY(in+c*(N+st->overlap), st->in_mem+c*(st->overlap), st->overlap
); |
| 1201 if (offset) |
| 1202 comb_filter(in+c*(N+st->overlap)+st->overlap, pre[c]+COMBFILTER_MAXP
ERIOD, |
| 1203 st->prefilter_period, st->prefilter_period, offset, -st->prefi
lter_gain, -st->prefilter_gain, |
| 1204 st->prefilter_tapset, st->prefilter_tapset, NULL, 0); |
| 1205 |
| 1206 comb_filter(in+c*(N+st->overlap)+st->overlap+offset, pre[c]+COMBFILTER_
MAXPERIOD+offset, |
| 1207 st->prefilter_period, pitch_index, N-offset, -st->prefilter_gain,
-gain1, |
| 1208 st->prefilter_tapset, prefilter_tapset, st->mode->window, st->mod
e->overlap); |
| 1209 OPUS_COPY(st->in_mem+c*(st->overlap), in+c*(N+st->overlap)+N, st->overl
ap); |
| 1210 |
| 1211 if (N>COMBFILTER_MAXPERIOD) |
| 1212 { |
| 1213 OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, pre[c]+N, COMBFILTER
_MAXPERIOD); |
| 1214 } else { |
| 1215 OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD, prefilter_mem+c*COMB
FILTER_MAXPERIOD+N, COMBFILTER_MAXPERIOD-N); |
| 1216 OPUS_MOVE(prefilter_mem+c*COMBFILTER_MAXPERIOD+COMBFILTER_MAXPERIOD-
N, pre[c]+COMBFILTER_MAXPERIOD, N); |
| 1217 } |
| 1218 } while (++c<CC); |
| 1219 |
| 1220 RESTORE_STACK; |
| 1221 } |
| 1222 |
| 1223 isTransient = 0; |
| 1224 shortBlocks = 0; |
| 1225 if (LM>0 && ec_tell(enc)+3<=total_bits) |
| 1226 { |
| 1227 if (st->complexity > 1) |
| 1228 { |
| 1229 isTransient = transient_analysis(in, N+st->overlap, CC, |
| 1230 st->overlap); |
| 1231 if (isTransient) |
| 1232 shortBlocks = M; |
| 1233 } |
| 1234 ec_enc_bit_logp(enc, isTransient, 3); |
| 1235 } |
| 1236 |
| 1237 ALLOC(freq, CC*N, celt_sig); /**< Interleaved signal MDCTs */ |
| 1238 ALLOC(bandE,st->mode->nbEBands*CC, celt_ener); |
| 1239 ALLOC(bandLogE,st->mode->nbEBands*CC, opus_val16); |
| 1240 /* Compute MDCTs */ |
| 1241 compute_mdcts(st->mode, shortBlocks, in, freq, CC, LM); |
| 1242 |
| 1243 if (CC==2&&C==1) |
| 1244 { |
| 1245 for (i=0;i<N;i++) |
| 1246 freq[i] = ADD32(HALF32(freq[i]), HALF32(freq[N+i])); |
| 1247 } |
| 1248 if (st->upsample != 1) |
| 1249 { |
| 1250 c=0; do |
| 1251 { |
| 1252 int bound = N/st->upsample; |
| 1253 for (i=0;i<bound;i++) |
| 1254 freq[c*N+i] *= st->upsample; |
| 1255 for (;i<N;i++) |
| 1256 freq[c*N+i] = 0; |
| 1257 } while (++c<C); |
| 1258 } |
| 1259 ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
| 1260 |
| 1261 compute_band_energies(st->mode, freq, bandE, effEnd, C, M); |
| 1262 |
| 1263 amp2Log2(st->mode, effEnd, st->end, bandE, bandLogE, C); |
| 1264 |
| 1265 /* Band normalisation */ |
| 1266 normalise_bands(st->mode, freq, X, bandE, effEnd, C, M); |
| 1267 |
| 1268 ALLOC(tf_res, st->mode->nbEBands, int); |
| 1269 tf_select = tf_analysis(st->mode, effEnd, C, isTransient, tf_res, effectiveBy
tes, X, N, LM, &tf_sum); |
| 1270 for (i=effEnd;i<st->end;i++) |
| 1271 tf_res[i] = tf_res[effEnd-1]; |
| 1272 |
| 1273 ALLOC(error, C*st->mode->nbEBands, opus_val16); |
| 1274 quant_coarse_energy(st->mode, st->start, st->end, effEnd, bandLogE, |
| 1275 oldBandE, total_bits, error, enc, |
| 1276 C, LM, nbAvailableBytes, st->force_intra, |
| 1277 &st->delayedIntra, st->complexity >= 4, st->loss_rate); |
| 1278 |
| 1279 tf_encode(st->start, st->end, isTransient, tf_res, LM, tf_select, enc); |
| 1280 |
| 1281 st->spread_decision = SPREAD_NORMAL; |
| 1282 if (ec_tell(enc)+4<=total_bits) |
| 1283 { |
| 1284 if (shortBlocks || st->complexity < 3 || nbAvailableBytes < 10*C) |
| 1285 { |
| 1286 if (st->complexity == 0) |
| 1287 st->spread_decision = SPREAD_NONE; |
| 1288 } else { |
| 1289 st->spread_decision = spreading_decision(st->mode, X, |
| 1290 &st->tonal_average, st->spread_decision, &st->hf_average, |
| 1291 &st->tapset_decision, pf_on&&!shortBlocks, effEnd, C, M); |
| 1292 } |
| 1293 ec_enc_icdf(enc, st->spread_decision, spread_icdf, 5); |
| 1294 } |
| 1295 |
| 1296 ALLOC(cap, st->mode->nbEBands, int); |
| 1297 ALLOC(offsets, st->mode->nbEBands, int); |
| 1298 |
| 1299 init_caps(st->mode,cap,LM,C); |
| 1300 for (i=0;i<st->mode->nbEBands;i++) |
| 1301 offsets[i] = 0; |
| 1302 /* Dynamic allocation code */ |
| 1303 /* Make sure that dynamic allocation can't make us bust the budget */ |
| 1304 if (effectiveBytes > 50 && LM>=1) |
| 1305 { |
| 1306 int t1, t2; |
| 1307 if (LM <= 1) |
| 1308 { |
| 1309 t1 = 3; |
| 1310 t2 = 5; |
| 1311 } else { |
| 1312 t1 = 2; |
| 1313 t2 = 4; |
| 1314 } |
| 1315 for (i=st->start+1;i<st->end-1;i++) |
| 1316 { |
| 1317 opus_val32 d2; |
| 1318 d2 = 2*bandLogE[i]-bandLogE[i-1]-bandLogE[i+1]; |
| 1319 if (C==2) |
| 1320 d2 = HALF32(d2 + 2*bandLogE[i+st->mode->nbEBands]- |
| 1321 bandLogE[i-1+st->mode->nbEBands]-bandLogE[i+1+st->mode->nbEBan
ds]); |
| 1322 #ifdef FUZZING |
| 1323 if((rand()&0xF)==0) |
| 1324 { |
| 1325 offsets[i] += 1; |
| 1326 if((rand()&0x3)==0) |
| 1327 offsets[i] += 1+(rand()&0x3); |
| 1328 } |
| 1329 #else |
| 1330 if (d2 > SHL16(t1,DB_SHIFT)) |
| 1331 offsets[i] += 1; |
| 1332 if (d2 > SHL16(t2,DB_SHIFT)) |
| 1333 offsets[i] += 1; |
| 1334 #endif |
| 1335 } |
| 1336 } |
| 1337 dynalloc_logp = 6; |
| 1338 total_bits<<=BITRES; |
| 1339 total_boost = 0; |
| 1340 tell = ec_tell_frac(enc); |
| 1341 for (i=st->start;i<st->end;i++) |
| 1342 { |
| 1343 int width, quanta; |
| 1344 int dynalloc_loop_logp; |
| 1345 int boost; |
| 1346 int j; |
| 1347 width = C*(st->mode->eBands[i+1]-st->mode->eBands[i])<<LM; |
| 1348 /* quanta is 6 bits, but no more than 1 bit/sample |
| 1349 and no less than 1/8 bit/sample */ |
| 1350 quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); |
| 1351 dynalloc_loop_logp = dynalloc_logp; |
| 1352 boost = 0; |
| 1353 for (j = 0; tell+(dynalloc_loop_logp<<BITRES) < total_bits-total_boost |
| 1354 && boost < cap[i]; j++) |
| 1355 { |
| 1356 int flag; |
| 1357 flag = j<offsets[i]; |
| 1358 ec_enc_bit_logp(enc, flag, dynalloc_loop_logp); |
| 1359 tell = ec_tell_frac(enc); |
| 1360 if (!flag) |
| 1361 break; |
| 1362 boost += quanta; |
| 1363 total_boost += quanta; |
| 1364 dynalloc_loop_logp = 1; |
| 1365 } |
| 1366 /* Making dynalloc more likely */ |
| 1367 if (j) |
| 1368 dynalloc_logp = IMAX(2, dynalloc_logp-1); |
| 1369 offsets[i] = boost; |
| 1370 } |
| 1371 alloc_trim = 5; |
| 1372 if (tell+(6<<BITRES) <= total_bits - total_boost) |
| 1373 { |
| 1374 alloc_trim = alloc_trim_analysis(st->mode, X, bandLogE, |
| 1375 st->end, LM, C, N); |
| 1376 ec_enc_icdf(enc, alloc_trim, trim_icdf, 7); |
| 1377 tell = ec_tell_frac(enc); |
| 1378 } |
| 1379 |
| 1380 /* Variable bitrate */ |
| 1381 if (vbr_rate>0) |
| 1382 { |
| 1383 opus_val16 alpha; |
| 1384 opus_int32 delta; |
| 1385 /* The target rate in 8th bits per frame */ |
| 1386 opus_int32 target; |
| 1387 opus_int32 min_allowed; |
| 1388 int lm_diff = st->mode->maxLM - LM; |
| 1389 |
| 1390 /* Don't attempt to use more than 510 kb/s, even for frames smaller than 20
ms. |
| 1391 The CELT allocator will just not be able to use more than that anyway. *
/ |
| 1392 nbCompressedBytes = IMIN(nbCompressedBytes,1275>>(3-LM)); |
| 1393 target = vbr_rate + (st->vbr_offset>>lm_diff) - ((40*C+20)<<BITRES); |
| 1394 |
| 1395 /* Shortblocks get a large boost in bitrate, but since they |
| 1396 are uncommon long blocks are not greatly affected */ |
