Index: src/mips/simulator-mips.cc |
diff --git a/src/mips/simulator-mips.cc b/src/mips/simulator-mips.cc |
index 68fbdae96ee015d27ff33ae1ddaf0eed651b03a9..ca9a601b9c5bb207f79c887b7bb2f99db96e5ce8 100644 |
--- a/src/mips/simulator-mips.cc |
+++ b/src/mips/simulator-mips.cc |
@@ -1282,8 +1282,6 @@ unsigned int Simulator::get_fcsr_rounding_mode() { |
} |
-// Sets the rounding error codes in FCSR based on the result of the rounding. |
-// Returns true if the operation was invalid. |
bool Simulator::set_fcsr_round_error(double original, double rounded) { |
bool ret = false; |
double max_int32 = std::numeric_limits<int32_t>::max(); |
@@ -1303,7 +1301,101 @@ bool Simulator::set_fcsr_round_error(double original, double rounded) { |
ret = true; |
} |
- if (rounded > max_int32 || rounded < min_int32) { |
+ if (rounded >= max_int32 || rounded <= min_int32) { |
+ set_fcsr_bit(kFCSROverflowFlagBit, true); |
+ // The reference is not really clear but it seems this is required: |
+ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ return ret; |
+} |
+ |
+ |
+// Sets the rounding error codes in FCSR based on the result of the rounding. |
+// Returns true if the operation was invalid. |
+bool Simulator::set_fcsr_round64_error(double original, double rounded) { |
+ bool ret = false; |
+ double max_int64 = std::numeric_limits<int64_t>::max(); |
+ double min_int64 = std::numeric_limits<int64_t>::min(); |
+ |
+ if (!std::isfinite(original) || !std::isfinite(rounded)) { |
+ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ if (original != rounded) { |
+ set_fcsr_bit(kFCSRInexactFlagBit, true); |
+ } |
+ |
+ if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { |
+ set_fcsr_bit(kFCSRUnderflowFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ if (rounded >= max_int64 || rounded <= min_int64) { |
+ set_fcsr_bit(kFCSROverflowFlagBit, true); |
+ // The reference is not really clear but it seems this is required: |
+ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ return ret; |
+} |
+ |
+ |
+bool Simulator::set_fcsr_round_error(float original, float rounded) { |
+ bool ret = false; |
+ double max_int32 = std::numeric_limits<int32_t>::max(); |
+ double min_int32 = std::numeric_limits<int32_t>::min(); |
+ |
+ if (!std::isfinite(original) || !std::isfinite(rounded)) { |
+ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ if (original != rounded) { |
+ set_fcsr_bit(kFCSRInexactFlagBit, true); |
+ } |
+ |
+ if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { |
+ set_fcsr_bit(kFCSRUnderflowFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ if (rounded >= max_int32 || rounded <= min_int32) { |
+ set_fcsr_bit(kFCSROverflowFlagBit, true); |
+ // The reference is not really clear but it seems this is required: |
+ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ return ret; |
+} |
+ |
+ |
+// Sets the rounding error codes in FCSR based on the result of the rounding. |
+// Returns true if the operation was invalid. |
+bool Simulator::set_fcsr_round64_error(float original, float rounded) { |
+ bool ret = false; |
+ double max_int64 = std::numeric_limits<int64_t>::max(); |
+ double min_int64 = std::numeric_limits<int64_t>::min(); |
+ |
+ if (!std::isfinite(original) || !std::isfinite(rounded)) { |
+ set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ if (original != rounded) { |
