Index: src/effects/gradients/SkTwoPointRadialGradient.cpp |
diff --git a/src/effects/gradients/SkTwoPointRadialGradient.cpp b/src/effects/gradients/SkTwoPointRadialGradient.cpp |
deleted file mode 100644 |
index 44b73d6a3e256a78d77c4be7a26c0c41f24e8429..0000000000000000000000000000000000000000 |
--- a/src/effects/gradients/SkTwoPointRadialGradient.cpp |
+++ /dev/null |
@@ -1,724 +0,0 @@ |
- |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkTwoPointRadialGradient.h" |
- |
-/* Two-point radial gradients are specified by two circles, each with a center |
- point and radius. The gradient can be considered to be a series of |
- concentric circles, with the color interpolated from the start circle |
- (at t=0) to the end circle (at t=1). |
- |
- For each point (x, y) in the span, we want to find the |
- interpolated circle that intersects that point. The center |
- of the desired circle (Cx, Cy) falls at some distance t |
- along the line segment between the start point (Sx, Sy) and |
- end point (Ex, Ey): |
- |
- Cx = (1 - t) * Sx + t * Ex (0 <= t <= 1) |
- Cy = (1 - t) * Sy + t * Ey |
- |
- The radius of the desired circle (r) is also a linear interpolation t |
- between the start and end radii (Sr and Er): |
- |
- r = (1 - t) * Sr + t * Er |
- |
- But |
- |
- (x - Cx)^2 + (y - Cy)^2 = r^2 |
- |
- so |
- |
- (x - ((1 - t) * Sx + t * Ex))^2 |
- + (y - ((1 - t) * Sy + t * Ey))^2 |
- = ((1 - t) * Sr + t * Er)^2 |
- |
- Solving for t yields |
- |
- [(Sx - Ex)^2 + (Sy - Ey)^2 - (Er - Sr)^2)] * t^2 |
- + [2 * (Sx - Ex)(x - Sx) + 2 * (Sy - Ey)(y - Sy) - 2 * (Er - Sr) * Sr] * t |
- + [(x - Sx)^2 + (y - Sy)^2 - Sr^2] = 0 |
- |
- To simplify, let Dx = Sx - Ex, Dy = Sy - Ey, Dr = Er - Sr, dx = x - Sx, dy = y - Sy |
- |
- [Dx^2 + Dy^2 - Dr^2)] * t^2 |
- + 2 * [Dx * dx + Dy * dy - Dr * Sr] * t |
- + [dx^2 + dy^2 - Sr^2] = 0 |
- |
- A quadratic in t. The two roots of the quadratic reflect the two |
- possible circles on which the point may fall. Solving for t yields |
- the gradient value to use. |
- |
- If a<0, the start circle is entirely contained in the |
- end circle, and one of the roots will be <0 or >1 (off the line |
- segment). If a>0, the start circle falls at least partially |
- outside the end circle (or vice versa), and the gradient |
- defines a "tube" where a point may be on one circle (on the |
- inside of the tube) or the other (outside of the tube). We choose |
- one arbitrarily. |
- |
- In order to keep the math to within the limits of fixed point, |
- we divide the entire quadratic by Dr^2, and replace |
- (x - Sx)/Dr with x' and (y - Sy)/Dr with y', giving |
- |
- [Dx^2 / Dr^2 + Dy^2 / Dr^2 - 1)] * t^2 |
- + 2 * [x' * Dx / Dr + y' * Dy / Dr - Sr / Dr] * t |
- + [x'^2 + y'^2 - Sr^2/Dr^2] = 0 |
- |
- (x' and y' are computed by appending the subtract and scale to the |
- fDstToIndex matrix in the constructor). |
- |
- Since the 'A' component of the quadratic is independent of x' and y', it |
- is precomputed in the constructor. Since the 'B' component is linear in |
- x' and y', if x and y are linear in the span, 'B' can be computed |
- incrementally with a simple delta (db below). If it is not (e.g., |
- a perspective projection), it must be computed in the loop. |
- |
-*/ |
- |
-namespace { |
- |
-inline SkFixed two_point_radial(SkScalar b, SkScalar fx, SkScalar fy, |
- SkScalar sr2d2, SkScalar foura, |
- SkScalar oneOverTwoA, bool posRoot) { |
- SkScalar c = SkScalarSquare(fx) + SkScalarSquare(fy) - sr2d2; |
- if (0 == foura) { |
- return SkScalarToFixed(SkScalarDiv(-c, b)); |
- } |
- |
- SkScalar discrim = SkScalarSquare(b) - SkScalarMul(foura, c); |
