Index: base/memory/scoped_ptr.h |
diff --git a/base/memory/scoped_ptr.h b/base/memory/scoped_ptr.h |
index 3547b7a15397f9c58f3c5193401d6d9defae333d..bbe200cd2d7a0fde04eb31574e85d69c1a43b272 100644 |
--- a/base/memory/scoped_ptr.h |
+++ b/base/memory/scoped_ptr.h |
@@ -95,6 +95,8 @@ |
#include <stddef.h> |
#include <stdlib.h> |
+#include <algorithm> // For std::swap(). |
+ |
#include "base/basictypes.h" |
#include "base/compiler_specific.h" |
#include "base/move.h" |
@@ -107,6 +109,51 @@ class RefCountedBase; |
class RefCountedThreadSafeBase; |
} // namespace subtle |
+// Function object which deletes its parameter, which must be a pointer. |
+// If C is an array type, invokes 'delete[]' on the parameter; otherwise, |
+// invokes 'delete'. The default deleter for scoped_ptr<T>. |
+template <class T> |
+struct DefaultDeleter { |
+ DefaultDeleter() {} |
+ template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { |
+ // All default single-object deleters can trivially convert to one another. |
+ } |
+ inline void operator()(T* ptr) const { |
+ enum { type_must_be_complete = sizeof(T) }; |
+ delete ptr; |
+ } |
+}; |
+ |
+// Specialization of DefaultDeleter for array types. |
+template <class T> |
+struct DefaultDeleter<T[]> { |
+ inline void operator()(T* ptr) const { |
+ enum { type_must_be_complete = sizeof(T) }; |
+ delete[] ptr; |
+ } |
+ |
+ private: |
+ // Disable this operator for any U != T because it is undefined to execute |
+ // an array delete when the static type of the array mismatches the dynamic |
+ // type. |
+ // |
+ // References: |
+ // C++98 [expr.delete]p3 |
+ // http://cplusplus.github.com/LWG/lwg-defects.html#938 |
+ template <typename U> void operator()(U* array) const; |
+}; |
+ |
+// Function object which invokes 'free' on its parameter, which must be |
+// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: |
+// |
+// scoped_ptr<int, base::FreeDeleter> foo_ptr( |
+// static_cast<int*>(malloc(sizeof(int)))); |
+struct FreeDeleter { |
+ inline void operator()(void* ptr) const { |
+ free(ptr); |
+ } |
+}; |
+ |
namespace internal { |
template <typename T> struct IsNotRefCounted { |
@@ -117,7 +164,104 @@ template <typename T> struct IsNotRefCounted { |
}; |
}; |
+// Minimal implementation of the core logic of scoped_ptr, suitable for |
+// reuse in both scoped_ptr and its specializations. |
+template <class T, class D> |
+class scoped_ptr_impl { |
Ryan Sleevi
2012/11/29 02:42:27
Have you confirmed what the compile time implicati
awong
2012/12/12 02:17:03
I'm not quite sure how to go about testing this.