+ set_fcsr_bit(kFCSRInexactFlagBit, true); |
+ } |
+ |
+ if (rounded < FLT_MIN && rounded > -FLT_MIN && rounded != 0) { |
+ set_fcsr_bit(kFCSRUnderflowFlagBit, true); |
+ ret = true; |
+ } |
+ |
+ if (rounded >= max_int64 || rounded <= min_int64) { |
set_fcsr_bit(kFCSROverflowFlagBit, true); |
// The reference is not really clear but it seems this is required: |
set_fcsr_bit(kFCSRInvalidOpFlagBit, true); |
@@ -2191,7 +2283,10 @@ void Simulator::DecodeTypeRegisterDRsType(Instruction* instr, |
uint32_t cc, fcsr_cc; |
int64_t i64; |
fs = get_fpu_register_double(fs_reg); |
- ft = get_fpu_register_double(ft_reg); |
+ if (instr->FunctionFieldRaw() != MOVF) { |
+ ft = get_fpu_register_double(ft_reg); |
+ } |
+ fd = get_fpu_register_double(fd_reg); |
int64_t ft_int = bit_cast<int64_t>(ft); |
int64_t fd_int = bit_cast<int64_t>(fd); |
cc = instr->FCccValue(); |
@@ -2246,6 +2341,37 @@ void Simulator::DecodeTypeRegisterDRsType(Instruction* instr, |
DCHECK(IsMipsArchVariant(kMips32r6)); |
set_fpu_register_double(fd_reg, (ft_int & 0x1) != 0 ? fs : 0.0); |
break; |
+ case MOVZ_C: { |
+ DCHECK(IsMipsArchVariant(kMips32r2)); |
+ int32_t rt_reg = instr->RtValue(); |
+ int32_t rt = get_register(rt_reg); |
+ if (rt == 0) { |
+ set_fpu_register_double(fd_reg, fs); |
+ } |
+ break; |
+ } |
+ case MOVN_C: { |
+ DCHECK(IsMipsArchVariant(kMips32r2)); |
+ int32_t rt_reg = instr->RtValue(); |
+ int32_t rt = get_register(rt_reg); |
+ if (rt != 0) { |
+ set_fpu_register_double(fd_reg, fs); |
+ } |
+ break; |
+ } |
+ case MOVF: { |
+ // Same function field for MOVT.D and MOVF.D |
+ uint32_t ft_cc = (ft_reg >> 2) & 0x7; |
+ ft_cc = get_fcsr_condition_bit(ft_cc); |
+ if (instr->Bit(16)) { // Read Tf bit. |
+ // MOVT.D |
+ if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg, fs); |
+ } else { |
+ // MOVF.D |
+ if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg, fs); |
+ } |
+ break; |
+ } |
case MIN: |
DCHECK(IsMipsArchVariant(kMips32r6)); |
fs = get_fpu_register_double(fs_reg); |
@@ -2259,6 +2385,48 @@ void Simulator::DecodeTypeRegisterDRsType(Instruction* instr, |
set_fpu_register_double(fd_reg, (fs >= ft) ? ft : fs); |
} |
break; |
+ case MINA: |
+ DCHECK(IsMipsArchVariant(kMips32r6)); |
+ fs = get_fpu_register_double(fs_reg); |
+ if (std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_double(fd_reg, fs); |
+ } else if (std::isnan(fs) && !std::isnan(ft)) { |
+ set_fpu_register_double(fd_reg, ft); |
+ } else if (!std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_double(fd_reg, fs); |
+ } else { |
+ double result; |
+ if (fabs(fs) > fabs(ft)) { |
+ result = ft; |
+ } else if (fabs(fs) < fabs(ft)) { |
+ result = fs; |
+ } else { |
+ result = (fs > ft ? fs : ft); |
+ } |
+ set_fpu_register_double(fd_reg, result); |
+ } |
+ break; |
+ case MAXA: |
+ DCHECK(IsMipsArchVariant(kMips32r6)); |
+ fs = get_fpu_register_double(fs_reg); |
+ if (std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_double(fd_reg, fs); |
+ } else if (std::isnan(fs) && !std::isnan(ft)) { |
+ set_fpu_register_double(fd_reg, ft); |
+ } else if (!std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_double(fd_reg, fs); |
+ } else { |
+ double result; |
+ if (fabs(fs) < fabs(ft)) { |
+ result = ft; |
+ } else if (fabs(fs) > fabs(ft)) { |
