Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "crypto/ghash.h" | |
| 6 | |
| 7 #include "base/logging.h" | |
| 8 #include "base/sys_byteorder.h" | |
| 9 | |
| 10 namespace crypto { | |
| 11 | |
| 12 // GaliosHash is a polynomial authenticator that works in GF(2^128). | |
| 13 // | |
| 14 // Elements of the field are represented in `little-endian' order (which | |
| 15 // matches the description in the paper[1]), thus the most significant bit is | |
| 16 // the right-most bit. (This is backwards from the way that everybody else does | |
| 17 // it.) | |
| 18 // | |
| 19 // We store field elements in a pair of such `little-endian' uint64s. So the | |
| 20 // value one is represented by {low = 2**63, high = 0} and doubling a value | |
| 21 // involves a *right* shift. | |
| 22 // | |
| 23 // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gc m-revised-spec.pdf | |
| 24 | |
| 25 namespace { | |
| 26 | |
| 27 // Get64 reads a 64-bit, big-endian number from |bytes|. | |
| 28 uint64 Get64(const uint8 bytes[8]) { | |
| 29 uint64 t; | |
| 30 memcpy(&t, bytes, sizeof(t)); | |
| 31 return base::NetToHost64(t); | |
| 32 } | |
| 33 | |
| 34 // Put64 writes |x| to |bytes| as a 64-bit, big-endian number. | |
| 35 void Put64(uint8 bytes[8], uint64 x) { | |
| 36 x = base::HostToNet64(x); | |
| 37 memcpy(bytes, &x, 8); | |
|
wtc
2012/10/19 21:35:22
Nit: 8 => sizeof(x) ?
(You use sizeof(t) on line
agl
2012/10/22 21:50:56
Done.
| |
| 38 } | |
| 39 | |
| 40 // Reverse reverses the order of the bits of 4-bit number in |i|. | |
| 41 int Reverse(int i) { | |
| 42 i = ((i << 2)&0xc) | ((i >> 2)&0x3); | |
| 43 i = ((i << 1)&0xa) | ((i >> 1)&0x5); | |
|
wtc
2012/10/19 21:35:22
Nit: add spaces around the & operators.
agl
2012/10/22 21:50:56
Done.
| |
| 44 return i; | |
| 45 } | |
| 46 | |
| 47 } // anonymous namespace | |
| 48 | |
| 49 GaliosHash::GaliosHash(const uint8 key[16]) { | |
| 50 Reset(); | |
| 51 | |
| 52 // We precompute 16 multiples of |key|. However, when we do lookups into this | |
| 53 // table we'll be using bits from a field element and therefore the bits will | |
| 54 // be in the reverse order. So normally one would expect, say, 4*key to be in | |
| 55 // index 4 of the table but due to this bit ordering it will actually be in | |
| 56 // index 0010b = 2. | |
|
wtc
2012/10/19 21:35:22
Nit: your use of the 'b' suffix confused me for a
agl
2012/10/22 21:50:56
Done.