- if (discrim < 0) { |
- discrim = -discrim; |
- } |
- SkScalar rootDiscrim = SkScalarSqrt(discrim); |
- SkScalar result; |
- if (posRoot) { |
- result = SkScalarMul(-b + rootDiscrim, oneOverTwoA); |
- } else { |
- result = SkScalarMul(-b - rootDiscrim, oneOverTwoA); |
- } |
- return SkScalarToFixed(result); |
-} |
- |
-typedef void (* TwoPointRadialShadeProc)(SkScalar fx, SkScalar dx, |
- SkScalar fy, SkScalar dy, |
- SkScalar b, SkScalar db, |
- SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
- SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
- int count); |
- |
-void shadeSpan_twopoint_clamp(SkScalar fx, SkScalar dx, |
- SkScalar fy, SkScalar dy, |
- SkScalar b, SkScalar db, |
- SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
- SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
- int count) { |
- for (; count > 0; --count) { |
- SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
- fOneOverTwoA, posRoot); |
- SkFixed index = SkClampMax(t, 0xFFFF); |
- SkASSERT(index <= 0xFFFF); |
- *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
- fx += dx; |
- fy += dy; |
- b += db; |
- } |
-} |
-void shadeSpan_twopoint_mirror(SkScalar fx, SkScalar dx, |
- SkScalar fy, SkScalar dy, |
- SkScalar b, SkScalar db, |
- SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
- SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
- int count) { |
- for (; count > 0; --count) { |
- SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
- fOneOverTwoA, posRoot); |
- SkFixed index = mirror_tileproc(t); |
- SkASSERT(index <= 0xFFFF); |
- *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
- fx += dx; |
- fy += dy; |
- b += db; |
- } |
-} |
- |
-void shadeSpan_twopoint_repeat(SkScalar fx, SkScalar dx, |
- SkScalar fy, SkScalar dy, |
- SkScalar b, SkScalar db, |
- SkScalar fSr2D2, SkScalar foura, SkScalar fOneOverTwoA, bool posRoot, |
- SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, |
- int count) { |
- for (; count > 0; --count) { |
- SkFixed t = two_point_radial(b, fx, fy, fSr2D2, foura, |
- fOneOverTwoA, posRoot); |
- SkFixed index = repeat_tileproc(t); |
- SkASSERT(index <= 0xFFFF); |
- *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
- fx += dx; |
- fy += dy; |
- b += db; |
- } |
-} |
-} |
- |
-///////////////////////////////////////////////////////////////////// |
- |
-static SkMatrix pts_to_unit(const SkPoint& start, SkScalar diffRadius) { |
- SkScalar inv = diffRadius ? SkScalarInvert(diffRadius) : 0; |
- SkMatrix matrix; |
- matrix.setTranslate(-start.fX, -start.fY); |
- matrix.postScale(inv, inv); |
- return matrix; |
-} |
- |
-SkTwoPointRadialGradient::SkTwoPointRadialGradient(const SkPoint& start, SkScalar startRadius, |
- const SkPoint& end, SkScalar endRadius, |
- const Descriptor& desc) |
- : SkGradientShaderBase(desc, pts_to_unit(start, endRadius - startRadius)) |
- , fCenter1(start) |
- , fCenter2(end) |
- , fRadius1(startRadius) |
- , fRadius2(endRadius) |
-{ |
- fDiff = fCenter1 - fCenter2; |
- fDiffRadius = fRadius2 - fRadius1; |
- // hack to avoid zero-divide for now |
- SkScalar inv = fDiffRadius ? SkScalarInvert(fDiffRadius) : 0; |
- fDiff.fX = SkScalarMul(fDiff.fX, inv); |
- fDiff.fY = SkScalarMul(fDiff.fY, inv); |
- fStartRadius = SkScalarMul(fRadius1, inv); |
- fSr2D2 = SkScalarSquare(fStartRadius); |
- fA = SkScalarSquare(fDiff.fX) + SkScalarSquare(fDiff.fY) - SK_Scalar1; |
- fOneOverTwoA = fA ? SkScalarInvert(fA * 2) : 0; |
-} |
- |
-SkShader::BitmapType SkTwoPointRadialGradient::asABitmap( |
- SkBitmap* bitmap, |
- SkMatrix* matrix, |
- SkShader::TileMode* xy) const { |