| 1397 if (shortBlocks || tf_sum < -2*(st->end-st->start)) |
| 1398 target = 7*target/4; |
| 1399 else if (tf_sum < -(st->end-st->start)) |
| 1400 target = 3*target/2; |
| 1401 else if (M > 1) |
| 1402 target-=(target+14)/28; |
| 1403 |
| 1404 /* The current offset is removed from the target and the space used |
| 1405 so far is added*/ |
| 1406 target=target+tell; |
| 1407 |
| 1408 /* In VBR mode the frame size must not be reduced so much that it would |
| 1409 result in the encoder running out of bits. |
| 1410 The margin of 2 bytes ensures that none of the bust-prevention logic |
| 1411 in the decoder will have triggered so far. */ |
| 1412 min_allowed = ((tell+total_boost+(1<<(BITRES+3))-1)>>(BITRES+3)) + 2 - nbFi
lledBytes; |
| 1413 |
| 1414 nbAvailableBytes = (target+(1<<(BITRES+2)))>>(BITRES+3); |
| 1415 nbAvailableBytes = IMAX(min_allowed,nbAvailableBytes); |
| 1416 nbAvailableBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes) -
nbFilledBytes; |
| 1417 |
| 1418 /* By how much did we "miss" the target on that frame */ |
| 1419 delta = target - vbr_rate; |
| 1420 |
| 1421 target=nbAvailableBytes<<(BITRES+3); |
| 1422 |
| 1423 /*If the frame is silent we don't adjust our drift, otherwise |
| 1424 the encoder will shoot to very high rates after hitting a |
| 1425 span of silence, but we do allow the bitres to refill. |
| 1426 This means that we'll undershoot our target in CVBR/VBR modes |
| 1427 on files with lots of silence. */ |
| 1428 if(silence) |
| 1429 { |
| 1430 nbAvailableBytes = 2; |
| 1431 target = 2*8<<BITRES; |
| 1432 delta = 0; |
| 1433 } |
| 1434 |
| 1435 if (st->vbr_count < 970) |
| 1436 { |
| 1437 st->vbr_count++; |
| 1438 alpha = celt_rcp(SHL32(EXTEND32(st->vbr_count+20),16)); |
| 1439 } else |
| 1440 alpha = QCONST16(.001f,15); |
| 1441 /* How many bits have we used in excess of what we're allowed */ |
| 1442 if (st->constrained_vbr) |
| 1443 st->vbr_reservoir += target - vbr_rate; |
| 1444 /*printf ("%d\n", st->vbr_reservoir);*/ |
| 1445 |
| 1446 /* Compute the offset we need to apply in order to reach the target */ |
| 1447 st->vbr_drift += (opus_int32)MULT16_32_Q15(alpha,(delta*(1<<lm_diff))-st->v
br_offset-st->vbr_drift); |
| 1448 st->vbr_offset = -st->vbr_drift; |
| 1449 /*printf ("%d\n", st->vbr_drift);*/ |
| 1450 |
| 1451 if (st->constrained_vbr && st->vbr_reservoir < 0) |
| 1452 { |
| 1453 /* We're under the min value -- increase rate */ |
| 1454 int adjust = (-st->vbr_reservoir)/(8<<BITRES); |
| 1455 /* Unless we're just coding silence */ |
| 1456 nbAvailableBytes += silence?0:adjust; |
| 1457 st->vbr_reservoir = 0; |
| 1458 /*printf ("+%d\n", adjust);*/ |
| 1459 } |
| 1460 nbCompressedBytes = IMIN(nbCompressedBytes,nbAvailableBytes+nbFilledBytes); |
| 1461 /* This moves the raw bits to take into account the new compressed size */ |
| 1462 ec_enc_shrink(enc, nbCompressedBytes); |
| 1463 } |
| 1464 if (C==2) |
| 1465 { |
| 1466 int effectiveRate; |
| 1467 |
| 1468 /* Always use MS for 2.5 ms frames until we can do a better analysis */ |
| 1469 if (LM!=0) |
| 1470 dual_stereo = stereo_analysis(st->mode, X, LM, N); |
| 1471 |
| 1472 /* Account for coarse energy */ |
| 1473 effectiveRate = (8*effectiveBytes - 80)>>LM; |
| 1474 |
| 1475 /* effectiveRate in kb/s */ |
| 1476 effectiveRate = 2*effectiveRate/5; |
| 1477 if (effectiveRate<35) |
| 1478 intensity = 8; |
| 1479 else if (effectiveRate<50) |
| 1480 intensity = 12; |
| 1481 else if (effectiveRate<68) |
| 1482 intensity = 16; |
| 1483 else if (effectiveRate<84) |
| 1484 intensity = 18; |
| 1485 else if (effectiveRate<102) |
| 1486 intensity = 19; |
| 1487 else if (effectiveRate<130) |
| 1488 intensity = 20; |
| 1489 else |
| 1490 intensity = 100; |
| 1491 intensity = IMIN(st->end,IMAX(st->start, intensity)); |
| 1492 } |
| 1493 |
| 1494 /* Bit allocation */ |
| 1495 ALLOC(fine_quant, st->mode->nbEBands, int); |
| 1496 ALLOC(pulses, st->mode->nbEBands, int); |
| 1497 ALLOC(fine_priority, st->mode->nbEBands, int); |
| 1498 |
| 1499 /* bits = packet size - where we are - safety*/ |
| 1500 bits = (((opus_int32)nbCompressedBytes*8)<<BITRES) - ec_tell_frac(enc) - 1; |
| 1501 anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES)
: 0; |
| 1502 bits -= anti_collapse_rsv; |
| 1503 codedBands = compute_allocation(st->mode, st->start, st->end, offsets, cap, |
| 1504 alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses, |
| 1505 fine_quant, fine_priority, C, LM, enc, 1, st->lastCodedBands); |
| 1506 st->lastCodedBands = codedBands; |
| 1507 |
| 1508 quant_fine_energy(st->mode, st->start, st->end, oldBandE, error, fine_quant,
enc, C); |
| 1509 |
| 1510 #ifdef MEASURE_NORM_MSE |
| 1511 float X0[3000]; |
| 1512 float bandE0[60]; |
| 1513 c=0; do |
| 1514 for (i=0;i<N;i++) |
| 1515 X0[i+c*N] = X[i+c*N]; |
| 1516 while (++c<C); |
| 1517 for (i=0;i<C*st->mode->nbEBands;i++) |
| 1518 bandE0[i] = bandE[i]; |
| 1519 #endif |
| 1520 |
| 1521 /* Residual quantisation */ |
| 1522 ALLOC(collapse_masks, C*st->mode->nbEBands, unsigned char); |
| 1523 quant_all_bands(1, st->mode, st->start, st->end, X, C==2 ? X+N : NULL, collap
se_masks, |
| 1524 bandE, pulses, shortBlocks, st->spread_decision, dual_stereo, intensity
, tf_res, |
| 1525 nbCompressedBytes*(8<<BITRES)-anti_collapse_rsv, balance, enc, LM, code
dBands, &st->rng); |
| 1526 |
| 1527 if (anti_collapse_rsv > 0) |
| 1528 { |
| 1529 anti_collapse_on = st->consec_transient<2; |
| 1530 #ifdef FUZZING |
| 1531 anti_collapse_on = rand()&0x1; |
| 1532 #endif |
| 1533 ec_enc_bits(enc, anti_collapse_on, 1); |
| 1534 } |
| 1535 quant_energy_finalise(st->mode, st->start, st->end, oldBandE, error, fine_qua
nt, fine_priority, nbCompressedBytes*8-ec_tell(enc), enc, C); |
| 1536 |
| 1537 if (silence) |
| 1538 { |
| 1539 for (i=0;i<C*st->mode->nbEBands;i++) |
| 1540 oldBandE[i] = -QCONST16(28.f,DB_SHIFT); |
| 1541 } |
| 1542 |
| 1543 #ifdef RESYNTH |
| 1544 /* Re-synthesis of the coded audio if required */ |
| 1545 { |
| 1546 celt_sig *out_mem[2]; |
| 1547 celt_sig *overlap_mem[2]; |
| 1548 |
| 1549 log2Amp(st->mode, st->start, st->end, bandE, oldBandE, C); |
| 1550 if (silence) |
| 1551 { |
| 1552 for (i=0;i<C*st->mode->nbEBands;i++) |
| 1553 bandE[i] = 0; |
| 1554 } |
| 1555 |
| 1556 #ifdef MEASURE_NORM_MSE |
| 1557 measure_norm_mse(st->mode, X, X0, bandE, bandE0, M, N, C); |
| 1558 #endif |
| 1559 if (anti_collapse_on) |
| 1560 { |
| 1561 anti_collapse(st->mode, X, collapse_masks, LM, C, N, |
| 1562 st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng)
; |
| 1563 } |
| 1564 |
| 1565 /* Synthesis */ |
| 1566 denormalise_bands(st->mode, X, freq, bandE, effEnd, C, M); |
| 1567 |
| 1568 OPUS_MOVE(st->syn_mem[0], st->syn_mem[0]+N, MAX_PERIOD); |
| 1569 if (CC==2) |
| 1570 OPUS_MOVE(st->syn_mem[1], st->syn_mem[1]+N, MAX_PERIOD); |
| 1571 |
| 1572 c=0; do |
| 1573 for (i=0;i<M*st->mode->eBands[st->start];i++) |
| 1574 freq[c*N+i] = 0; |
| 1575 while (++c<C); |
| 1576 c=0; do |
| 1577 for (i=M*st->mode->eBands[st->end];i<N;i++) |
| 1578 freq[c*N+i] = 0; |
| 1579 while (++c<C); |
| 1580 |
| 1581 if (CC==2&&C==1) |
| 1582 { |
| 1583 for (i=0;i<N;i++) |
| 1584 freq[N+i] = freq[i]; |
| 1585 } |
| 1586 |
