OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "crypto/ghash.h" | |
6 | |
7 #include "base/logging.h" | |
8 #include "base/sys_byteorder.h" | |
9 | |
10 namespace crypto { | |
11 | |
12 // GaliosHash is a polynomial authenticator that works in GF(2^128). | |
13 // | |
14 // Elements of the field are represented in `little-endian' order (which | |
15 // matches the description in the paper[1]), thus the most significant bit is | |
16 // the right-most bit. (This is backwards from the way that everybody else does | |
17 // it.) | |
18 // | |
19 // We store field elements in a pair of such `little-endian' uint64s. So the | |
20 // value one is represented by {low = 2**63, high = 0} and doubling a value | |
21 // involves a *right* shift. | |
22 // | |
23 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gc m-revised-spec.pdf | |
24 | |
25 namespace { | |
26 | |
27 // Get64 reads a 64-bit, big-endian number from |bytes|. | |
28 uint64 Get64(const uint8 bytes[8]) { | |
29 uint64 t; | |
30 memcpy(&t, bytes, sizeof(t)); | |
31 return base::NetToHost64(t); | |
32 } | |
33 | |
34 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number. | |
35 void Put64(uint8 bytes[8], uint64 x) { | |
36 x = base::HostToNet64(x); | |
37 memcpy(bytes, &x, 8); | |
wtc
2012/10/19 21:35:22
Nit: 8 => sizeof(x) ?
(You use sizeof(t) on line
agl
2012/10/22 21:50:56
Done.
| |
38 } | |
39 | |
40 // Reverse reverses the order of the bits of 4-bit number in |i|. | |
41 int Reverse(int i) { | |
42 i = ((i << 2)&0xc) | ((i >> 2)&0x3); | |
43 i = ((i << 1)&0xa) | ((i >> 1)&0x5); | |
wtc
2012/10/19 21:35:22
Nit: add spaces around the & operators.
agl
2012/10/22 21:50:56
Done.
| |
44 return i; | |
45 } | |
46 | |
47 } // anonymous namespace | |
48 | |
49 GaliosHash::GaliosHash(const uint8 key[16]) { | |
50 Reset(); | |
51 | |
52 // We precompute 16 multiples of |key|. However, when we do lookups into this | |
53 // table we'll be using bits from a field element and therefore the bits will | |
54 // be in the reverse order. So normally one would expect, say, 4*key to be in | |
55 // index 4 of the table but due to this bit ordering it will actually be in | |
56 // index 0010b = 2. | |
wtc
2012/10/19 21:35:22
Nit: your use of the 'b' suffix confused me for a
agl
2012/10/22 21:50:56
Done.
| |
57 FieldElement x = {Get64(key), Get64(key+8)}; | |
58 productTable[0].low = 0; | |
59 productTable[0].hi = 0; | |
60 productTable[Reverse(1)] = x; | |
61 | |
62 for (int i = 0; i < 16; i += 2) { | |
63 productTable[Reverse(i)] = Double(productTable[Reverse(i/2)]); | |
64 productTable[Reverse(i+1)] = Add(productTable[Reverse(i)], x); | |
wtc
2012/10/19 21:35:22
In Reverse(i+1), you are relying on the fact that
agl
2012/10/22 21:50:56
Reverse(16) should never be called, I believe. The
| |
65 } | |
66 } | |
67 | |
68 void GaliosHash::Reset() { | |
69 state_ = kHashingAdditionalData; | |
70 additional_bytes_ = 0; | |
71 ciphertext_bytes_ = 0; | |
72 buf_used_ = 0; | |
73 y_.low = 0; | |
74 y_.hi = 0; | |
75 } | |
76 | |
77 void GaliosHash::UpdateAdditional(const uint8* data, size_t length) { | |
78 DCHECK_EQ(state_, kHashingAdditionalData); | |
79 additional_bytes_ += length; | |
80 Update(data, length); | |
81 } | |
82 | |
83 void GaliosHash::UpdateCiphertext(const uint8* data, size_t length) { | |
84 if (state_ == kHashingAdditionalData) { | |
85 // If there's any remaining additional data it's zero padded to the next | |
86 // full block. | |
87 if (buf_used_ > 0) { | |
88 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); | |
89 UpdateBlocks(buf_, 1); | |
90 buf_used_ = 0; | |
91 } | |
92 state_ = kHashingCiphertext; | |
93 } | |
94 | |
95 DCHECK_EQ(state_, kHashingCiphertext); | |
96 ciphertext_bytes_ += length; | |
97 Update(data, length); | |
98 } | |
99 | |
100 void GaliosHash::Digest(uint8 result[16]) { | |
101 DCHECK(state_ != kComplete); | |
102 | |
103 if (buf_used_ > 0) { | |
104 // If there's any remaining data (additional data or ciphertext), it's zero | |
105 // padded to the next full block. | |
106 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); | |
107 UpdateBlocks(buf_, 1); | |
108 buf_used_ = 0; | |
109 } | |
110 | |
111 state_ = kComplete; | |
112 | |
113 // The lengths of the additional data and ciphertext are included as the last | |
114 // block. The lengths are the number of bits. | |
wtc
2012/10/19 21:35:22
This shows you implemented the original GHASH.
| |
115 y_.low ^= additional_bytes_*8; | |
116 y_.hi ^= ciphertext_bytes_*8; | |
117 MulAfterPrecomputation(productTable, &y_); | |
118 | |
119 Put64(result, y_.low); | |
120 Put64(result+8, y_.hi); | |
wtc
2012/10/19 21:35:22
I suggest adding spaces around the operators in th
agl
2012/10/22 21:50:56
Done.