+ result = fs; |
+ } else { |
+ result = (fs > ft ? fs : ft); |
+ } |
+ set_fpu_register_double(fd_reg, result); |
+ } |
+ break; |
case MAX: |
DCHECK(IsMipsArchVariant(kMips32r6)); |
fs = get_fpu_register_double(fs_reg); |
@@ -2297,6 +2465,16 @@ void Simulator::DecodeTypeRegisterDRsType(Instruction* instr, |
case SQRT_D: |
set_fpu_register_double(fd_reg, fast_sqrt(fs)); |
break; |
+ case RSQRT_D: { |
+ double result = 1.0 / fast_sqrt(fs); |
+ set_fpu_register_double(fd_reg, result); |
+ break; |
+ } |
+ case RECIP_D: { |
+ double result = 1.0 / fs; |
+ set_fpu_register_double(fd_reg, result); |
+ break; |
+ } |
case C_UN_D: |
set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); |
break; |
@@ -2377,51 +2555,72 @@ void Simulator::DecodeTypeRegisterDRsType(Instruction* instr, |
if (IsFp64Mode()) { |
set_fpu_register(fd_reg, i64); |
} else { |
- set_fpu_register_word(fd_reg, i64 & 0xffffffff); |
- set_fpu_register_word(fd_reg + 1, i64 >> 32); |
+ UNSUPPORTED(); |
} |
break; |
} |
case TRUNC_L_D: { // Mips32r2 instruction. |
+ DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
double rounded = trunc(fs); |
i64 = static_cast<int64_t>(rounded); |
if (IsFp64Mode()) { |
set_fpu_register(fd_reg, i64); |
+ if (set_fcsr_round64_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPU64InvalidResult); |
+ } |
} else { |
- set_fpu_register_word(fd_reg, i64 & 0xffffffff); |
- set_fpu_register_word(fd_reg + 1, i64 >> 32); |
+ UNSUPPORTED(); |
} |
break; |
} |
case ROUND_L_D: { // Mips32r2 instruction. |
- double rounded = fs > 0 ? std::floor(fs + 0.5) : std::ceil(fs - 0.5); |
- i64 = static_cast<int64_t>(rounded); |
+ DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
+ double rounded = std::floor(fs + 0.5); |
+ int64_t result = static_cast<int64_t>(rounded); |
+ if ((result & 1) != 0 && result - fs == 0.5) { |
+ // If the number is halfway between two integers, |
+ // round to the even one. |
+ result--; |
+ } |
+ int64_t i64 = static_cast<int64_t>(result); |
if (IsFp64Mode()) { |
set_fpu_register(fd_reg, i64); |
+ if (set_fcsr_round64_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPU64InvalidResult); |
+ } |
} else { |
- set_fpu_register_word(fd_reg, i64 & 0xffffffff); |
- set_fpu_register_word(fd_reg + 1, i64 >> 32); |
+ UNSUPPORTED(); |
} |
break; |
} |
- case FLOOR_L_D: // Mips32r2 instruction. |
- i64 = static_cast<int64_t>(std::floor(fs)); |
+ case FLOOR_L_D: { // Mips32r2 instruction. |
+ DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
+ double rounded = std::floor(fs); |
+ int64_t i64 = static_cast<int64_t>(rounded); |
if (IsFp64Mode()) { |
set_fpu_register(fd_reg, i64); |
+ if (set_fcsr_round64_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPU64InvalidResult); |
+ } |
} else { |
- set_fpu_register_word(fd_reg, i64 & 0xffffffff); |
- set_fpu_register_word(fd_reg + 1, i64 >> 32); |
+ UNSUPPORTED(); |
} |
break; |
- case CEIL_L_D: // Mips32r2 instruction. |
- i64 = static_cast<int64_t>(std::ceil(fs)); |
+ } |
+ case CEIL_L_D: { // Mips32r2 instruction. |
+ DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
+ double rounded = std::ceil(fs); |
+ int64_t i64 = static_cast<int64_t>(rounded); |
if (IsFp64Mode()) { |
set_fpu_register(fd_reg, i64); |
+ if (set_fcsr_round64_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPU64InvalidResult); |
