OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "crypto/ghash.h" | |
6 | |
7 #include "base/logging.h" | |
8 #include "base/sys_byteorder.h" | |
9 | |
10 namespace crypto { | |
11 | |
12 // GaloisHash is a polynomial authenticator that works in GF(2^128). | |
13 // | |
14 // Elements of the field are represented in `little-endian' order (which | |
15 // matches the description in the paper[1]), thus the most significant bit is | |
16 // the right-most bit. (This is backwards from the way that everybody else does | |
17 // it.) | |
18 // | |
19 // We store field elements in a pair of such `little-endian' uint64s. So the | |
20 // value one is represented by {low = 2**63, high = 0} and doubling a value | |
21 // involves a *right* shift. | |
22 // | |
23 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gc m-revised-spec.pdf | |
24 | |
25 namespace { | |
26 | |
27 // Get64 reads a 64-bit, big-endian number from |bytes|. | |
28 uint64 Get64(const uint8 bytes[8]) { | |
29 uint64 t; | |
30 memcpy(&t, bytes, sizeof(t)); | |
31 return base::NetToHost64(t); | |
32 } | |
33 | |
34 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number. | |
35 void Put64(uint8 bytes[8], uint64 x) { | |
36 x = base::HostToNet64(x); | |
37 memcpy(bytes, &x, sizeof(x)); | |
38 } | |
39 | |
40 // Reverse reverses the order of the bits of 4-bit number in |i|. | |
41 int Reverse(int i) { | |
42 i = ((i << 2) & 0xc) | ((i >> 2) & 0x3); | |
43 i = ((i << 1) & 0xa) | ((i >> 1) & 0x5); | |
44 return i; | |
45 } | |
46 | |
47 } // namespace | |
48 | |
49 GaloisHash::GaloisHash(const uint8 key[16]) { | |
50 Reset(); | |
51 | |
52 // We precompute 16 multiples of |key|. However, when we do lookups into this | |
53 // table we'll be using bits from a field element and therefore the bits will | |
54 // be in the reverse order. So normally one would expect, say, 4*key to be in | |
55 // index 4 of the table but due to this bit ordering it will actually be in | |
56 // index 0010 (base 2) = 2. | |
57 FieldElement x = {Get64(key), Get64(key+8)}; | |
58 product_table_[0].low = 0; | |
59 product_table_[0].hi = 0; | |
60 product_table_[Reverse(1)] = x; | |
61 | |
62 for (int i = 0; i < 16; i += 2) { | |
63 product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]); | |
64 product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x); | |
65 } | |
66 } | |
67 | |
68 void GaloisHash::Reset() { | |
69 state_ = kHashingAdditionalData; | |
70 additional_bytes_ = 0; | |
71 ciphertext_bytes_ = 0; | |
72 buf_used_ = 0; | |
73 y_.low = 0; | |
74 y_.hi = 0; | |
75 } | |
76 | |
77 void GaloisHash::UpdateAdditional(const uint8* data, size_t length) { | |
78 DCHECK_EQ(state_, kHashingAdditionalData); | |
79 additional_bytes_ += length; | |
80 Update(data, length); | |
81 } | |
82 | |
83 void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) { | |
84 if (state_ == kHashingAdditionalData) { | |
85 // If there's any remaining additional data it's zero padded to the next | |
86 // full block. | |
87 if (buf_used_ > 0) { | |
88 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); | |
89 UpdateBlocks(buf_, 1); | |
90 buf_used_ = 0; | |
91 } | |
92 state_ = kHashingCiphertext; | |
93 } | |
94 | |
95 DCHECK_EQ(state_, kHashingCiphertext); | |
96 ciphertext_bytes_ += length; | |
97 Update(data, length); | |
98 } | |
99 | |
100 void GaloisHash::Finish(void* output, size_t len) { | |
101 DCHECK(state_ != kComplete); | |
102 | |
103 if (buf_used_ > 0) { | |
104 // If there's any remaining data (additional data or ciphertext), it's zero | |
105 // padded to the next full block. | |
106 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); | |
107 UpdateBlocks(buf_, 1); | |
108 buf_used_ = 0; | |
109 } | |
110 | |
111 state_ = kComplete; | |
112 | |
113 // The lengths of the additional data and ciphertext are included as the last | |
114 // block. The lengths are the number of bits. | |
115 y_.low ^= additional_bytes_*8; | |
116 y_.hi ^= ciphertext_bytes_*8; | |
117 MulAfterPrecomputation(product_table_, &y_); | |
118 | |
119 uint8 *result, result_tmp[16]; | |
120 if (len >= 16) { | |
121 result = reinterpret_cast<uint8*>(output); | |
122 } else { | |
123 result = result_tmp; | |
124 } | |
125 | |
126 Put64(result, y_.low); | |
127 Put64(result + 8, y_.hi); | |
128 | |
129 if (len < 16) { | |
130 memcpy(output, result_tmp, len); | |
131 } | |
wtc
2012/10/25 00:54:51
Nit: omit the curly braces.