| |
121 } | |
122 | |
123 // static | |
124 GaliosHash::FieldElement GaliosHash::Add( | |
125 const FieldElement& x, | |
126 const FieldElement& y) { | |
127 // Addition in a characteristic 2 field is just XOR. | |
128 FieldElement z = {x.low^y.low, x.hi^y.hi}; | |
129 return z; | |
130 } | |
131 | |
132 // static | |
133 GaliosHash::FieldElement GaliosHash::Double(const FieldElement& x) { | |
134 const bool msbSet = x.hi & 1; | |
wtc
2012/10/19 21:35:22
msbSet => msb_set
agl
2012/10/22 21:50:56
Done.
| |
135 | |
136 FieldElement xx; | |
137 // Because of the bit-ordering, doubling is actually a right shift. | |
138 xx.hi = x.hi >> 1; | |
139 xx.hi |= x.low << 63; | |
140 xx.low = x.low >> 1; | |
141 | |
142 // If the most-significant bit was set before shifting then it, conceptually, | |
143 // becomes a term of x^128. This is greater than the irreducible polynomial | |
144 // so the result has to be reduced. The irreducible polynomial is | |
145 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 | |
146 // which also means subtracting the other four terms. In characteristic 2 | |
147 // fields, subtraction == addition == XOR. | |
148 if (msbSet) { | |
149 xx.low ^= 0xe100000000000000; | |
wtc
2012/10/19 21:35:22
You may need to add a ULL suffix to the constant t
agl
2012/10/22 21:50:56
Done.
| |
150 } | |
151 | |
152 return xx; | |
153 } | |
154 | |
155 void GaliosHash::MulAfterPrecomputation(const FieldElement* table, | |
156 FieldElement* x) { | |
157 FieldElement z = {0, 0}; | |
158 | |
159 // In order to efficiently multiply, we use the precomputed table of i*key, | |
160 // for i in 0..15, to handle four bits at a time. We could obviously use | |
161 // larger tables for greater speedups but the next convenient table size is | |
162 // 4K, which is a little large. | |
163 // | |
164 // In other fields one would use bit positions spread out across the field in | |
165 // order to reduce the number of doublings required. However, in | |
166 // characteristic 2 fields, repeated doublings are exceptionally cheap and | |
167 // it's not worth spending more precomputation time to eliminate them. | |
168 for (unsigned i = 0; i < 2; i++) { | |
169 uint64 word; | |
170 if (i == 0) { | |
171 word = x->hi; | |
172 } else { | |
173 word = x->low; | |
174 } | |
175 | |
176 for (unsigned j = 0; j < 64; j += 4) { | |
177 Mul16(&z); | |
178 // the values in |table| are ordered for little-endian bit positions. See | |
179 // the comment in the constructor. | |
180 const FieldElement& t = table[word & 0xf]; | |
181 z.low ^= t.low; | |
182 z.hi ^= t.hi; | |
183 word >>= 4; | |
184 } | |
185 } | |
186 | |
187 *x = z; | |
188 } | |
189 | |
190 // kReductionTable allows for rapid multiplications by 16. A multiplication by | |
191 // 16 is a right shift by four bits, which results in four bits at 2**128. | |
192 // These terms have to be eliminated by dividing by the irreducible polynomial. | |
193 // In GHASH, the polynomial is such that all the terms occur in the | |
194 // least-significant 8 bits, save for the term at x^128. Therefore we can | |
195 // precompute the value to be added to the field element for each of the 16 bit | |
196 // patterns at 2**128 and the values fit within 12 bits. | |
197 static const uint16 kReductionTable[16] = { | |
198 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, | |
199 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, | |
200 }; | |
201 | |
202 // static | |
203 void GaliosHash::Mul16(FieldElement* x) { | |
204 const unsigned msw = x->hi & 0xf; | |
205 x->hi >>= 4; | |
206 x->hi |= x->low << 60; | |
207 x->low >>= 4; | |
208 x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; | |
209 } | |
210 | |
211 void GaliosHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { | |
212 for (size_t i = 0; i < num_blocks; i++) { | |
213 y_.low ^= Get64(bytes); | |
214 bytes += 8; | |
215 y_.hi ^= Get64(bytes); | |
216 bytes += 8; | |
217 MulAfterPrecomputation(productTable, &y_); | |
218 } | |
219 } | |
220 | |
221 void GaliosHash::Update(const uint8* data, size_t length) { | |
222 if (buf_used_ > 0) { | |
223 const size_t n = std::min(length, buf_used_); | |
224 memcpy(&buf_[buf_used_], data, n); | |
225 buf_used_ += n; | |
226 length -= n; | |
227 data += n; | |
228 | |
229 if (buf_used_ == sizeof(buf_)) { | |
230 UpdateBlocks(buf_, 1); | |
231 buf_used_ = 0; | |
232 } | |
233 } | |
234 | |
235 if (length >= 16) { | |
236 const size_t n = length / 16; | |
237 UpdateBlocks(data, n); | |
238 length -= n*16; | |
239 data += n*16; | |
240 } | |
241 | |
242 if (length > 0) { | |
243 memcpy(buf_, data, length); | |
244 buf_used_ = length; | |
245 } | |
246 } | |
247 | |
248 } // namespace crypto | |
OLD | NEW |