| 1587 out_mem[0] = st->syn_mem[0]+MAX_PERIOD; |
| 1588 if (CC==2) |
| 1589 out_mem[1] = st->syn_mem[1]+MAX_PERIOD; |
| 1590 |
| 1591 overlap_mem[0] = prefilter_mem+CC*COMBFILTER_MAXPERIOD; |
| 1592 if (CC==2) |
| 1593 overlap_mem[1] = overlap_mem[0] + st->overlap; |
| 1594 |
| 1595 compute_inv_mdcts(st->mode, shortBlocks, freq, out_mem, overlap_mem, CC, L
M); |
| 1596 |
| 1597 c=0; do { |
| 1598 st->prefilter_period=IMAX(st->prefilter_period, COMBFILTER_MINPERIOD); |
| 1599 st->prefilter_period_old=IMAX(st->prefilter_period_old, COMBFILTER_MINP
ERIOD); |
| 1600 comb_filter(out_mem[c], out_mem[c], st->prefilter_period_old, st->prefi
lter_period, st->mode->shortMdctSize, |
| 1601 st->prefilter_gain_old, st->prefilter_gain, st->prefilter_tapset_
old, st->prefilter_tapset, |
| 1602 st->mode->window, st->overlap); |
| 1603 if (LM!=0) |
| 1604 comb_filter(out_mem[c]+st->mode->shortMdctSize, out_mem[c]+st->mode-
>shortMdctSize, st->prefilter_period, pitch_index, N-st->mode->shortMdctSize, |
| 1605 st->prefilter_gain, gain1, st->prefilter_tapset, prefilter_tap
set, |
| 1606 st->mode->window, st->mode->overlap); |
| 1607 } while (++c<CC); |
| 1608 |
| 1609 deemphasis(out_mem, (opus_val16*)pcm, N, CC, st->upsample, st->mode->preem
ph, st->preemph_memD); |
| 1610 st->prefilter_period_old = st->prefilter_period; |
| 1611 st->prefilter_gain_old = st->prefilter_gain; |
| 1612 st->prefilter_tapset_old = st->prefilter_tapset; |
| 1613 } |
| 1614 #endif |
| 1615 |
| 1616 st->prefilter_period = pitch_index; |
| 1617 st->prefilter_gain = gain1; |
| 1618 st->prefilter_tapset = prefilter_tapset; |
| 1619 #ifdef RESYNTH |
| 1620 if (LM!=0) |
| 1621 { |
| 1622 st->prefilter_period_old = st->prefilter_period; |
| 1623 st->prefilter_gain_old = st->prefilter_gain; |
| 1624 st->prefilter_tapset_old = st->prefilter_tapset; |
| 1625 } |
| 1626 #endif |
| 1627 |
| 1628 if (CC==2&&C==1) { |
| 1629 for (i=0;i<st->mode->nbEBands;i++) |
| 1630 oldBandE[st->mode->nbEBands+i]=oldBandE[i]; |
| 1631 } |
| 1632 |
| 1633 if (!isTransient) |
| 1634 { |
| 1635 for (i=0;i<CC*st->mode->nbEBands;i++) |
| 1636 oldLogE2[i] = oldLogE[i]; |
| 1637 for (i=0;i<CC*st->mode->nbEBands;i++) |
| 1638 oldLogE[i] = oldBandE[i]; |
| 1639 } else { |
| 1640 for (i=0;i<CC*st->mode->nbEBands;i++) |
| 1641 oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); |
| 1642 } |
| 1643 /* In case start or end were to change */ |
| 1644 c=0; do |
| 1645 { |
| 1646 for (i=0;i<st->start;i++) |
| 1647 { |
| 1648 oldBandE[c*st->mode->nbEBands+i]=0; |
| 1649 oldLogE[c*st->mode->nbEBands+i]=oldLogE2[c*st->mode->nbEBands+i]=-QCONS
T16(28.f,DB_SHIFT); |
| 1650 } |
| 1651 for (i=st->end;i<st->mode->nbEBands;i++) |
| 1652 { |
| 1653 oldBandE[c*st->mode->nbEBands+i]=0; |
| 1654 oldLogE[c*st->mode->nbEBands+i]=oldLogE2[c*st->mode->nbEBands+i]=-QCONS
T16(28.f,DB_SHIFT); |
| 1655 } |
| 1656 } while (++c<CC); |
| 1657 |
| 1658 if (isTransient) |
| 1659 st->consec_transient++; |
| 1660 else |
| 1661 st->consec_transient=0; |
| 1662 st->rng = enc->rng; |
| 1663 |
| 1664 /* If there's any room left (can only happen for very high rates), |
| 1665 it's already filled with zeros */ |
| 1666 ec_enc_done(enc); |
| 1667 |
| 1668 #ifdef CUSTOM_MODES |
| 1669 if (st->signalling) |
| 1670 nbCompressedBytes++; |
| 1671 #endif |
| 1672 |
| 1673 RESTORE_STACK; |
| 1674 if (ec_get_error(enc)) |
| 1675 return OPUS_INTERNAL_ERROR; |
| 1676 else |
| 1677 return nbCompressedBytes; |
| 1678 } |
| 1679 |
| 1680 |
| 1681 #ifdef CUSTOM_MODES |
| 1682 |
| 1683 #ifdef FIXED_POINT |
| 1684 int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, i
nt frame_size, unsigned char *compressed, int nbCompressedBytes) |
| 1685 { |
| 1686 return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes
, NULL); |
| 1687 } |
| 1688 |
| 1689 #ifndef DISABLE_FLOAT_API |
| 1690 int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm,
int frame_size, unsigned char *compressed, int nbCompressedBytes) |
| 1691 { |
| 1692 int j, ret, C, N; |
| 1693 VARDECL(opus_int16, in); |
| 1694 ALLOC_STACK; |
| 1695 |
| 1696 if (pcm==NULL) |
| 1697 return OPUS_BAD_ARG; |
| 1698 |
| 1699 C = st->channels; |
| 1700 N = frame_size; |
| 1701 ALLOC(in, C*N, opus_int16); |
| 1702 |
| 1703 for (j=0;j<C*N;j++) |
| 1704 in[j] = FLOAT2INT16(pcm[j]); |
| 1705 |
| 1706 ret=celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL); |
| 1707 #ifdef RESYNTH |
| 1708 for (j=0;j<C*N;j++) |
| 1709 ((float*)pcm)[j]=in[j]*(1.f/32768.f); |
| 1710 #endif |
| 1711 RESTORE_STACK; |
| 1712 return ret; |
| 1713 } |
| 1714 #endif /* DISABLE_FLOAT_API */ |
| 1715 #else |
| 1716 |
| 1717 int opus_custom_encode(CELTEncoder * OPUS_RESTRICT st, const opus_int16 * pcm, i
nt frame_size, unsigned char *compressed, int nbCompressedBytes) |
| 1718 { |
| 1719 int j, ret, C, N; |
| 1720 VARDECL(celt_sig, in); |
| 1721 ALLOC_STACK; |
| 1722 |
| 1723 if (pcm==NULL) |
| 1724 return OPUS_BAD_ARG; |
| 1725 |
| 1726 C=st->channels; |
| 1727 N=frame_size; |
| 1728 ALLOC(in, C*N, celt_sig); |
| 1729 for (j=0;j<C*N;j++) { |
| 1730 in[j] = SCALEOUT(pcm[j]); |
| 1731 } |
| 1732 |
| 1733 ret = celt_encode_with_ec(st,in,frame_size,compressed,nbCompressedBytes, NULL
); |
| 1734 #ifdef RESYNTH |
| 1735 for (j=0;j<C*N;j++) |
| 1736 ((opus_int16*)pcm)[j] = FLOAT2INT16(in[j]); |
| 1737 #endif |
| 1738 RESTORE_STACK; |
| 1739 return ret; |
| 1740 } |
| 1741 |
| 1742 int opus_custom_encode_float(CELTEncoder * OPUS_RESTRICT st, const float * pcm,
int frame_size, unsigned char *compressed, int nbCompressedBytes) |
| 1743 { |
| 1744 return celt_encode_with_ec(st, pcm, frame_size, compressed, nbCompressedBytes
, NULL); |
| 1745 } |
| 1746 |
| 1747 #endif |
| 1748 |
| 1749 #endif /* CUSTOM_MODES */ |
| 1750 |
| 1751 int opus_custom_encoder_ctl(CELTEncoder * OPUS_RESTRICT st, int request, ...) |
| 1752 { |
| 1753 va_list ap; |
| 1754 |
| 1755 va_start(ap, request); |
| 1756 switch (request) |
| 1757 { |
| 1758 case OPUS_SET_COMPLEXITY_REQUEST: |
| 1759 { |
| 1760 int value = va_arg(ap, opus_int32); |
| 1761 if (value<0 || value>10) |
| 1762 goto bad_arg; |
| 1763 st->complexity = value; |
| 1764 } |
| 1765 break; |
| 1766 case CELT_SET_START_BAND_REQUEST: |
| 1767 { |
| 1768 opus_int32 value = va_arg(ap, opus_int32); |
| 1769 if (value<0 || value>=st->mode->nbEBands) |
| 1770 goto bad_arg; |
| 1771 st->start = value; |
| 1772 } |
| 1773 break; |
| 1774 case CELT_SET_END_BAND_REQUEST: |
| 1775 { |
| 1776 opus_int32 value = va_arg(ap, opus_int32); |
| 1777 if (value<1 || value>st->mode->nbEBands) |
| 1778 goto bad_arg; |
| 1779 st->end = value; |
| 1780 } |
| 1781 break; |
| 1782 case CELT_SET_PREDICTION_REQUEST: |
| 1783 { |
| 1784 int value = va_arg(ap, opus_int32); |
| 1785 if (value<0 || value>2) |
| 1786 goto bad_arg; |
| 1787 st->disable_pf = value<=1; |
| 1788 st->force_intra = value==0; |
| 1789 } |
| 1790 break; |
| 1791 case OPUS_SET_PACKET_LOSS_PERC_REQUEST: |
| 1792 { |
| 1793 int value = va_arg(ap, opus_int32); |
| 1794 if (value<0 || value>100) |
| 1795 goto bad_arg; |
| 1796 st->loss_rate = value; |
| 1797 } |
| 1798 break; |
| 1799 case OPUS_SET_VBR_CONSTRAINT_REQUEST: |
| 1800 { |