| |
| 57 FieldElement x = {Get64(key), Get64(key+8)}; | |
| 58 productTable[0].low = 0; | |
| 59 productTable[0].hi = 0; | |
| 60 productTable[Reverse(1)] = x; | |
| 61 | |
| 62 for (int i = 0; i < 16; i += 2) { | |
| 63 productTable[Reverse(i)] = Double(productTable[Reverse(i/2)]); | |
| 64 productTable[Reverse(i+1)] = Add(productTable[Reverse(i)], x); | |
|
wtc
2012/10/19 21:35:22
In Reverse(i+1), you are relying on the fact that
agl
2012/10/22 21:50:56
Reverse(16) should never be called, I believe. The
| |
| 65 } | |
| 66 } | |
| 67 | |
| 68 void GaliosHash::Reset() { | |
| 69 state_ = kHashingAdditionalData; | |
| 70 additional_bytes_ = 0; | |
| 71 ciphertext_bytes_ = 0; | |
| 72 buf_used_ = 0; | |
| 73 y_.low = 0; | |
| 74 y_.hi = 0; | |
| 75 } | |
| 76 | |
| 77 void GaliosHash::UpdateAdditional(const uint8* data, size_t length) { | |
| 78 DCHECK_EQ(state_, kHashingAdditionalData); | |
| 79 additional_bytes_ += length; | |
| 80 Update(data, length); | |
| 81 } | |
| 82 | |
| 83 void GaliosHash::UpdateCiphertext(const uint8* data, size_t length) { | |
| 84 if (state_ == kHashingAdditionalData) { | |
| 85 // If there's any remaining additional data it's zero padded to the next | |
| 86 // full block. | |
| 87 if (buf_used_ > 0) { | |
| 88 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); | |
| 89 UpdateBlocks(buf_, 1); | |
| 90 buf_used_ = 0; | |
| 91 } | |
| 92 state_ = kHashingCiphertext; | |
| 93 } | |
| 94 | |
| 95 DCHECK_EQ(state_, kHashingCiphertext); | |
| 96 ciphertext_bytes_ += length; | |
| 97 Update(data, length); | |
| 98 } | |
| 99 | |
| 100 void GaliosHash::Digest(uint8 result[16]) { | |
| 101 DCHECK(state_ != kComplete); | |
| 102 | |
| 103 if (buf_used_ > 0) { | |
| 104 // If there's any remaining data (additional data or ciphertext), it's zero | |
| 105 // padded to the next full block. | |
| 106 memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); | |
| 107 UpdateBlocks(buf_, 1); | |
| 108 buf_used_ = 0; | |
| 109 } | |
| 110 | |
| 111 state_ = kComplete; | |
| 112 | |
| 113 // The lengths of the additional data and ciphertext are included as the last | |
| 114 // block. The lengths are the number of bits. | |
|
wtc
2012/10/19 21:35:22
This shows you implemented the original GHASH.
| |
| 115 y_.low ^= additional_bytes_*8; | |
| 116 y_.hi ^= ciphertext_bytes_*8; | |
| 117 MulAfterPrecomputation(productTable, &y_); | |
| 118 | |
| 119 Put64(result, y_.low); | |
| 120 Put64(result+8, y_.hi); | |
|
wtc
2012/10/19 21:35:22
I suggest adding spaces around the operators in th
agl
2012/10/22 21:50:56
Done.
| |
| 121 } | |
| 122 | |
| 123 // static | |
| 124 GaliosHash::FieldElement GaliosHash::Add( | |
| 125 const FieldElement& x, | |
| 126 const FieldElement& y) { | |
| 127 // Addition in a characteristic 2 field is just XOR. | |
| 128 FieldElement z = {x.low^y.low, x.hi^y.hi}; | |
| 129 return z; | |
| 130 } | |
| 131 | |
| 132 // static | |
| 133 GaliosHash::FieldElement GaliosHash::Double(const FieldElement& x) { | |
| 134 const bool msbSet = x.hi & 1; | |
|
wtc
2012/10/19 21:35:22
msbSet => msb_set
agl
2012/10/22 21:50:56
Done.
| |
| 135 | |
| 136 FieldElement xx; | |
| 137 // Because of the bit-ordering, doubling is actually a right shift. | |
| 138 xx.hi = x.hi >> 1; | |
| 139 xx.hi |= x.low << 63; | |
| 140 xx.low = x.low >> 1; | |
| 141 | |
| 142 // If the most-significant bit was set before shifting then it, conceptually, | |
| 143 // becomes a term of x^128. This is greater than the irreducible polynomial | |
| 144 // so the result has to be reduced. The irreducible polynomial is | |
| 145 // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 | |
| 146 // which also means subtracting the other four terms. In characteristic 2 | |
| 147 // fields, subtraction == addition == XOR. | |
| 148 if (msbSet) { | |
| 149 xx.low ^= 0xe100000000000000; | |
|
wtc
2012/10/19 21:35:22
You may need to add a ULL suffix to the constant t
agl
2012/10/22 21:50:56
Done.