+ } |
} else { |
- set_fpu_register_word(fd_reg, i64 & 0xffffffff); |
- set_fpu_register_word(fd_reg + 1, i64 >> 32); |
+ UNSUPPORTED(); |
} |
break; |
+ } |
case C_F_D: |
UNIMPLEMENTED_MIPS(); |
break; |
@@ -2453,38 +2652,88 @@ void Simulator::DecodeTypeRegisterSRsType(Instruction* instr, |
const int32_t& ft_reg, |
const int32_t& fs_reg, |
const int32_t& fd_reg) { |
- float fs, ft; |
+ float fs, ft, fd; |
fs = get_fpu_register_float(fs_reg); |
ft = get_fpu_register_float(ft_reg); |
- int64_t ft_int = static_cast<int64_t>(get_fpu_register_double(ft_reg)); |
+ fd = get_fpu_register_float(fd_reg); |
+ int32_t ft_int = bit_cast<int32_t>(ft); |
+ int32_t fd_int = bit_cast<int32_t>(fd); |
uint32_t cc, fcsr_cc; |
cc = instr->FCccValue(); |
fcsr_cc = get_fcsr_condition_bit(cc); |
switch (instr->FunctionFieldRaw()) { |
- case ADD_D: |
+ case RINT: { |
+ DCHECK(IsMipsArchVariant(kMips32r6)); |
+ float result, temp_result; |
+ double temp; |
+ float upper = std::ceil(fs); |
+ float lower = std::floor(fs); |
+ switch (get_fcsr_rounding_mode()) { |
+ case kRoundToNearest: |
+ if (upper - fs < fs - lower) { |
+ result = upper; |
+ } else if (upper - fs > fs - lower) { |
+ result = lower; |
+ } else { |
+ temp_result = upper / 2; |
+ float reminder = modf(temp_result, &temp); |
+ if (reminder == 0) { |
+ result = upper; |
+ } else { |
+ result = lower; |
+ } |
+ } |
+ break; |
+ case kRoundToZero: |
+ result = (fs > 0 ? lower : upper); |
+ break; |
+ case kRoundToPlusInf: |
+ result = upper; |
+ break; |
+ case kRoundToMinusInf: |
+ result = lower; |
+ break; |
+ } |
+ set_fpu_register_float(fd_reg, result); |
+ if (result != fs) { |
+ set_fcsr_bit(kFCSRInexactFlagBit, true); |
+ } |
+ break; |
+ } |
+ case ADD_S: |
set_fpu_register_float(fd_reg, fs + ft); |
break; |
- case SUB_D: |
+ case SUB_S: |
set_fpu_register_float(fd_reg, fs - ft); |
break; |
- case MUL_D: |
+ case MUL_S: |
set_fpu_register_float(fd_reg, fs * ft); |
break; |
- case DIV_D: |
+ case DIV_S: |
set_fpu_register_float(fd_reg, fs / ft); |
break; |
- case ABS_D: |
+ case ABS_S: |
set_fpu_register_float(fd_reg, fabs(fs)); |
break; |
- case MOV_D: |
+ case MOV_S: |
set_fpu_register_float(fd_reg, fs); |
break; |
- case NEG_D: |
+ case NEG_S: |
set_fpu_register_float(fd_reg, -fs); |
break; |
- case SQRT_D: |
+ case SQRT_S: |
set_fpu_register_float(fd_reg, fast_sqrt(fs)); |
break; |
+ case RSQRT_S: { |
+ float result = 1.0 / fast_sqrt(fs); |
+ set_fpu_register_float(fd_reg, result); |
+ break; |
+ } |
+ case RECIP_S: { |
+ float result = 1.0 / fs; |
+ set_fpu_register_float(fd_reg, result); |
+ break; |
+ } |
case C_UN_D: |
set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); |
break; |
@@ -2509,18 +2758,224 @@ void Simulator::DecodeTypeRegisterSRsType(Instruction* instr, |
case CVT_D_S: |
set_fpu_register_double(fd_reg, static_cast<double>(fs)); |
break; |
+ case SEL: |
+ DCHECK(IsMipsArchVariant(kMips32r6)); |
+ set_fpu_register_float(fd_reg, (fd_int & 0x1) == 0 ? fs : ft); |
+ break; |
case SELEQZ_C: |
DCHECK(IsMipsArchVariant(kMips32r6)); |
- set_fpu_register_double( |
- fd_reg, (ft_int & 0x1) == 0 ? get_fpu_register_double(fs_reg) : 0.0); |
+ set_fpu_register_float( |
+ fd_reg, (ft_int & 0x1) == 0 ? get_fpu_register_float(fs_reg) : 0.0); |
break; |