- if (bitmap) { |
- this->getGradientTableBitmap(bitmap); |
- } |
- SkScalar diffL = 0; // just to avoid gcc warning |
- if (matrix) { |
- diffL = SkScalarSqrt(SkScalarSquare(fDiff.fX) + |
- SkScalarSquare(fDiff.fY)); |
- } |
- if (matrix) { |
- if (diffL) { |
- SkScalar invDiffL = SkScalarInvert(diffL); |
- matrix->setSinCos(-SkScalarMul(invDiffL, fDiff.fY), |
- SkScalarMul(invDiffL, fDiff.fX)); |
- } else { |
- matrix->reset(); |
- } |
- matrix->preConcat(fPtsToUnit); |
- } |
- if (xy) { |
- xy[0] = fTileMode; |
- xy[1] = kClamp_TileMode; |
- } |
- return kTwoPointRadial_BitmapType; |
-} |
- |
-SkShader::GradientType SkTwoPointRadialGradient::asAGradient( |
- SkShader::GradientInfo* info) const { |
- if (info) { |
- commonAsAGradient(info); |
- info->fPoint[0] = fCenter1; |
- info->fPoint[1] = fCenter2; |
- info->fRadius[0] = fRadius1; |
- info->fRadius[1] = fRadius2; |
- } |
- return kRadial2_GradientType; |
-} |
- |
-size_t SkTwoPointRadialGradient::contextSize() const { |
- return sizeof(TwoPointRadialGradientContext); |
-} |
- |
-SkShader::Context* SkTwoPointRadialGradient::onCreateContext(const ContextRec& rec, |
- void* storage) const { |
- // For now, we might have divided by zero, so detect that. |
- if (0 == fDiffRadius) { |
- return NULL; |
- } |
- return SkNEW_PLACEMENT_ARGS(storage, TwoPointRadialGradientContext, (*this, rec)); |
-} |
- |
-SkTwoPointRadialGradient::TwoPointRadialGradientContext::TwoPointRadialGradientContext( |
- const SkTwoPointRadialGradient& shader, const ContextRec& rec) |
- : INHERITED(shader, rec) |
-{ |
- // we don't have a span16 proc |
- fFlags &= ~kHasSpan16_Flag; |
-} |
- |
-void SkTwoPointRadialGradient::TwoPointRadialGradientContext::shadeSpan( |
- int x, int y, SkPMColor* dstCParam, int count) { |
- SkASSERT(count > 0); |
- |
- const SkTwoPointRadialGradient& twoPointRadialGradient = |
- static_cast<const SkTwoPointRadialGradient&>(fShader); |
- |
- SkPMColor* SK_RESTRICT dstC = dstCParam; |
- |
- // Zero difference between radii: fill with transparent black. |
- if (twoPointRadialGradient.fDiffRadius == 0) { |
- sk_bzero(dstC, count * sizeof(*dstC)); |
- return; |
- } |
- SkMatrix::MapXYProc dstProc = fDstToIndexProc; |
- TileProc proc = twoPointRadialGradient.fTileProc; |
- const SkPMColor* SK_RESTRICT cache = fCache->getCache32(); |
- |
- SkScalar foura = twoPointRadialGradient.fA * 4; |
- bool posRoot = twoPointRadialGradient.fDiffRadius < 0; |
- if (fDstToIndexClass != kPerspective_MatrixClass) { |
- SkPoint srcPt; |
- dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf, |
- SkIntToScalar(y) + SK_ScalarHalf, &srcPt); |
- SkScalar dx, fx = srcPt.fX; |
- SkScalar dy, fy = srcPt.fY; |
- |
- if (fDstToIndexClass == kFixedStepInX_MatrixClass) { |
- SkFixed fixedX, fixedY; |
- (void)fDstToIndex.fixedStepInX(SkIntToScalar(y), &fixedX, &fixedY); |
- dx = SkFixedToScalar(fixedX); |
- dy = SkFixedToScalar(fixedY); |
- } else { |
- SkASSERT(fDstToIndexClass == kLinear_MatrixClass); |
- dx = fDstToIndex.getScaleX(); |
- dy = fDstToIndex.getSkewY(); |
- } |
- SkScalar b = (SkScalarMul(twoPointRadialGradient.fDiff.fX, fx) + |
- SkScalarMul(twoPointRadialGradient.fDiff.fY, fy) - |
- twoPointRadialGradient.fStartRadius) * 2; |
- SkScalar db = (SkScalarMul(twoPointRadialGradient.fDiff.fX, dx) + |
- SkScalarMul(twoPointRadialGradient.fDiff.fY, dy)) * 2; |
- |
- TwoPointRadialShadeProc shadeProc = shadeSpan_twopoint_repeat; |
- if (SkShader::kClamp_TileMode == twoPointRadialGradient.fTileMode) { |
- shadeProc = shadeSpan_twopoint_clamp; |
- } else if (SkShader::kMirror_TileMode == twoPointRadialGradient.fTileMode) { |