Ryan Sleevi
2012/12/12 03:37:47
Usually just 3-5 timed clobber builds, run by scri
awong
2012/12/12 21:00:14
Grrr...can I just test on the build bots? :D
(I d
|
+ public: |
+ explicit scoped_ptr_impl(T* p) : data_(p) { } |
+ |
+ // Initializer for deleters that have data parameters. |
+ scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} |
+ |
+ // Templated constructor that destructively takes the value from another |
+ // scoped_ptr_impl. |
+ template <typename U, typename V> |
+ scoped_ptr_impl(scoped_ptr_impl<U, V>* other) |
+ : data_(other->release(), other->get_deleter()) { |
+ // We do not support move-only deleters. We could modify our move |
+ // emulation to have base::subtle::move() and base::subtle::forward() |
+ // functions that are imperfect emulations of their C++11 equivalents, |
+ // but until there's a requirement, just assume deleters are copyable. |
+ } |
+ |
+ template <typename U, typename V> |
+ void TakeState(scoped_ptr_impl<U, V>* other) { |
+ // See comment in templated constructor above regarding lack of support |
+ // for move-only deleters. |
+ reset(other->release()); |
+ get_deleter() = other->get_deleter(); |
+ } |
+ |
+ ~scoped_ptr_impl() { |
+ if (data_.ptr != NULL) { |
+ // Not using get_deleter() saves one function call in non-optimized |
+ // builds. |
+ static_cast<D&>(data_)(data_.ptr); |
+ } |
+ } |
+ |
+ void reset(T* p) { |
+ // This self-reset check is deprecated. |
+ // this->reset(this->get()) currently works, but it is DEPRECATED, and |
+ // will be removed once we verify that no one depends on it. |
+ // |
+ // TODO(ajwong): Change this behavior to match unique_ptr<>. |
+ // http://crbug.com/162971 |
+ if (p != data_.ptr) { |
+ if (data_.ptr != NULL) { |
+ // Note that this can lead to undefined behavior and memory leaks |
+ // in the unlikely but possible case that get_deleter()(get()) |
+ // indirectly deletes this. The fix is to reset ptr_ before deleting |
+ // its old value, but first we need to clean up the code that relies |
+ // on the current sequencing. |
gromer
2012/12/04 19:41:18
Maybe add a tracking bug for this too?
awong
2012/12/12 02:17:03
I think http://crbug.com/162971 cited earlier cove
Ryan Sleevi
2012/12/12 03:37:47
Ah, I just fail at reading comprehension then.
|
+ static_cast<D&>(data_)(data_.ptr); |
+ } |
+ data_.ptr = p; |
+ } |
+ } |
+ |
+ T* get() const { return data_.ptr; } |
+ |
+ D& get_deleter() { return data_; } |
+ const D& get_deleter() const { return data_; } |
+ |
+ void swap(scoped_ptr_impl& p2) { |
+ // Standard swap idiom: 'using std::swap' ensures that std::swap is |
+ // present in the overload set, but we call swap unqualified so that |
+ // any more-specific overloads can be used, if available. |
+ using std::swap; |
+ swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); |
+ swap(data_.ptr, p2.data_.ptr); |
+ } |
+ |
+ T* release() { |
+ T* old_ptr = data_.ptr; |
+ data_.ptr = NULL; |
+ return old_ptr; |
+ } |
+ |
+ private: |
+ // Needed to allow type-converting constructor. |
+ template <typename U, typename V> friend class scoped_ptr_impl; |
+ |
+ // Use the empty base class optimization to allow us to have a D |
+ // member, while avoiding any space overhead for it when D is an |
+ // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good |
+ // discussion of this technique. |
+ struct Data : public D { |
+ explicit Data(T* ptr_in) : ptr(ptr_in) {} |
+ Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} |
+ T* ptr; |
+ }; |
+ |
+ Data data_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); |
+}; |
+ |
} // namespace internal |
+ |
} // namespace base |
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
@@ -129,93 +273,81 @@ template <typename T> struct IsNotRefCounted { |
// |
// The size of a scoped_ptr is small: |
// sizeof(scoped_ptr<C>) == sizeof(C*) |
-template <class C> |
+template <class T, class D = base::DefaultDeleter<T> > |
class scoped_ptr { |
MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
- COMPILE_ASSERT(base::internal::IsNotRefCounted<C>::value, |
- C_is_refcounted_type_and_needs_scoped_refptr); |
+ COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value, |
+ T_is_refcounted_type_and_needs_scoped_refptr); |
public: |
- |