case SELNEZ_C: |
DCHECK(IsMipsArchVariant(kMips32r6)); |
- set_fpu_register_double( |
- fd_reg, (ft_int & 0x1) != 0 ? get_fpu_register_double(fs_reg) : 0.0); |
+ set_fpu_register_float( |
+ fd_reg, (ft_int & 0x1) != 0 ? get_fpu_register_float(fs_reg) : 0.0); |
+ break; |
+ case MOVZ_C: { |
+ DCHECK(IsMipsArchVariant(kMips32r2)); |
+ int32_t rt_reg = instr->RtValue(); |
+ int32_t rt = get_register(rt_reg); |
+ if (rt == 0) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } |
+ break; |
+ } |
+ case MOVN_C: { |
+ DCHECK(IsMipsArchVariant(kMips32r2)); |
+ int32_t rt_reg = instr->RtValue(); |
+ int32_t rt = get_register(rt_reg); |
+ if (rt != 0) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } |
+ break; |
+ } |
+ case MOVF: { |
+ // Same function field for MOVT.D and MOVF.D |
+ uint32_t ft_cc = (ft_reg >> 2) & 0x7; |
+ ft_cc = get_fcsr_condition_bit(ft_cc); |
+ |
+ if (instr->Bit(16)) { // Read Tf bit. |
+ // MOVT.D |
+ if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg, fs); |
+ } else { |
+ // MOVF.D |
+ if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg, fs); |
+ } |
+ break; |
+ } |
+ case TRUNC_W_S: { // Truncate single to word (round towards 0). |
+ float rounded = trunc(fs); |
+ int32_t result = static_cast<int32_t>(rounded); |
+ set_fpu_register_word(fd_reg, result); |
+ if (set_fcsr_round_error(fs, rounded)) { |
+ set_fpu_register_word(fd_reg, kFPUInvalidResult); |
+ } |
+ } break; |
+ case TRUNC_L_S: { // Mips32r2 instruction. |
+ DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
+ float rounded = trunc(fs); |
+ int64_t i64 = static_cast<int64_t>(rounded); |
+ if (IsFp64Mode()) { |
+ set_fpu_register(fd_reg, i64); |
+ if (set_fcsr_round64_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPU64InvalidResult); |
+ } |
+ } else { |
+ UNSUPPORTED(); |
+ } |
+ break; |
+ } |
+ case FLOOR_W_S: // Round double to word towards negative infinity. |
+ { |
+ float rounded = std::floor(fs); |
+ int32_t result = static_cast<int32_t>(rounded); |
+ set_fpu_register_word(fd_reg, result); |
+ if (set_fcsr_round_error(fs, rounded)) { |
+ set_fpu_register_word(fd_reg, kFPUInvalidResult); |
+ } |
+ } break; |
+ case FLOOR_L_S: { // Mips32r2 instruction. |
+ DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
+ float rounded = std::floor(fs); |
+ int64_t i64 = static_cast<int64_t>(rounded); |
+ if (IsFp64Mode()) { |
+ set_fpu_register(fd_reg, i64); |
+ if (set_fcsr_round64_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPU64InvalidResult); |
+ } |
+ } else { |
+ UNSUPPORTED(); |
+ } |
+ break; |
+ } |
+ case ROUND_W_S: { |
+ float rounded = std::floor(fs + 0.5); |
+ int32_t result = static_cast<int32_t>(rounded); |
+ if ((result & 1) != 0 && result - fs == 0.5) { |
+ // If the number is halfway between two integers, |
+ // round to the even one. |
+ result--; |
+ } |
+ set_fpu_register_word(fd_reg, result); |
+ if (set_fcsr_round_error(fs, rounded)) { |
+ set_fpu_register_word(fd_reg, kFPUInvalidResult); |
+ } |
+ break; |
+ } |
+ case ROUND_L_S: { // Mips32r2 instruction. |
+ DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
+ float rounded = std::floor(fs + 0.5); |
+ int64_t result = static_cast<int64_t>(rounded); |
+ if ((result & 1) != 0 && result - fs == 0.5) { |
+ // If the number is halfway between two integers, |