- shadeProc = shadeSpan_twopoint_mirror; |
- } else { |
- SkASSERT(SkShader::kRepeat_TileMode == twoPointRadialGradient.fTileMode); |
- } |
- (*shadeProc)(fx, dx, fy, dy, b, db, |
- twoPointRadialGradient.fSr2D2, foura, |
- twoPointRadialGradient.fOneOverTwoA, posRoot, |
- dstC, cache, count); |
- } else { // perspective case |
- SkScalar dstX = SkIntToScalar(x); |
- SkScalar dstY = SkIntToScalar(y); |
- for (; count > 0; --count) { |
- SkPoint srcPt; |
- dstProc(fDstToIndex, dstX, dstY, &srcPt); |
- SkScalar fx = srcPt.fX; |
- SkScalar fy = srcPt.fY; |
- SkScalar b = (SkScalarMul(twoPointRadialGradient.fDiff.fX, fx) + |
- SkScalarMul(twoPointRadialGradient.fDiff.fY, fy) - |
- twoPointRadialGradient.fStartRadius) * 2; |
- SkFixed t = two_point_radial(b, fx, fy, twoPointRadialGradient.fSr2D2, foura, |
- twoPointRadialGradient.fOneOverTwoA, posRoot); |
- SkFixed index = proc(t); |
- SkASSERT(index <= 0xFFFF); |
- *dstC++ = cache[index >> SkGradientShaderBase::kCache32Shift]; |
- dstX += SK_Scalar1; |
- } |
- } |
-} |
- |
-#ifndef SK_IGNORE_TO_STRING |
-void SkTwoPointRadialGradient::toString(SkString* str) const { |
- str->append("SkTwoPointRadialGradient: ("); |
- |
- str->append("center1: ("); |
- str->appendScalar(fCenter1.fX); |
- str->append(", "); |
- str->appendScalar(fCenter1.fY); |
- str->append(") radius1: "); |
- str->appendScalar(fRadius1); |
- str->append(" "); |
- |
- str->append("center2: ("); |
- str->appendScalar(fCenter2.fX); |
- str->append(", "); |
- str->appendScalar(fCenter2.fY); |
- str->append(") radius2: "); |
- str->appendScalar(fRadius2); |
- str->append(" "); |
- |
- this->INHERITED::toString(str); |
- |
- str->append(")"); |
-} |
-#endif |
- |
-SkFlattenable* SkTwoPointRadialGradient::CreateProc(SkReadBuffer& buffer) { |
- DescriptorScope desc; |
- if (!desc.unflatten(buffer)) { |
- return NULL; |
- } |
- const SkPoint c1 = buffer.readPoint(); |
- const SkPoint c2 = buffer.readPoint(); |
- const SkScalar r1 = buffer.readScalar(); |
- const SkScalar r2 = buffer.readScalar(); |
- return SkGradientShader::CreateTwoPointRadial(c1, r1, c2, r2, desc.fColors, desc.fPos, |
- desc.fCount, desc.fTileMode, desc.fGradFlags, |
- desc.fLocalMatrix); |
-} |
- |
-void SkTwoPointRadialGradient::flatten( |
- SkWriteBuffer& buffer) const { |
- this->INHERITED::flatten(buffer); |
- buffer.writePoint(fCenter1); |
- buffer.writePoint(fCenter2); |
- buffer.writeScalar(fRadius1); |
- buffer.writeScalar(fRadius2); |
-} |
- |
-///////////////////////////////////////////////////////////////////// |
- |
-#if SK_SUPPORT_GPU |
- |
-#include "SkGr.h" |
-#include "gl/builders/GrGLProgramBuilder.h" |
- |
-// For brevity |
-typedef GrGLProgramDataManager::UniformHandle UniformHandle; |
- |
-class GrGLRadial2Gradient : public GrGLGradientEffect { |
- |
-public: |
- |
- GrGLRadial2Gradient(const GrProcessor&); |
- virtual ~GrGLRadial2Gradient() { } |
- |
- virtual void emitCode(GrGLFPBuilder*, |
- const GrFragmentProcessor&, |
- const char* outputColor, |
- const char* inputColor, |
- const TransformedCoordsArray&, |
- const TextureSamplerArray&) override; |
- void setData(const GrGLProgramDataManager&, const GrProcessor&) override; |
- |
- static void GenKey(const GrProcessor&, const GrGLSLCaps& caps, GrProcessorKeyBuilder* b); |
- |
-protected: |
- |
- UniformHandle fParamUni; |
- |
- const char* fVSVaryingName; |
- const char* fFSVaryingName; |
- |
- bool fIsDegenerate; |
- |
- // @{ |
- /// Values last uploaded as uniforms |
- |
- SkScalar fCachedCenter; |
- SkScalar fCachedRadius; |
- bool fCachedPosRoot; |
- |
- // @} |
- |
-private: |