| |
| 150 } | |
| 151 | |
| 152 return xx; | |
| 153 } | |
| 154 | |
| 155 void GaliosHash::MulAfterPrecomputation(const FieldElement* table, | |
| 156 FieldElement* x) { | |
| 157 FieldElement z = {0, 0}; | |
| 158 | |
| 159 // In order to efficiently multiply, we use the precomputed table of i*key, | |
| 160 // for i in 0..15, to handle four bits at a time. We could obviously use | |
| 161 // larger tables for greater speedups but the next convenient table size is | |
| 162 // 4K, which is a little large. | |
| 163 // | |
| 164 // In other fields one would use bit positions spread out across the field in | |
| 165 // order to reduce the number of doublings required. However, in | |
| 166 // characteristic 2 fields, repeated doublings are exceptionally cheap and | |
| 167 // it's not worth spending more precomputation time to eliminate them. | |
| 168 for (unsigned i = 0; i < 2; i++) { | |
| 169 uint64 word; | |
| 170 if (i == 0) { | |
| 171 word = x->hi; | |
| 172 } else { | |
| 173 word = x->low; | |
| 174 } | |
| 175 | |
| 176 for (unsigned j = 0; j < 64; j += 4) { | |
| 177 Mul16(&z); | |
| 178 // the values in |table| are ordered for little-endian bit positions. See | |
| 179 // the comment in the constructor. | |
| 180 const FieldElement& t = table[word & 0xf]; | |
| 181 z.low ^= t.low; | |
| 182 z.hi ^= t.hi; | |
| 183 word >>= 4; | |
| 184 } | |
| 185 } | |
| 186 | |
| 187 *x = z; | |
| 188 } | |
| 189 | |
| 190 // kReductionTable allows for rapid multiplications by 16. A multiplication by | |
| 191 // 16 is a right shift by four bits, which results in four bits at 2**128. | |
| 192 // These terms have to be eliminated by dividing by the irreducible polynomial. | |
| 193 // In GHASH, the polynomial is such that all the terms occur in the | |
| 194 // least-significant 8 bits, save for the term at x^128. Therefore we can | |
| 195 // precompute the value to be added to the field element for each of the 16 bit | |
| 196 // patterns at 2**128 and the values fit within 12 bits. | |
| 197 static const uint16 kReductionTable[16] = { | |
| 198 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, | |
| 199 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, | |
| 200 }; | |
| 201 | |
| 202 // static | |
| 203 void GaliosHash::Mul16(FieldElement* x) { | |
| 204 const unsigned msw = x->hi & 0xf; | |
| 205 x->hi >>= 4; | |
| 206 x->hi |= x->low << 60; | |
| 207 x->low >>= 4; | |
| 208 x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; | |
| 209 } | |
| 210 | |
| 211 void GaliosHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { | |
| 212 for (size_t i = 0; i < num_blocks; i++) { | |
| 213 y_.low ^= Get64(bytes); | |
| 214 bytes += 8; | |
| 215 y_.hi ^= Get64(bytes); | |
| 216 bytes += 8; | |
| 217 MulAfterPrecomputation(productTable, &y_); | |
| 218 } | |
| 219 } | |
| 220 | |
| 221 void GaliosHash::Update(const uint8* data, size_t length) { | |
| 222 if (buf_used_ > 0) { | |
| 223 const size_t n = std::min(length, buf_used_); | |
| 224 memcpy(&buf_[buf_used_], data, n); | |
| 225 buf_used_ += n; | |
| 226 length -= n; | |
| 227 data += n; | |
| 228 | |
| 229 if (buf_used_ == sizeof(buf_)) { | |
| 230 UpdateBlocks(buf_, 1); | |
| 231 buf_used_ = 0; | |
| 232 } | |
| 233 } | |
| 234 | |
| 235 if (length >= 16) { | |
| 236 const size_t n = length / 16; | |
| 237 UpdateBlocks(data, n); | |
| 238 length -= n*16; | |
| 239 data += n*16; | |
| 240 } | |
| 241 | |
| 242 if (length > 0) { | |
| 243 memcpy(buf_, data, length); | |
| 244 buf_used_ = length; | |
| 245 } | |
| 246 } | |
| 247 | |
| 248 } // namespace crypto | |
| OLD | NEW |