| 1801 opus_int32 value = va_arg(ap, opus_int32); |
| 1802 st->constrained_vbr = value; |
| 1803 } |
| 1804 break; |
| 1805 case OPUS_SET_VBR_REQUEST: |
| 1806 { |
| 1807 opus_int32 value = va_arg(ap, opus_int32); |
| 1808 st->vbr = value; |
| 1809 } |
| 1810 break; |
| 1811 case OPUS_SET_BITRATE_REQUEST: |
| 1812 { |
| 1813 opus_int32 value = va_arg(ap, opus_int32); |
| 1814 if (value<=500 && value!=OPUS_BITRATE_MAX) |
| 1815 goto bad_arg; |
| 1816 value = IMIN(value, 260000*st->channels); |
| 1817 st->bitrate = value; |
| 1818 } |
| 1819 break; |
| 1820 case CELT_SET_CHANNELS_REQUEST: |
| 1821 { |
| 1822 opus_int32 value = va_arg(ap, opus_int32); |
| 1823 if (value<1 || value>2) |
| 1824 goto bad_arg; |
| 1825 st->stream_channels = value; |
| 1826 } |
| 1827 break; |
| 1828 case OPUS_SET_LSB_DEPTH_REQUEST: |
| 1829 { |
| 1830 opus_int32 value = va_arg(ap, opus_int32); |
| 1831 if (value<8 || value>24) |
| 1832 goto bad_arg; |
| 1833 st->lsb_depth=value; |
| 1834 } |
| 1835 break; |
| 1836 case OPUS_GET_LSB_DEPTH_REQUEST: |
| 1837 { |
| 1838 opus_int32 *value = va_arg(ap, opus_int32*); |
| 1839 *value=st->lsb_depth; |
| 1840 } |
| 1841 break; |
| 1842 case OPUS_RESET_STATE: |
| 1843 { |
| 1844 int i; |
| 1845 opus_val16 *oldBandE, *oldLogE, *oldLogE2; |
| 1846 oldBandE = (opus_val16*)(st->in_mem+st->channels*(2*st->overlap+COMBFIL
TER_MAXPERIOD)); |
| 1847 oldLogE = oldBandE + st->channels*st->mode->nbEBands; |
| 1848 oldLogE2 = oldLogE + st->channels*st->mode->nbEBands; |
| 1849 OPUS_CLEAR((char*)&st->ENCODER_RESET_START, |
| 1850 opus_custom_encoder_get_size(st->mode, st->channels)- |
| 1851 ((char*)&st->ENCODER_RESET_START - (char*)st)); |
| 1852 for (i=0;i<st->channels*st->mode->nbEBands;i++) |
| 1853 oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); |
| 1854 st->vbr_offset = 0; |
| 1855 st->delayedIntra = 1; |
| 1856 st->spread_decision = SPREAD_NORMAL; |
| 1857 st->tonal_average = 256; |
| 1858 st->hf_average = 0; |
| 1859 st->tapset_decision = 0; |
| 1860 } |
| 1861 break; |
| 1862 #ifdef CUSTOM_MODES |
| 1863 case CELT_SET_INPUT_CLIPPING_REQUEST: |
| 1864 { |
| 1865 opus_int32 value = va_arg(ap, opus_int32); |
| 1866 st->clip = value; |
| 1867 } |
| 1868 break; |
| 1869 #endif |
| 1870 case CELT_SET_SIGNALLING_REQUEST: |
| 1871 { |
| 1872 opus_int32 value = va_arg(ap, opus_int32); |
| 1873 st->signalling = value; |
| 1874 } |
| 1875 break; |
| 1876 case CELT_GET_MODE_REQUEST: |
| 1877 { |
| 1878 const CELTMode ** value = va_arg(ap, const CELTMode**); |
| 1879 if (value==0) |
| 1880 goto bad_arg; |
| 1881 *value=st->mode; |
| 1882 } |
| 1883 break; |
| 1884 case OPUS_GET_FINAL_RANGE_REQUEST: |
| 1885 { |
| 1886 opus_uint32 * value = va_arg(ap, opus_uint32 *); |
| 1887 if (value==0) |
| 1888 goto bad_arg; |
| 1889 *value=st->rng; |
| 1890 } |
| 1891 break; |
| 1892 default: |
| 1893 goto bad_request; |
| 1894 } |
| 1895 va_end(ap); |
| 1896 return OPUS_OK; |
| 1897 bad_arg: |
| 1898 va_end(ap); |
| 1899 return OPUS_BAD_ARG; |
| 1900 bad_request: |
| 1901 va_end(ap); |
| 1902 return OPUS_UNIMPLEMENTED; |
| 1903 } |
| 1904 |
| 1905 /**********************************************************************/ |
| 1906 /* */ |
| 1907 /* DECODER */ |
| 1908 /* */ |
| 1909 /**********************************************************************/ |
| 1910 #define DECODE_BUFFER_SIZE 2048 |
| 1911 |
| 1912 /** Decoder state |
| 1913 @brief Decoder state |
| 1914 */ |
| 1915 struct OpusCustomDecoder { |
| 1916 const OpusCustomMode *mode; |
| 1917 int overlap; |
| 1918 int channels; |
| 1919 int stream_channels; |
| 1920 |
| 1921 int downsample; |
| 1922 int start, end; |
| 1923 int signalling; |
| 1924 |
| 1925 /* Everything beyond this point gets cleared on a reset */ |
| 1926 #define DECODER_RESET_START rng |
| 1927 |
| 1928 opus_uint32 rng; |
| 1929 int error; |
| 1930 int last_pitch_index; |
| 1931 int loss_count; |
| 1932 int postfilter_period; |
| 1933 int postfilter_period_old; |
| 1934 opus_val16 postfilter_gain; |
| 1935 opus_val16 postfilter_gain_old; |
| 1936 int postfilter_tapset; |
| 1937 int postfilter_tapset_old; |
| 1938 |
| 1939 celt_sig preemph_memD[2]; |
| 1940 |
| 1941 celt_sig _decode_mem[1]; /* Size = channels*(DECODE_BUFFER_SIZE+mode->overlap
) */ |
| 1942 /* opus_val16 lpc[], Size = channels*LPC_ORDER */ |
| 1943 /* opus_val16 oldEBands[], Size = 2*mode->nbEBands */ |
| 1944 /* opus_val16 oldLogE[], Size = 2*mode->nbEBands */ |
| 1945 /* opus_val16 oldLogE2[], Size = 2*mode->nbEBands */ |
| 1946 /* opus_val16 backgroundLogE[], Size = 2*mode->nbEBands */ |
| 1947 }; |
| 1948 |
| 1949 int celt_decoder_get_size(int channels) |
| 1950 { |
| 1951 const CELTMode *mode = opus_custom_mode_create(48000, 960, NULL); |
| 1952 return opus_custom_decoder_get_size(mode, channels); |
| 1953 } |
| 1954 |
| 1955 OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_get_size(const CELTMode *mode, int
channels) |
| 1956 { |
| 1957 int size = sizeof(struct CELTDecoder) |
| 1958 + (channels*(DECODE_BUFFER_SIZE+mode->overlap)-1)*sizeof(celt_sig) |
| 1959 + channels*LPC_ORDER*sizeof(opus_val16) |
| 1960 + 4*2*mode->nbEBands*sizeof(opus_val16); |
| 1961 return size; |
| 1962 } |
| 1963 |
| 1964 #ifdef CUSTOM_MODES |
| 1965 CELTDecoder *opus_custom_decoder_create(const CELTMode *mode, int channels, int
*error) |
| 1966 { |
| 1967 int ret; |
| 1968 CELTDecoder *st = (CELTDecoder *)opus_alloc(opus_custom_decoder_get_size(mode
, channels)); |
| 1969 ret = opus_custom_decoder_init(st, mode, channels); |
| 1970 if (ret != OPUS_OK) |
| 1971 { |
| 1972 opus_custom_decoder_destroy(st); |
| 1973 st = NULL; |
| 1974 } |
| 1975 if (error) |
| 1976 *error = ret; |
| 1977 return st; |
| 1978 } |
| 1979 #endif /* CUSTOM_MODES */ |
| 1980 |
| 1981 int celt_decoder_init(CELTDecoder *st, opus_int32 sampling_rate, int channels) |
| 1982 { |
| 1983 int ret; |
| 1984 ret = opus_custom_decoder_init(st, opus_custom_mode_create(48000, 960, NULL),
channels); |
| 1985 if (ret != OPUS_OK) |
| 1986 return ret; |
| 1987 st->downsample = resampling_factor(sampling_rate); |
| 1988 if (st->downsample==0) |
| 1989 return OPUS_BAD_ARG; |
| 1990 else |
| 1991 return OPUS_OK; |
| 1992 } |
| 1993 |
| 1994 OPUS_CUSTOM_NOSTATIC int opus_custom_decoder_init(CELTDecoder *st, const CELTMod
e *mode, int channels) |
| 1995 { |
| 1996 if (channels < 0 || channels > 2) |
| 1997 return OPUS_BAD_ARG; |
| 1998 |
| 1999 if (st==NULL) |
| 2000 return OPUS_ALLOC_FAIL; |
| 2001 |
| 2002 OPUS_CLEAR((char*)st, opus_custom_decoder_get_size(mode, channels)); |
| 2003 |
| 2004 st->mode = mode; |
| 2005 st->overlap = mode->overlap; |
| 2006 st->stream_channels = st->channels = channels; |
| 2007 |
| 2008 st->downsample = 1; |
| 2009 st->start = 0; |
| 2010 st->end = st->mode->effEBands; |
| 2011 st->signalling = 1; |
| 2012 |
| 2013 st->loss_count = 0; |
| 2014 |
| 2015 opus_custom_decoder_ctl(st, OPUS_RESET_STATE); |
| 2016 |
| 2017 return OPUS_OK; |
| 2018 } |
| 2019 |
| 2020 #ifdef CUSTOM_MODES |
| 2021 void opus_custom_decoder_destroy(CELTDecoder *st) |
| 2022 { |
| 2023 opus_free(st); |
| 2024 } |
| 2025 #endif /* CUSTOM_MODES */ |
| 2026 |
| 2027 static void celt_decode_lost(CELTDecoder * OPUS_RESTRICT st, opus_val16 * OPUS_R