- // The element type |
- typedef C element_type; |
+ // The element and deleter types. |
+ typedef T element_type; |
+ typedef D deleter_type; |
// Constructor. Defaults to initializing with NULL. |
- // There is no way to create an uninitialized scoped_ptr. |
- // The input parameter must be allocated with new. |
- explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
+ scoped_ptr() : impl_(NULL) { } |
+ |
+ // Constructor. Takes ownership of p. |
+ explicit scoped_ptr(element_type* p) : impl_(p) { } |
+ |
+ // Constructor. Allows initialization of a stateful deleter. |
+ scoped_ptr(element_type* p, const D& d) : impl_(p, d) { } |
// Constructor. Allows construction from a scoped_ptr rvalue for a |
- // convertible type. |
- template <typename U> |
- scoped_ptr(scoped_ptr<U> other) : ptr_(other.release()) { } |
+ // convertible type and deleter. |
+ template <typename U, typename V> |
+ scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) { } |
// Constructor. Move constructor for C++03 move emulation of this type. |
- scoped_ptr(RValue rvalue) |
- : ptr_(rvalue.object->release()) { |
- } |
- |
- // Destructor. If there is a C object, delete it. |
- // We don't need to test ptr_ == NULL because C++ does that for us. |
- ~scoped_ptr() { |
- enum { type_must_be_complete = sizeof(C) }; |
- delete ptr_; |
- } |
+ scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { } |
// operator=. Allows assignment from a scoped_ptr rvalue for a convertible |
- // type. |
- template <typename U> |
- scoped_ptr& operator=(scoped_ptr<U> rhs) { |
- reset(rhs.release()); |
+ // type and deleter. |
+ template <typename U, typename V> |
+ scoped_ptr& operator=(scoped_ptr<U, V> rhs) { |
+ impl_.TakeState(&rhs.impl_); |
return *this; |
} |
- // operator=. Move operator= for C++03 move emulation of this type. |
- scoped_ptr& operator=(RValue rhs) { |
- swap(*rhs->object); |
- return *this; |
- } |
- |
- // Reset. Deletes the current owned object, if any. |
+ // Reset. Deletes the currently owned object, if any. |
// Then takes ownership of a new object, if given. |
- // this->reset(this->get()) works. |
- void reset(C* p = NULL) { |
- if (p != ptr_) { |
- enum { type_must_be_complete = sizeof(C) }; |
- delete ptr_; |
- ptr_ = p; |
- } |
- } |
+ void reset(element_type* p = NULL) { impl_.reset(p); } |
// Accessors to get the owned object. |
// operator* and operator-> will assert() if there is no current object. |
- C& operator*() const { |
- assert(ptr_ != NULL); |
- return *ptr_; |
+ element_type& operator*() const { |
+ assert(impl_.get() != NULL); |
+ return *impl_.get(); |
} |
- C* operator->() const { |
- assert(ptr_ != NULL); |
- return ptr_; |
+ element_type* operator->() const { |
+ assert(impl_.get() != NULL); |
+ return impl_.get(); |
} |
- C* get() const { return ptr_; } |
+ element_type* get() const { return impl_.get(); } |
- // Allow scoped_ptr<C> to be used in boolean expressions, but not |
+ // Access to the deleter. |
+ deleter_type& get_deleter() { return impl_.get_deleter(); } |
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
+ |
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
// implicitly convertible to a real bool (which is dangerous). |
- typedef C* scoped_ptr::*Testable; |
- operator Testable() const { return ptr_ ? &scoped_ptr::ptr_ : NULL; } |
+ private: |
gromer
2012/12/04 19:41:18
This violates the style guide by interleaving priv
awong
2012/12/12 02:17:03
Yeah...I could move the typedef into a private sec
|
+ typedef base::internal::scoped_ptr_impl<element_type, deleter_type> |
+ scoped_ptr::*Testable; |
+ |
+ public: |
+ operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } |
// Comparison operators. |
// These return whether two scoped_ptr refer to the same object, not just to |
// two different but equal objects. |
- bool operator==(C* p) const { return ptr_ == p; } |
- bool operator!=(C* p) const { return ptr_ != p; } |
+ bool operator==(element_type* p) const { return impl_.get() == p; } |
+ bool operator!=(element_type* p) const { return impl_.get() != p; } |
// Swap two scoped pointers. |
void swap(scoped_ptr& p2) { |
- C* tmp = ptr_; |
- ptr_ = p2.ptr_; |
- p2.ptr_ = tmp; |
+ impl_.swap(p2.impl_); |
} |
// Release a pointer. |