+ // round to the even one. |
+ result--; |
+ } |
+ int64_t i64 = static_cast<int64_t>(result); |
+ if (IsFp64Mode()) { |
+ set_fpu_register(fd_reg, i64); |
+ if (set_fcsr_round64_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPU64InvalidResult); |
+ } |
+ } else { |
+ UNSUPPORTED(); |
+ } |
+ break; |
+ } |
+ case CEIL_W_S: // Round double to word towards positive infinity. |
+ { |
+ float rounded = std::ceil(fs); |
+ int32_t result = static_cast<int32_t>(rounded); |
+ set_fpu_register_word(fd_reg, result); |
+ if (set_fcsr_round_error(fs, rounded)) { |
+ set_fpu_register_word(fd_reg, kFPUInvalidResult); |
+ } |
+ } break; |
+ case CEIL_L_S: { // Mips32r2 instruction. |
+ DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); |
+ float rounded = std::ceil(fs); |
+ int64_t i64 = static_cast<int64_t>(rounded); |
+ if (IsFp64Mode()) { |
+ set_fpu_register(fd_reg, i64); |
+ if (set_fcsr_round64_error(fs, rounded)) { |
+ set_fpu_register(fd_reg, kFPU64InvalidResult); |
+ } |
+ } else { |
+ UNSUPPORTED(); |
+ } |
+ break; |
+ } |
+ case MIN: |
+ DCHECK(IsMipsArchVariant(kMips32r6)); |
+ fs = get_fpu_register_float(fs_reg); |
+ if (std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } else if (std::isnan(fs) && !std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, ft); |
+ } else if (!std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } else { |
+ set_fpu_register_float(fd_reg, (fs >= ft) ? ft : fs); |
+ } |
+ break; |
+ case MAX: |
+ DCHECK(IsMipsArchVariant(kMips32r6)); |
+ fs = get_fpu_register_float(fs_reg); |
+ if (std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } else if (std::isnan(fs) && !std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, ft); |
+ } else if (!std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } else { |
+ set_fpu_register_float(fd_reg, (fs <= ft) ? ft : fs); |
+ } |
+ break; |
+ case MINA: |
+ DCHECK(IsMipsArchVariant(kMips32r6)); |
+ fs = get_fpu_register_float(fs_reg); |
+ if (std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } else if (std::isnan(fs) && !std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, ft); |
+ } else if (!std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } else { |
+ float result; |
+ if (fabs(fs) > fabs(ft)) { |
+ result = ft; |
+ } else if (fabs(fs) < fabs(ft)) { |
+ result = fs; |
+ } else { |
+ result = (fs > ft ? fs : ft); |
+ } |
+ set_fpu_register_float(fd_reg, result); |
+ } |
+ break; |
+ case MAXA: |
+ DCHECK(IsMipsArchVariant(kMips32r6)); |
+ fs = get_fpu_register_float(fs_reg); |
+ if (std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } else if (std::isnan(fs) && !std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, ft); |
+ } else if (!std::isnan(fs) && std::isnan(ft)) { |
+ set_fpu_register_float(fd_reg, fs); |
+ } else { |
+ float result; |
+ if (fabs(fs) < fabs(ft)) { |
+ result = ft; |
+ } else if (fabs(fs) > fabs(ft)) { |
+ result = fs; |
+ } else { |
+ result = (fs > ft ? fs : ft); |
+ } |
+ set_fpu_register_float(fd_reg, result); |
+ } |
break; |
default: |
- // CVT_W_S CVT_L_S TRUNC_W_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S |
+ // CVT_W_S CVT_L_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S |
// CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. |
UNREACHABLE(); |
} |