ESTRICT pcm, int N, int LM) |
| 2028 { |
| 2029 int c; |
| 2030 int pitch_index; |
| 2031 int overlap = st->mode->overlap; |
| 2032 opus_val16 fade = Q15ONE; |
| 2033 int i, len; |
| 2034 const int C = st->channels; |
| 2035 int offset; |
| 2036 celt_sig *out_mem[2]; |
| 2037 celt_sig *decode_mem[2]; |
| 2038 celt_sig *overlap_mem[2]; |
| 2039 opus_val16 *lpc; |
| 2040 opus_val32 *out_syn[2]; |
| 2041 opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE; |
| 2042 SAVE_STACK; |
| 2043 |
| 2044 c=0; do { |
| 2045 decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+st->overlap); |
| 2046 out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD; |
| 2047 overlap_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE; |
| 2048 } while (++c<C); |
| 2049 lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*C); |
| 2050 oldBandE = lpc+C*LPC_ORDER; |
| 2051 oldLogE = oldBandE + 2*st->mode->nbEBands; |
| 2052 oldLogE2 = oldLogE + 2*st->mode->nbEBands; |
| 2053 backgroundLogE = oldLogE2 + 2*st->mode->nbEBands; |
| 2054 |
| 2055 out_syn[0] = out_mem[0]+MAX_PERIOD-N; |
| 2056 if (C==2) |
| 2057 out_syn[1] = out_mem[1]+MAX_PERIOD-N; |
| 2058 |
| 2059 len = N+st->mode->overlap; |
| 2060 |
| 2061 if (st->loss_count >= 5 || st->start!=0) |
| 2062 { |
| 2063 /* Noise-based PLC/CNG */ |
| 2064 VARDECL(celt_sig, freq); |
| 2065 VARDECL(celt_norm, X); |
| 2066 VARDECL(celt_ener, bandE); |
| 2067 opus_uint32 seed; |
| 2068 int effEnd; |
| 2069 |
| 2070 effEnd = st->end; |
| 2071 if (effEnd > st->mode->effEBands) |
| 2072 effEnd = st->mode->effEBands; |
| 2073 |
| 2074 ALLOC(freq, C*N, celt_sig); /**< Interleaved signal MDCTs */ |
| 2075 ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
| 2076 ALLOC(bandE, st->mode->nbEBands*C, celt_ener); |
| 2077 |
| 2078 if (st->loss_count >= 5) |
| 2079 log2Amp(st->mode, st->start, st->end, bandE, backgroundLogE, C); |
| 2080 else { |
| 2081 /* Energy decay */ |
| 2082 opus_val16 decay = st->loss_count==0 ? QCONST16(1.5f, DB_SHIFT) : QCONS
T16(.5f, DB_SHIFT); |
| 2083 c=0; do |
| 2084 { |
| 2085 for (i=st->start;i<st->end;i++) |
| 2086 oldBandE[c*st->mode->nbEBands+i] -= decay; |
| 2087 } while (++c<C); |
| 2088 log2Amp(st->mode, st->start, st->end, bandE, oldBandE, C); |
| 2089 } |
| 2090 seed = st->rng; |
| 2091 for (c=0;c<C;c++) |
| 2092 { |
| 2093 for (i=0;i<(st->mode->eBands[st->start]<<LM);i++) |
| 2094 X[c*N+i] = 0; |
| 2095 for (i=st->start;i<st->mode->effEBands;i++) |
| 2096 { |
| 2097 int j; |
| 2098 int boffs; |
| 2099 int blen; |
| 2100 boffs = N*c+(st->mode->eBands[i]<<LM); |
| 2101 blen = (st->mode->eBands[i+1]-st->mode->eBands[i])<<LM; |
| 2102 for (j=0;j<blen;j++) |
| 2103 { |
| 2104 seed = celt_lcg_rand(seed); |
| 2105 X[boffs+j] = (celt_norm)((opus_int32)seed>>20); |
| 2106 } |
| 2107 renormalise_vector(X+boffs, blen, Q15ONE); |
| 2108 } |
| 2109 for (i=(st->mode->eBands[st->end]<<LM);i<N;i++) |
| 2110 X[c*N+i] = 0; |
| 2111 } |
| 2112 st->rng = seed; |
| 2113 |
| 2114 denormalise_bands(st->mode, X, freq, bandE, st->mode->effEBands, C, 1<<LM)
; |
| 2115 |
| 2116 c=0; do |
| 2117 for (i=0;i<st->mode->eBands[st->start]<<LM;i++) |
| 2118 freq[c*N+i] = 0; |
| 2119 while (++c<C); |
| 2120 c=0; do { |
| 2121 int bound = st->mode->eBands[effEnd]<<LM; |
| 2122 if (st->downsample!=1) |
| 2123 bound = IMIN(bound, N/st->downsample); |
| 2124 for (i=bound;i<N;i++) |
| 2125 freq[c*N+i] = 0; |
| 2126 } while (++c<C); |
| 2127 compute_inv_mdcts(st->mode, 0, freq, out_syn, overlap_mem, C, LM); |
| 2128 } else { |
| 2129 /* Pitch-based PLC */ |
| 2130 if (st->loss_count == 0) |
| 2131 { |
| 2132 opus_val16 pitch_buf[DECODE_BUFFER_SIZE>>1]; |
| 2133 /* Corresponds to a min pitch of 67 Hz. It's possible to save CPU in th
is |
| 2134 search by using only part of the decode buffer */ |
| 2135 int poffset = 720; |
| 2136 pitch_downsample(decode_mem, pitch_buf, DECODE_BUFFER_SIZE, C); |
| 2137 /* Max pitch is 100 samples (480 Hz) */ |
| 2138 pitch_search(pitch_buf+((poffset)>>1), pitch_buf, DECODE_BUFFER_SIZE-po
ffset, |
| 2139 poffset-100, &pitch_index); |
| 2140 pitch_index = poffset-pitch_index; |
| 2141 st->last_pitch_index = pitch_index; |
| 2142 } else { |
| 2143 pitch_index = st->last_pitch_index; |
| 2144 fade = QCONST16(.8f,15); |
| 2145 } |
| 2146 |
| 2147 c=0; do { |
| 2148 VARDECL(opus_val32, e); |
| 2149 opus_val16 exc[MAX_PERIOD]; |
| 2150 opus_val32 ac[LPC_ORDER+1]; |
| 2151 opus_val16 decay = 1; |
| 2152 opus_val32 S1=0; |
| 2153 opus_val16 mem[LPC_ORDER]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0}; |
| 2154 |
| 2155 ALLOC(e, MAX_PERIOD+2*st->mode->overlap, opus_val32); |
| 2156 |
| 2157 offset = MAX_PERIOD-pitch_index; |
| 2158 for (i=0;i<MAX_PERIOD;i++) |
| 2159 exc[i] = ROUND16(out_mem[c][i], SIG_SHIFT); |
| 2160 |
| 2161 if (st->loss_count == 0) |
| 2162 { |
| 2163 _celt_autocorr(exc, ac, st->mode->window, st->mode->overlap, |
| 2164 LPC_ORDER, MAX_PERIOD); |
| 2165 |
| 2166 /* Noise floor -40 dB */ |
| 2167 #ifdef FIXED_POINT |
| 2168 ac[0] += SHR32(ac[0],13); |
| 2169 #else |
| 2170 ac[0] *= 1.0001f; |
| 2171 #endif |
| 2172 /* Lag windowing */ |
| 2173 for (i=1;i<=LPC_ORDER;i++) |
| 2174 { |
| 2175 /*ac[i] *= exp(-.5*(2*M_PI*.002*i)*(2*M_PI*.002*i));*/ |
| 2176 #ifdef FIXED_POINT |
| 2177 ac[i] -= MULT16_32_Q15(2*i*i, ac[i]); |
| 2178 #else |
| 2179 ac[i] -= ac[i]*(.008f*i)*(.008f*i); |
| 2180 #endif |
| 2181 } |
| 2182 |
| 2183 _celt_lpc(lpc+c*LPC_ORDER, ac, LPC_ORDER); |
| 2184 } |
| 2185 for (i=0;i<LPC_ORDER;i++) |
| 2186 mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT); |
| 2187 celt_fir(exc, lpc+c*LPC_ORDER, exc, MAX_PERIOD, LPC_ORDER, mem); |
| 2188 /*for (i=0;i<MAX_PERIOD;i++)printf("%d ", exc[i]); printf("\n");*/ |
| 2189 /* Check if the waveform is decaying (and if so how fast) */ |
| 2190 { |
| 2191 opus_val32 E1=1, E2=1; |
| 2192 int period; |
| 2193 if (pitch_index <= MAX_PERIOD/2) |
| 2194 period = pitch_index; |
| 2195 else |
| 2196 period = MAX_PERIOD/2; |
| 2197 for (i=0;i<period;i++) |
| 2198 { |
| 2199 E1 += SHR32(MULT16_16(exc[MAX_PERIOD-period+i],exc[MAX_PERIOD-per
iod+i]),8); |
| 2200 E2 += SHR32(MULT16_16(exc[MAX_PERIOD-2*period+i],exc[MAX_PERIOD-2
*period+i]),8); |
| 2201 } |
| 2202 if (E1 > E2) |
| 2203 E1 = E2; |
| 2204 decay = celt_sqrt(frac_div32(SHR32(E1,1),E2)); |
| 2205 } |
| 2206 |
| 2207 /* Copy excitation, taking decay into account */ |
| 2208 for (i=0;i<len+st->mode->overlap;i++) |
| 2209 { |
| 2210 opus_val16 tmp; |
| 2211 if (offset+i >= MAX_PERIOD) |
| 2212 { |
| 2213 offset -= pitch_index; |
| 2214 decay = MULT16_16_Q15(decay, decay); |
| 2215 } |
| 2216 e[i] = SHL32(EXTEND32(MULT16_16_Q15(decay, exc[offset+i])), SIG_SHIF
T); |
| 2217 tmp = ROUND16(out_mem[c][offset+i],SIG_SHIFT); |
| 2218 S1 += SHR32(MULT16_16(tmp,tmp),8); |
| 2219 } |
| 2220 for (i=0;i<LPC_ORDER;i++) |
| 2221 mem[i] = ROUND16(out_mem[c][MAX_PERIOD-1-i], SIG_SHIFT); |
| 2222 for (i=0;i<len+st->mode->overlap;i++) |
| 2223 e[i] = MULT16_32_Q15(fade, e[i]); |
| 2224 celt_iir(e, lpc+c*LPC_ORDER, e, len+st->mode->overlap, LPC_ORDER, mem); |
| 2225 |
| 2226 { |
| 2227 opus_val32 S2=0; |
| 2228 for (i=0;i<len+overlap;i++) |
| 2229 { |