@@ -223,44 +355,163 @@ class scoped_ptr { |
// If this object holds a NULL pointer, the return value is NULL. |
// After this operation, this object will hold a NULL pointer, |
// and will not own the object any more. |
- C* release() WARN_UNUSED_RESULT { |
- C* retVal = ptr_; |
- ptr_ = NULL; |
- return retVal; |
+ element_type* release() WARN_UNUSED_RESULT { |
+ return impl_.release(); |
} |
+ // C++98 doesn't support functions templates with default parameters which |
+ // makes it hard to write a PassAs() that understands converting the deleter |
+ // while preserving simple calling semantics. |
+ // |
+ // Until there is a use case for PassAs() with custom deleters, just ignore |
+ // the custom deleter. |
template <typename PassAsType> |
scoped_ptr<PassAsType> PassAs() { |
- return scoped_ptr<PassAsType>(release()); |
+ return scoped_ptr<PassAsType>(Pass()); |
} |
private: |
- C* ptr_; |
+ // Needed to reach into |impl_| in the constructor. |
+ template <typename U, typename V> friend class scoped_ptr; |
+ base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
+ |
+ // Forbid comparison of scoped_ptr types. If U != T, it totally |
+ // doesn't make sense, and if U == T, it still doesn't make sense |
+ // because you should never have the same object owned by two different |
+ // scoped_ptrs. |
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
+}; |
+ |
+template <class T, class D> |
+class scoped_ptr<T[], D> { |
+ MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
+ |
+ public: |
+ // The element and deleter types. |
+ typedef T element_type; |
+ typedef D deleter_type; |
+ |
+ // Constructor. Defaults to initializing with NULL. |
+ scoped_ptr() : impl_(NULL) { } |
+ |
+ // Constructor. Stores the given array. Note that the argument's type |
+ // must exactly match T*. In particular: |
+ // - it cannot be a pointer to a type derived from T, because it is |
+ // inherently unsafe in the general case to access an array through a |
+ // pointer whose dynamic type does not match its static type (eg., if |
+ // T and the derived types had different sizes access would be |
+ // incorrectly calculated). Deletion is also always undefined |
+ // (C++98 [expr.delete]p3). If you're doing this, fix your code. |
+ // - it cannot be NULL, because NULL is an integral expression, not a |
+ // pointer to T. Use the no-argument version instead of explicitly |
+ // passing NULL. |
+ // - it cannot be const-qualified differently from T per unique_ptr spec |
+ // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting |
+ // to work around this may use the implicit_cast<const T*>() idiom. |
+ // However, because of the first bullet in this comment, users MUST |
+ // NOT use implicit_cast<Base*>() to upcast the static type of the array. |
+ explicit scoped_ptr(element_type* array) : impl_(array) { } |
+ |
+ // Constructor. Move constructor for C++03 move emulation of this type. |
+ scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { } |
+ |
+ // operator=. Move operator= for C++03 move emulation of this type. |
+ scoped_ptr& operator=(RValue rhs) { |
+ impl_.TakeState(&rhs.object->impl_); |
+ return *this; |
+ } |
+ |
+ // Reset. Deletes the currently owned array, if any. |
+ // Then takes ownership of a new object, if given. |
+ void reset(element_type* array = NULL) { impl_.reset(array); } |
+ |
+ // Accessors to get the owned array. |
+ element_type& operator[](size_t i) const { |
+ assert(impl_.get() != NULL); |
+ return impl_.get()[i]; |
+ } |
+ element_type* get() const { return impl_.get(); } |
+ |
+ // Access to the deleter. |
+ deleter_type& get_deleter() { return impl_.get_deleter(); } |
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
+ |
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
+ // implicitly convertible to a real bool (which is dangerous). |
+ private: |
+ typedef base::internal::scoped_ptr_impl<element_type, deleter_type> |
+ scoped_ptr::*Testable; |
+ |
+ public: |
+ operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } |
+ |
+ // Comparison operators. |
+ // These return whether two scoped_ptr refer to the same object, not just to |
+ // two different but equal objects. |
+ bool operator==(element_type* array) const { return impl_.get() == array; } |