agl
2012/10/25 16:38:09
Done.
| |
132 } | |
133 | |
134 // static | |
135 GaloisHash::FieldElement GaloisHash::Add( | |
136 const FieldElement& x, | |
137 const FieldElement& y) { | |
138 // Addition in a characteristic 2 field is just XOR. | |
139 FieldElement z = {x.low^y.low, x.hi^y.hi}; | |
140 return z; | |
141 } | |
142 | |
143 // static | |
144 GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) { | |
145 const bool msb_set = x.hi & 1; | |
146 | |
147 FieldElement xx; | |
148 // Because of the bit-ordering, doubling is actually a right shift. | |
149 xx.hi = x.hi >> 1; | |
150 xx.hi |= x.low << 63; | |
151 xx.low = x.low >> 1; | |
152 | |
153 // If the most-significant bit was set before shifting then it, conceptually, | |
154 // becomes a term of x^128. This is greater than the irreducible polynomial | |
155 // so the result has to be reduced. The irreducible polynomial is | |
156 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 | |
157 // which also means subtracting the other four terms. In characteristic 2 | |
158 // fields, subtraction == addition == XOR. | |
159 if (msb_set) | |
160 xx.low ^= 0xe100000000000000ULL; | |
161 | |
162 return xx; | |
163 } | |
164 | |
165 void GaloisHash::MulAfterPrecomputation(const FieldElement* table, | |
166 FieldElement* x) { | |
167 FieldElement z = {0, 0}; | |
168 | |
169 // In order to efficiently multiply, we use the precomputed table of i*key, | |
170 // for i in 0..15, to handle four bits at a time. We could obviously use | |
171 // larger tables for greater speedups but the next convenient table size is | |
172 // 4K, which is a little large. | |
173 // | |
174 // In other fields one would use bit positions spread out across the field in | |
175 // order to reduce the number of doublings required. However, in | |
176 // characteristic 2 fields, repeated doublings are exceptionally cheap and | |
177 // it's not worth spending more precomputation time to eliminate them. | |
178 for (unsigned i = 0; i < 2; i++) { | |
179 uint64 word; | |
180 if (i == 0) { | |
181 word = x->hi; | |
182 } else { | |
183 word = x->low; | |
184 } | |
185 | |
186 for (unsigned j = 0; j < 64; j += 4) { | |
187 Mul16(&z); | |
188 // the values in |table| are ordered for little-endian bit positions. See | |
189 // the comment in the constructor. | |
190 const FieldElement& t = table[word & 0xf]; | |
191 z.low ^= t.low; | |
192 z.hi ^= t.hi; | |
193 word >>= 4; | |
194 } | |
195 } | |
196 | |
197 *x = z; | |
198 } | |
199 | |
200 // kReductionTable allows for rapid multiplications by 16. A multiplication by | |
201 // 16 is a right shift by four bits, which results in four bits at 2**128. | |
202 // These terms have to be eliminated by dividing by the irreducible polynomial. | |
203 // In GHASH, the polynomial is such that all the terms occur in the | |
204 // least-significant 8 bits, save for the term at x^128. Therefore we can | |
205 // precompute the value to be added to the field element for each of the 16 bit | |
206 // patterns at 2**128 and the values fit within 12 bits. | |
207 static const uint16 kReductionTable[16] = { | |
208 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, | |
209 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, | |
210 }; | |
211 | |
212 // static | |
213 void GaloisHash::Mul16(FieldElement* x) { | |
214 const unsigned msw = x->hi & 0xf; | |
215 x->hi >>= 4; | |
216 x->hi |= x->low << 60; | |
217 x->low >>= 4; | |
218 x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; | |
219 } | |
220 | |
221 void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { | |
222 for (size_t i = 0; i < num_blocks; i++) { | |
223 y_.low ^= Get64(bytes); | |
224 bytes += 8; | |
225 y_.hi ^= Get64(bytes); | |
226 bytes += 8; | |
227 MulAfterPrecomputation(product_table_, &y_); | |
228 } | |
229 } | |
230 | |
231 void GaloisHash::Update(const uint8* data, size_t length) { | |
232 if (buf_used_ > 0) { | |
233 const size_t n = std::min(length, buf_used_); | |
234 memcpy(&buf_[buf_used_], data, n); | |
235 buf_used_ += n; | |
236 length -= n; | |
237 data += n; | |
238 | |
239 if (buf_used_ == sizeof(buf_)) { | |
240 UpdateBlocks(buf_, 1); | |
241 buf_used_ = 0; | |
242 } | |
243 } | |
244 | |
245 if (length >= 16) { | |
246 const size_t n = length / 16; | |
247 UpdateBlocks(data, n); | |
248 length -= n*16; | |
249 data += n*16; | |
250 } | |
251 | |
252 if (length > 0) { | |
253 memcpy(buf_, data, length); | |
254 buf_used_ = length; | |
255 } | |
256 } | |
257 | |
258 } // namespace crypto | |
OLD | NEW |