| 2230 opus_val16 tmp = ROUND16(e[i],SIG_SHIFT); |
| 2231 S2 += SHR32(MULT16_16(tmp,tmp),8); |
| 2232 } |
| 2233 /* This checks for an "explosion" in the synthesis */ |
| 2234 #ifdef FIXED_POINT |
| 2235 if (!(S1 > SHR32(S2,2))) |
| 2236 #else |
| 2237 /* Float test is written this way to catch NaNs at the same time
*/ |
| 2238 if (!(S1 > 0.2f*S2)) |
| 2239 #endif |
| 2240 { |
| 2241 for (i=0;i<len+overlap;i++) |
| 2242 e[i] = 0; |
| 2243 } else if (S1 < S2) |
| 2244 { |
| 2245 opus_val16 ratio = celt_sqrt(frac_div32(SHR32(S1,1)+1,S2+1)); |
| 2246 for (i=0;i<len+overlap;i++) |
| 2247 e[i] = MULT16_32_Q15(ratio, e[i]); |
| 2248 } |
| 2249 } |
| 2250 |
| 2251 /* Apply post-filter to the MDCT overlap of the previous frame */ |
| 2252 comb_filter(out_mem[c]+MAX_PERIOD, out_mem[c]+MAX_PERIOD, st->postfilte
r_period, st->postfilter_period, st->overlap, |
| 2253 st->postfilter_gain, st->postfilter_gain, st->postfilter_tapset,
st->postfilter_tapset, |
| 2254 NULL, 0); |
| 2255 |
| 2256 for (i=0;i<MAX_PERIOD+st->mode->overlap-N;i++) |
| 2257 out_mem[c][i] = out_mem[c][N+i]; |
| 2258 |
| 2259 /* Apply TDAC to the concealed audio so that it blends with the |
| 2260 previous and next frames */ |
| 2261 for (i=0;i<overlap/2;i++) |
| 2262 { |
| 2263 opus_val32 tmp; |
| 2264 tmp = MULT16_32_Q15(st->mode->window[i], e[N+overlap-1-i])
+ |
| 2265 MULT16_32_Q15(st->mode->window[overlap-i-1], e[N+i ])
; |
| 2266 out_mem[c][MAX_PERIOD+i] = MULT16_32_Q15(st->mode->window[overlap-i-
1], tmp); |
| 2267 out_mem[c][MAX_PERIOD+overlap-i-1] = MULT16_32_Q15(st->mode->window[
i], tmp); |
| 2268 } |
| 2269 for (i=0;i<N;i++) |
| 2270 out_mem[c][MAX_PERIOD-N+i] = e[i]; |
| 2271 |
| 2272 /* Apply pre-filter to the MDCT overlap for the next frame (post-filter
will be applied then) */ |
| 2273 comb_filter(e, out_mem[c]+MAX_PERIOD, st->postfilter_period, st->postfi
lter_period, st->overlap, |
| 2274 -st->postfilter_gain, -st->postfilter_gain, st->postfilter_tapset
, st->postfilter_tapset, |
| 2275 NULL, 0); |
| 2276 for (i=0;i<overlap;i++) |
| 2277 out_mem[c][MAX_PERIOD+i] = e[i]; |
| 2278 } while (++c<C); |
| 2279 } |
| 2280 |
| 2281 deemphasis(out_syn, pcm, N, C, st->downsample, st->mode->preemph, st->preemph
_memD); |
| 2282 |
| 2283 st->loss_count++; |
| 2284 |
| 2285 RESTORE_STACK; |
| 2286 } |
| 2287 |
| 2288 int celt_decode_with_ec(CELTDecoder * OPUS_RESTRICT st, const unsigned char *dat
a, int len, opus_val16 * OPUS_RESTRICT pcm, int frame_size, ec_dec *dec) |
| 2289 { |
| 2290 int c, i, N; |
| 2291 int spread_decision; |
| 2292 opus_int32 bits; |
| 2293 ec_dec _dec; |
| 2294 VARDECL(celt_sig, freq); |
| 2295 VARDECL(celt_norm, X); |
| 2296 VARDECL(celt_ener, bandE); |
| 2297 VARDECL(int, fine_quant); |
| 2298 VARDECL(int, pulses); |
| 2299 VARDECL(int, cap); |
| 2300 VARDECL(int, offsets); |
| 2301 VARDECL(int, fine_priority); |
| 2302 VARDECL(int, tf_res); |
| 2303 VARDECL(unsigned char, collapse_masks); |
| 2304 celt_sig *out_mem[2]; |
| 2305 celt_sig *decode_mem[2]; |
| 2306 celt_sig *overlap_mem[2]; |
| 2307 celt_sig *out_syn[2]; |
| 2308 opus_val16 *lpc; |
| 2309 opus_val16 *oldBandE, *oldLogE, *oldLogE2, *backgroundLogE; |
| 2310 |
| 2311 int shortBlocks; |
| 2312 int isTransient; |
| 2313 int intra_ener; |
| 2314 const int CC = st->channels; |
| 2315 int LM, M; |
| 2316 int effEnd; |
| 2317 int codedBands; |
| 2318 int alloc_trim; |
| 2319 int postfilter_pitch; |
| 2320 opus_val16 postfilter_gain; |
| 2321 int intensity=0; |
| 2322 int dual_stereo=0; |
| 2323 opus_int32 total_bits; |
| 2324 opus_int32 balance; |
| 2325 opus_int32 tell; |
| 2326 int dynalloc_logp; |
| 2327 int postfilter_tapset; |
| 2328 int anti_collapse_rsv; |
| 2329 int anti_collapse_on=0; |
| 2330 int silence; |
| 2331 int C = st->stream_channels; |
| 2332 ALLOC_STACK; |
| 2333 |
| 2334 frame_size *= st->downsample; |
| 2335 |
| 2336 c=0; do { |
| 2337 decode_mem[c] = st->_decode_mem + c*(DECODE_BUFFER_SIZE+st->overlap); |
| 2338 out_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE-MAX_PERIOD; |
| 2339 overlap_mem[c] = decode_mem[c]+DECODE_BUFFER_SIZE; |
| 2340 } while (++c<CC); |
| 2341 lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*CC); |
| 2342 oldBandE = lpc+CC*LPC_ORDER; |
| 2343 oldLogE = oldBandE + 2*st->mode->nbEBands; |
| 2344 oldLogE2 = oldLogE + 2*st->mode->nbEBands; |
| 2345 backgroundLogE = oldLogE2 + 2*st->mode->nbEBands; |
| 2346 |
| 2347 #ifdef CUSTOM_MODES |
| 2348 if (st->signalling && data!=NULL) |
| 2349 { |
| 2350 int data0=data[0]; |
| 2351 /* Convert "standard mode" to Opus header */ |
| 2352 if (st->mode->Fs==48000 && st->mode->shortMdctSize==120) |
| 2353 { |
| 2354 data0 = fromOpus(data0); |
| 2355 if (data0<0) |
| 2356 return OPUS_INVALID_PACKET; |
| 2357 } |
| 2358 st->end = IMAX(1, st->mode->effEBands-2*(data0>>5)); |
| 2359 LM = (data0>>3)&0x3; |
| 2360 C = 1 + ((data0>>2)&0x1); |
| 2361 data++; |
| 2362 len--; |
| 2363 if (LM>st->mode->maxLM) |
| 2364 return OPUS_INVALID_PACKET; |
| 2365 if (frame_size < st->mode->shortMdctSize<<LM) |
| 2366 return OPUS_BUFFER_TOO_SMALL; |
| 2367 else |
| 2368 frame_size = st->mode->shortMdctSize<<LM; |
| 2369 } else { |
| 2370 #else |
| 2371 { |
| 2372 #endif |
| 2373 for (LM=0;LM<=st->mode->maxLM;LM++) |
| 2374 if (st->mode->shortMdctSize<<LM==frame_size) |
| 2375 break; |
| 2376 if (LM>st->mode->maxLM) |
| 2377 return OPUS_BAD_ARG; |
| 2378 } |
| 2379 M=1<<LM; |
| 2380 |
| 2381 if (len<0 || len>1275 || pcm==NULL) |
| 2382 return OPUS_BAD_ARG; |
| 2383 |
| 2384 N = M*st->mode->shortMdctSize; |
| 2385 |
| 2386 effEnd = st->end; |
| 2387 if (effEnd > st->mode->effEBands) |
| 2388 effEnd = st->mode->effEBands; |
| 2389 |
| 2390 ALLOC(freq, IMAX(CC,C)*N, celt_sig); /**< Interleaved signal MDCTs */ |
| 2391 ALLOC(X, C*N, celt_norm); /**< Interleaved normalised MDCTs */ |
| 2392 ALLOC(bandE, st->mode->nbEBands*C, celt_ener); |
| 2393 c=0; do |
| 2394 for (i=0;i<M*st->mode->eBands[st->start];i++) |
| 2395 X[c*N+i] = 0; |
| 2396 while (++c<C); |
| 2397 c=0; do |
| 2398 for (i=M*st->mode->eBands[effEnd];i<N;i++) |
| 2399 X[c*N+i] = 0; |
| 2400 while (++c<C); |
| 2401 |
| 2402 if (data == NULL || len<=1) |
| 2403 { |
| 2404 celt_decode_lost(st, pcm, N, LM); |
| 2405 RESTORE_STACK; |
| 2406 return frame_size/st->downsample; |
| 2407 } |
| 2408 |
| 2409 if (dec == NULL) |
| 2410 { |
| 2411 ec_dec_init(&_dec,(unsigned char*)data,len); |
| 2412 dec = &_dec; |
| 2413 } |
| 2414 |
| 2415 if (C==1) |
| 2416 { |
| 2417 for (i=0;i<st->mode->nbEBands;i++) |
| 2418 oldBandE[i]=MAX16(oldBandE[i],oldBandE[st->mode->nbEBands+i]); |
| 2419 } |
| 2420 |
| 2421 total_bits = len*8; |
| 2422 tell = ec_tell(dec); |
| 2423 |
| 2424 if (tell >= total_bits) |
| 2425 silence = 1; |
| 2426 else if (tell==1) |
| 2427 silence = ec_dec_bit_logp(dec, 15); |
| 2428 else |
| 2429 silence = 0; |
| 2430 if (silence) |
| 2431 { |
| 2432 /* Pretend we've read all the remaining bits */ |
| 2433 tell = len*8; |
| 2434 dec->nbits_total+=tell-ec_tell(dec); |
| 2435 } |
| 2436 |
| 2437 postfilter_gain = 0; |
| 2438 postfilter_pitch = 0; |
| 2439 postfilter_tapset = 0; |
| 2440 if (st->start==0 && tell+16 <= total_bits) |
| 2441 { |