+ bool operator!=(element_type* array) const { return impl_.get() != array; } |
+ |
+ // Swap two scoped pointers. |
+ void swap(scoped_ptr& p2) { |
+ impl_.swap(p2.impl_); |
+ } |
+ |
+ // Release a pointer. |
+ // The return value is the current pointer held by this object. |
+ // If this object holds a NULL pointer, the return value is NULL. |
+ // After this operation, this object will hold a NULL pointer, |
+ // and will not own the object any more. |
+ element_type* release() WARN_UNUSED_RESULT { |
+ return impl_.release(); |
+ } |
- // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
- // make sense, and if C2 == C, it still doesn't make sense because you should |
- // never have the same object owned by two different scoped_ptrs. |
- template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
- template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
+ private: |
+ // Force element_type to be a complete type. |
+ enum { type_must_be_complete = sizeof(element_type) }; |
+ // Actually hold the data. |
+ base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
+ |
+ // Disable initialization from any type other than element_type*, by |
+ // providing a constructor that matches such an initialization, but is |
+ // private and has no definition. This is disabled because it is not safe to |
+ // call delete[] on an array whose static type does not match its dynamic |
+ // type. |
+ template <typename U> |
+ explicit scoped_ptr(U* array); |
+ |
+ // Disable reset() from any type other than element_type*, for the same |
+ // reasons as the constructor above. |
+ template <typename U> |
+ void reset(U* array); |
+ |
+ // Forbid comparison of scoped_ptr types. If U != T, it totally |
+ // doesn't make sense, and if U == T, it still doesn't make sense |
+ // because you should never have the same object owned by two different |
+ // scoped_ptrs. |
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
}; |
// Free functions |
-template <class C> |
-void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { |
+template <class T, class D> |
+void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { |
p1.swap(p2); |
} |
-template <class C> |
-bool operator==(C* p1, const scoped_ptr<C>& p2) { |
+template <class T, class D> |
+bool operator==(T* p1, const scoped_ptr<T, D>& p2) { |
return p1 == p2.get(); |
} |
-template <class C> |
-bool operator!=(C* p1, const scoped_ptr<C>& p2) { |
+template <class T, class D> |
+bool operator!=(T* p1, const scoped_ptr<T, D>& p2) { |
return p1 != p2.get(); |
} |
+// DEPRECATED: Use scoped_ptr<C[]> instead. |
+// |
// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate |
// with new [] and the destructor deletes objects with delete []. |
// |
@@ -298,7 +549,7 @@ class scoped_array { |
// operator=. Move operator= for C++03 move emulation of this type. |
scoped_array& operator=(RValue rhs) { |
- swap(*rhs.object); |
+ reset(rhs.object->release()); |
return *this; |
} |
@@ -380,19 +631,12 @@ bool operator!=(C* p1, const scoped_array<C>& p2) { |
return p1 != p2.get(); |
} |
-// This class wraps the c library function free() in a class that can be |
-// passed as a template argument to scoped_ptr_malloc below. |
-class ScopedPtrMallocFree { |
- public: |
- inline void operator()(void* x) const { |
- free(x); |
- } |
-}; |
- |
+// DEPRECATED: Use scoped_ptr<C, base::FreeDeleter> instead. |
+// |
// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a |
// second template argument, the functor used to free the object. |
-template<class C, class FreeProc = ScopedPtrMallocFree> |
+template<class C, class FreeProc = base::FreeDeleter> |
class scoped_ptr_malloc { |
MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue) |
@@ -420,7 +664,7 @@ class scoped_ptr_malloc { |
// operator=. Move operator= for C++03 move emulation of this type. |
scoped_ptr_malloc& operator=(RValue rhs) { |
- swap(*rhs.object); |
+ reset(rhs.object->release()); |
return *this; |
} |
@@ -429,8 +673,10 @@ class scoped_ptr_malloc { |
// this->reset(this->get()) works. |
void reset(C* p = NULL) { |
if (ptr_ != p) { |
- FreeProc free_proc; |
- free_proc(ptr_); |
+ if (ptr_ != NULL) { |
+ FreeProc free_proc; |
+ free_proc(ptr_); |
+ } |
ptr_ = p; |
} |
} |