| 2442 if(ec_dec_bit_logp(dec, 1)) |
| 2443 { |
| 2444 int qg, octave; |
| 2445 octave = ec_dec_uint(dec, 6); |
| 2446 postfilter_pitch = (16<<octave)+ec_dec_bits(dec, 4+octave)-1; |
| 2447 qg = ec_dec_bits(dec, 3); |
| 2448 if (ec_tell(dec)+2<=total_bits) |
| 2449 postfilter_tapset = ec_dec_icdf(dec, tapset_icdf, 2); |
| 2450 postfilter_gain = QCONST16(.09375f,15)*(qg+1); |
| 2451 } |
| 2452 tell = ec_tell(dec); |
| 2453 } |
| 2454 |
| 2455 if (LM > 0 && tell+3 <= total_bits) |
| 2456 { |
| 2457 isTransient = ec_dec_bit_logp(dec, 3); |
| 2458 tell = ec_tell(dec); |
| 2459 } |
| 2460 else |
| 2461 isTransient = 0; |
| 2462 |
| 2463 if (isTransient) |
| 2464 shortBlocks = M; |
| 2465 else |
| 2466 shortBlocks = 0; |
| 2467 |
| 2468 /* Decode the global flags (first symbols in the stream) */ |
| 2469 intra_ener = tell+3<=total_bits ? ec_dec_bit_logp(dec, 3) : 0; |
| 2470 /* Get band energies */ |
| 2471 unquant_coarse_energy(st->mode, st->start, st->end, oldBandE, |
| 2472 intra_ener, dec, C, LM); |
| 2473 |
| 2474 ALLOC(tf_res, st->mode->nbEBands, int); |
| 2475 tf_decode(st->start, st->end, isTransient, tf_res, LM, dec); |
| 2476 |
| 2477 tell = ec_tell(dec); |
| 2478 spread_decision = SPREAD_NORMAL; |
| 2479 if (tell+4 <= total_bits) |
| 2480 spread_decision = ec_dec_icdf(dec, spread_icdf, 5); |
| 2481 |
| 2482 ALLOC(pulses, st->mode->nbEBands, int); |
| 2483 ALLOC(cap, st->mode->nbEBands, int); |
| 2484 ALLOC(offsets, st->mode->nbEBands, int); |
| 2485 ALLOC(fine_priority, st->mode->nbEBands, int); |
| 2486 |
| 2487 init_caps(st->mode,cap,LM,C); |
| 2488 |
| 2489 dynalloc_logp = 6; |
| 2490 total_bits<<=BITRES; |
| 2491 tell = ec_tell_frac(dec); |
| 2492 for (i=st->start;i<st->end;i++) |
| 2493 { |
| 2494 int width, quanta; |
| 2495 int dynalloc_loop_logp; |
| 2496 int boost; |
| 2497 width = C*(st->mode->eBands[i+1]-st->mode->eBands[i])<<LM; |
| 2498 /* quanta is 6 bits, but no more than 1 bit/sample |
| 2499 and no less than 1/8 bit/sample */ |
| 2500 quanta = IMIN(width<<BITRES, IMAX(6<<BITRES, width)); |
| 2501 dynalloc_loop_logp = dynalloc_logp; |
| 2502 boost = 0; |
| 2503 while (tell+(dynalloc_loop_logp<<BITRES) < total_bits && boost < cap[i]) |
| 2504 { |
| 2505 int flag; |
| 2506 flag = ec_dec_bit_logp(dec, dynalloc_loop_logp); |
| 2507 tell = ec_tell_frac(dec); |
| 2508 if (!flag) |
| 2509 break; |
| 2510 boost += quanta; |
| 2511 total_bits -= quanta; |
| 2512 dynalloc_loop_logp = 1; |
| 2513 } |
| 2514 offsets[i] = boost; |
| 2515 /* Making dynalloc more likely */ |
| 2516 if (boost>0) |
| 2517 dynalloc_logp = IMAX(2, dynalloc_logp-1); |
| 2518 } |
| 2519 |
| 2520 ALLOC(fine_quant, st->mode->nbEBands, int); |
| 2521 alloc_trim = tell+(6<<BITRES) <= total_bits ? |
| 2522 ec_dec_icdf(dec, trim_icdf, 7) : 5; |
| 2523 |
| 2524 bits = (((opus_int32)len*8)<<BITRES) - ec_tell_frac(dec) - 1; |
| 2525 anti_collapse_rsv = isTransient&&LM>=2&&bits>=((LM+2)<<BITRES) ? (1<<BITRES)
: 0; |
| 2526 bits -= anti_collapse_rsv; |
| 2527 codedBands = compute_allocation(st->mode, st->start, st->end, offsets, cap, |
| 2528 alloc_trim, &intensity, &dual_stereo, bits, &balance, pulses, |
| 2529 fine_quant, fine_priority, C, LM, dec, 0, 0); |
| 2530 |
| 2531 unquant_fine_energy(st->mode, st->start, st->end, oldBandE, fine_quant, dec,
C); |
| 2532 |
| 2533 /* Decode fixed codebook */ |
| 2534 ALLOC(collapse_masks, C*st->mode->nbEBands, unsigned char); |
| 2535 quant_all_bands(0, st->mode, st->start, st->end, X, C==2 ? X+N : NULL, collap
se_masks, |
| 2536 NULL, pulses, shortBlocks, spread_decision, dual_stereo, intensity, tf_
res, |
| 2537 len*(8<<BITRES)-anti_collapse_rsv, balance, dec, LM, codedBands, &st->r
ng); |
| 2538 |
| 2539 if (anti_collapse_rsv > 0) |
| 2540 { |
| 2541 anti_collapse_on = ec_dec_bits(dec, 1); |
| 2542 } |
| 2543 |
| 2544 unquant_energy_finalise(st->mode, st->start, st->end, oldBandE, |
| 2545 fine_quant, fine_priority, len*8-ec_tell(dec), dec, C); |
| 2546 |
| 2547 if (anti_collapse_on) |
| 2548 anti_collapse(st->mode, X, collapse_masks, LM, C, N, |
| 2549 st->start, st->end, oldBandE, oldLogE, oldLogE2, pulses, st->rng); |
| 2550 |
| 2551 log2Amp(st->mode, st->start, st->end, bandE, oldBandE, C); |
| 2552 |
| 2553 if (silence) |
| 2554 { |
| 2555 for (i=0;i<C*st->mode->nbEBands;i++) |
| 2556 { |
| 2557 bandE[i] = 0; |
| 2558 oldBandE[i] = -QCONST16(28.f,DB_SHIFT); |
| 2559 } |
| 2560 } |
| 2561 /* Synthesis */ |
| 2562 denormalise_bands(st->mode, X, freq, bandE, effEnd, C, M); |
| 2563 |
| 2564 OPUS_MOVE(decode_mem[0], decode_mem[0]+N, DECODE_BUFFER_SIZE-N); |
| 2565 if (CC==2) |
| 2566 OPUS_MOVE(decode_mem[1], decode_mem[1]+N, DECODE_BUFFER_SIZE-N); |
| 2567 |
| 2568 c=0; do |
| 2569 for (i=0;i<M*st->mode->eBands[st->start];i++) |
| 2570 freq[c*N+i] = 0; |
| 2571 while (++c<C); |
| 2572 c=0; do { |
| 2573 int bound = M*st->mode->eBands[effEnd]; |
| 2574 if (st->downsample!=1) |
| 2575 bound = IMIN(bound, N/st->downsample); |
| 2576 for (i=bound;i<N;i++) |
| 2577 freq[c*N+i] = 0; |
| 2578 } while (++c<C); |
| 2579 |
| 2580 out_syn[0] = out_mem[0]+MAX_PERIOD-N; |
| 2581 if (CC==2) |
| 2582 out_syn[1] = out_mem[1]+MAX_PERIOD-N; |
| 2583 |
| 2584 if (CC==2&&C==1) |
| 2585 { |
| 2586 for (i=0;i<N;i++) |
| 2587 freq[N+i] = freq[i]; |
| 2588 } |
| 2589 if (CC==1&&C==2) |
| 2590 { |
| 2591 for (i=0;i<N;i++) |
| 2592 freq[i] = HALF32(ADD32(freq[i],freq[N+i])); |
| 2593 } |
| 2594 |
| 2595 /* Compute inverse MDCTs */ |
| 2596 compute_inv_mdcts(st->mode, shortBlocks, freq, out_syn, overlap_mem, CC, LM); |
| 2597 |
| 2598 c=0; do { |
| 2599 st->postfilter_period=IMAX(st->postfilter_period, COMBFILTER_MINPERIOD); |
| 2600 st->postfilter_period_old=IMAX(st->postfilter_period_old, COMBFILTER_MINPE
RIOD); |
| 2601 comb_filter(out_syn[c], out_syn[c], st->postfilter_period_old, st->postfil
ter_period, st->mode->shortMdctSize, |
| 2602 st->postfilter_gain_old, st->postfilter_gain, st->postfilter_tapset_
old, st->postfilter_tapset, |
| 2603 st->mode->window, st->overlap); |
| 2604 if (LM!=0) |
| 2605 comb_filter(out_syn[c]+st->mode->shortMdctSize, out_syn[c]+st->mode->sh
ortMdctSize, st->postfilter_period, postfilter_pitch, N-st->mode->shortMdctSize, |
| 2606 st->postfilter_gain, postfilter_gain, st->postfilter_tapset, post
filter_tapset, |
| 2607 st->mode->window, st->mode->overlap); |
| 2608 |
| 2609 } while (++c<CC); |
| 2610 st->postfilter_period_old = st->postfilter_period; |
| 2611 st->postfilter_gain_old = st->postfilter_gain; |
| 2612 st->postfilter_tapset_old = st->postfilter_tapset; |
| 2613 st->postfilter_period = postfilter_pitch; |
| 2614 st->postfilter_gain = postfilter_gain; |
| 2615 st->postfilter_tapset = postfilter_tapset; |
| 2616 if (LM!=0) |
| 2617 { |
| 2618 st->postfilter_period_old = st->postfilter_period; |
| 2619 st->postfilter_gain_old = st->postfilter_gain; |
| 2620 st->postfilter_tapset_old = st->postfilter_tapset; |
| 2621 } |
| 2622 |
| 2623 if (C==1) { |
| 2624 for (i=0;i<st->mode->nbEBands;i++) |
| 2625 oldBandE[st->mode->nbEBands+i]=oldBandE[i]; |
| 2626 } |
| 2627 |
| 2628 /* In case start or end were to change */ |
| 2629 if (!isTransient) |
| 2630 { |
| 2631 for (i=0;i<2*st->mode->nbEBands;i++) |
| 2632 oldLogE2[i] = oldLogE[i]; |
| 2633 for (i=0;i<2*st->mode->nbEBands;i++) |
| 2634 oldLogE[i] = oldBandE[i]; |
| 2635 for (i=0;i<2*st->mode->nbEBands;i++) |
| 2636 backgroundLogE[i] = MIN16(backgroundLogE[i] + M*QCONST16(0.001f,DB_SHIF
T), oldBandE[i]); |
| 2637 } else { |
| 2638 for (i=0;i<2*st->mode->nbEBands;i++) |
| 2639 oldLogE[i] = MIN16(oldLogE[i], oldBandE[i]); |
| 2640 } |
| 2641 c=0; do |
| 2642 { |
| 2643 for (i=0;i<st->start;i++) |
| 2644 { |
| 2645 oldBandE[c*st->mode->nbEBands+i]=0; |
| 2646 oldLogE[c*st->mode->nbEBands+i]=oldLogE2[c*st->mode->nbEBands+i]=-QCONS
T16(28.f,DB_SHIFT); |
| 2647 } |
| 2648 for (i=st->end;i<st->mode->nbEBands;i++) |
| 2649 { |
| 2650 oldBandE[c*st->mode->nbEBands+i]=0; |
| 2651 oldLogE[c*st->mode->nbEBands+i]=oldLogE2[c*st->mode->nbEBands+i]=-QCONS
T16(28.f,DB_SHIFT); |
| 2652 } |
| 2653 } while (++c<2); |
| 2654 st->rng = dec->rng; |
| 2655 |
| 2656 deemphasis(out_syn, pcm, N, CC, st->downsample, st->mode->preemph, st->preemp
h_memD); |
| 2657 st->loss_count = 0; |
| 2658 RESTORE_STACK; |
| 2659 if (ec_tell(dec) > 8*len) |
| 2660 return OPUS_INTERNAL_ERROR; |
| 2661 if(ec_get_error(dec)) |
| 2662 st->error = 1; |
| 2663 return frame_size/st->downsample; |
| 2664 } |
| 2665 |
| 2666 |
| 2667 #ifdef CUSTOM_MODES |
| 2668 |
| 2669 #ifdef FIXED_POINT |
| 2670 int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data
, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size) |
| 2671 { |
| 2672 return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL); |
| 2673 } |
| 2674 |
| 2675 #ifndef DISABLE_FLOAT_API |
| 2676 int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char
*data, int len, float * OPUS_RESTRICT pcm, int frame_size) |
| 2677 { |
| 2678 int j, ret, C, N; |
| 2679 VARDECL(opus_int16, out); |
| 2680 ALLOC_STACK; |
| 2681 |
| 2682 if (pcm==NULL) |
| 2683 return OPUS_BAD_ARG; |
| 2684 |
| 2685 C = st->channels; |
| 2686 N = frame_size; |
| 2687 |
| 2688 ALLOC(out, C*N, opus_int16); |
| 2689 ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL); |
| 2690 if (ret>0) |
| 2691 for (j=0;j<C*ret;j++) |
| 2692 pcm[j]=out[j]*(1.f/32768.f); |
| 2693 |
| 2694 RESTORE_STACK; |
| 2695 return ret; |
| 2696 } |
| 2697 #endif /* DISABLE_FLOAT_API */ |
| 2698 |
| 2699 #else |
| 2700 |
| 2701 int opus_custom_decode_float(CELTDecoder * OPUS_RESTRICT st, const unsigned char
*data, int len, float * OPUS_RESTRICT pcm, int frame_size) |
| 2702 { |
| 2703 return celt_decode_with_ec(st, data, len, pcm, frame_size, NULL); |
| 2704 } |
| 2705 |
| 2706 int opus_custom_decode(CELTDecoder * OPUS_RESTRICT st, const unsigned char *data
, int len, opus_int16 * OPUS_RESTRICT pcm, int frame_size) |
| 2707 { |
| 2708 int j, ret, C, N; |
| 2709 VARDECL(celt_sig, out); |
| 2710 ALLOC_STACK; |
| 2711 |
| 2712 if (pcm==NULL) |
| 2713 return OPUS_BAD_ARG; |
| 2714 |
| 2715 C = st->channels; |
| 2716 N = frame_size; |
| 2717 ALLOC(out, C*N, celt_sig); |
| 2718 |
| 2719 ret=celt_decode_with_ec(st, data, len, out, frame_size, NULL); |
| 2720 |
| 2721 if (ret>0) |
| 2722 for (j=0;j<C*ret;j++) |
| 2723 pcm[j] = FLOAT2INT16 (out[j]); |
| 2724 |
| 2725 RESTORE_STACK; |
| 2726 return ret; |
| 2727 } |
| 2728 |
| 2729 #endif |
| 2730 #endif /* CUSTOM_MODES */ |
| 2731 |
| 2732 int opus_custom_decoder_ctl(CELTDecoder * OPUS_RESTRICT st, int request, ...) |
| 2733 { |
| 2734 va_list ap; |
| 2735 |
| 2736 va_start(ap, request); |
| 2737 switch (request) |
| 2738 { |
| 2739 case CELT_SET_START_BAND_REQUEST: |
| 2740 { |
| 2741 opus_int32 value = va_arg(ap, opus_int32); |
| 2742 if (value<0 || value>=st->mode->nbEBands) |
| 2743 goto bad_arg; |
| 2744 st->start = value; |
| 2745 } |
| 2746 break; |
| 2747 case CELT_SET_END_BAND_REQUEST: |
| 2748 { |
| 2749 opus_int32 value = va_arg(ap, opus_int32); |
| 2750 if (value<1 || value>st->mode->nbEBands) |
| 2751 goto bad_arg; |
| 2752 st->end = value; |
| 2753 } |
| 2754 break; |
| 2755 case CELT_SET_CHANNELS_REQUEST: |
| 2756 { |
| 2757 opus_int32 value = va_arg(ap, opus_int32); |
| 2758 if (value<1 || value>2) |
| 2759 goto bad_arg; |
| 2760 st->stream_channels = value; |
| 2761 } |
| 2762 break; |
| 2763 case CELT_GET_AND_CLEAR_ERROR_REQUEST: |
| 2764 { |
| 2765 opus_int32 *value = va_arg(ap, opus_int32*); |
| 2766 if (value==NULL) |
| 2767 goto bad_arg; |
| 2768 *value=st->error; |
| 2769 st->error = 0; |
| 2770 } |
| 2771 break; |
| 2772 case OPUS_GET_LOOKAHEAD_REQUEST: |
| 2773 { |
| 2774 opus_int32 *value = va_arg(ap, opus_int32*); |
| 2775 if (value==NULL) |
| 2776 goto bad_arg; |
| 2777 *value = st->overlap/st->downsample; |
| 2778 } |
| 2779 break; |
| 2780 case OPUS_RESET_STATE: |
| 2781 { |
| 2782 int i; |
| 2783 opus_val16 *lpc, *oldBandE, *oldLogE, *oldLogE2; |
| 2784 lpc = (opus_val16*)(st->_decode_mem+(DECODE_BUFFER_SIZE+st->overlap)*st
->channels); |
| 2785 oldBandE = lpc+st->channels*LPC_ORDER; |
| 2786 oldLogE = oldBandE + 2*st->mode->nbEBands; |
| 2787 oldLogE2 = oldLogE + 2*st->mode->nbEBands; |
| 2788 OPUS_CLEAR((char*)&st->DECODER_RESET_START, |
| 2789 opus_custom_decoder_get_size(st->mode, st->channels)- |
| 2790 ((char*)&st->DECODER_RESET_START - (char*)st)); |
| 2791 for (i=0;i<2*st->mode->nbEBands;i++) |
| 2792 oldLogE[i]=oldLogE2[i]=-QCONST16(28.f,DB_SHIFT); |
| 2793 } |
| 2794 break; |
| 2795 case OPUS_GET_PITCH_REQUEST: |
| 2796 { |
| 2797 opus_int32 *value = va_arg(ap, opus_int32*); |
| 2798 if (value==NULL) |
| 2799 goto bad_arg; |
| 2800 *value = st->postfilter_period; |
| 2801 } |
| 2802 break; |
| 2803 #ifdef OPUS_BUILD |
| 2804 case CELT_GET_MODE_REQUEST: |
| 2805 { |
| 2806 const CELTMode ** value = va_arg(ap, const CELTMode**); |
| 2807 if (value==0) |
| 2808 goto bad_arg; |
| 2809 *value=st->mode; |
| 2810 } |
| 2811 break; |
| 2812 case CELT_SET_SIGNALLING_REQUEST: |
| 2813 { |
| 2814 opus_int32 value = va_arg(ap, opus_int32); |
| 2815 st->signalling = value; |
| 2816 } |
| 2817 break; |
| 2818 case OPUS_GET_FINAL_RANGE_REQUEST: |
| 2819 { |
| 2820 opus_uint32 * value = va_arg(ap, opus_uint32 *); |
| 2821 if (value==0) |
| 2822 goto bad_arg; |
| 2823 *value=st->rng; |
| 2824 } |
| 2825 break; |
| 2826 #endif |
| 2827 default: |
| 2828 goto bad_request; |
| 2829 } |
| 2830 va_end(ap); |
| 2831 return OPUS_OK; |
| 2832 bad_arg: |
| 2833 va_end(ap); |
| 2834 return OPUS_BAD_ARG; |
| 2835 bad_request: |
| 2836 va_end(ap); |
| 2837 return OPUS_UNIMPLEMENTED; |
| 2838 } |
| 2839 |
| 2840 |
| 2841 |
| 2842 const char *opus_strerror(int error) |
| 2843 { |
| 2844 static const char * const error_strings[8] = { |
| 2845 "success", |
| 2846 "invalid argument", |
| 2847 "buffer too small", |
| 2848 "internal error", |
| 2849 "corrupted stream", |
| 2850 "request not implemented", |
| 2851 "invalid state", |
| 2852 "memory allocation failed" |
| 2853 }; |
| 2854 if (error > 0 || error < -7) |
| 2855 return "unknown error"; |
| 2856 else |
| 2857 return error_strings[-error]; |
| 2858 } |
| 2859 |
| 2860 const char *opus_get_version_string(void) |
| 2861 { |
| 2862 return "libopus " OPUS_VERSION |
| 2863 #ifdef FIXED_POINT |
| 2864 "-fixed" |
| 2865 #endif |
| 2866 #ifdef FUZZING |
| 2867 "-fuzzing" |
| 2868 #endif |
| 2869 ; |
| 2870 } |
| OLD | NEW |