- |
- typedef GrGLGradientEffect INHERITED; |
- |
-}; |
- |
-///////////////////////////////////////////////////////////////////// |
- |
-class GrRadial2Gradient : public GrGradientEffect { |
-public: |
- static GrFragmentProcessor* Create(GrContext* ctx, |
- const SkTwoPointRadialGradient& shader, |
- const SkMatrix& matrix, |
- SkShader::TileMode tm) { |
- return SkNEW_ARGS(GrRadial2Gradient, (ctx, shader, matrix, tm)); |
- } |
- |
- virtual ~GrRadial2Gradient() { } |
- |
- const char* name() const override { return "Two-Point Radial Gradient"; } |
- |
- virtual void getGLProcessorKey(const GrGLSLCaps& caps, |
- GrProcessorKeyBuilder* b) const override { |
- GrGLRadial2Gradient::GenKey(*this, caps, b); |
- } |
- |
- GrGLFragmentProcessor* createGLInstance() const override { |
- return SkNEW_ARGS(GrGLRadial2Gradient, (*this)); |
- } |
- |
- // The radial gradient parameters can collapse to a linear (instead of quadratic) equation. |
- bool isDegenerate() const { return SK_Scalar1 == fCenterX1; } |
- SkScalar center() const { return fCenterX1; } |
- SkScalar radius() const { return fRadius0; } |
- bool isPosRoot() const { return SkToBool(fPosRoot); } |
- |
-private: |
- bool onIsEqual(const GrFragmentProcessor& sBase) const override { |
- const GrRadial2Gradient& s = sBase.cast<GrRadial2Gradient>(); |
- return (INHERITED::onIsEqual(sBase) && |
- this->fCenterX1 == s.fCenterX1 && |
- this->fRadius0 == s.fRadius0 && |
- this->fPosRoot == s.fPosRoot); |
- } |
- |
- GrRadial2Gradient(GrContext* ctx, |
- const SkTwoPointRadialGradient& shader, |
- const SkMatrix& matrix, |
- SkShader::TileMode tm) |
- : INHERITED(ctx, shader, matrix, tm) |
- , fCenterX1(shader.getCenterX1()) |
- , fRadius0(shader.getStartRadius()) |
- , fPosRoot(shader.getDiffRadius() < 0) { |
- this->initClassID<GrRadial2Gradient>(); |
- // We pass the linear part of the quadratic as a varying. |
- // float b = 2.0 * (fCenterX1 * x - fRadius0 * z) |
- fBTransform = this->getCoordTransform(); |
- SkMatrix& bMatrix = *fBTransform.accessMatrix(); |
- bMatrix[SkMatrix::kMScaleX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) - |
- SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp0])); |
- bMatrix[SkMatrix::kMSkewX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) - |
- SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp1])); |
- bMatrix[SkMatrix::kMTransX] = 2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) - |
- SkScalarMul(fRadius0, bMatrix[SkMatrix::kMPersp2])); |
- this->addCoordTransform(&fBTransform); |
- } |
- |
- GR_DECLARE_FRAGMENT_PROCESSOR_TEST; |
- |
- // @{ |
- // Cache of values - these can change arbitrarily, EXCEPT |
- // we shouldn't change between degenerate and non-degenerate?! |
- |
- GrCoordTransform fBTransform; |
- SkScalar fCenterX1; |
- SkScalar fRadius0; |
- SkBool8 fPosRoot; |
- |
- // @} |
- |
- typedef GrGradientEffect INHERITED; |
-}; |
- |
-///////////////////////////////////////////////////////////////////// |
- |
-GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrRadial2Gradient); |
- |
-GrFragmentProcessor* GrRadial2Gradient::TestCreate(SkRandom* random, |
- GrContext* context, |
- const GrDrawTargetCaps&, |
- GrTexture**) { |
- SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()}; |
- SkScalar radius1 = random->nextUScalar1(); |
- SkPoint center2; |
- SkScalar radius2; |
- do { |
- center2.set(random->nextUScalar1(), random->nextUScalar1()); |
- radius2 = random->nextUScalar1 (); |
- // There is a bug in two point radial gradients with identical radii |
- } while (radius1 == radius2); |
- |
- SkColor colors[kMaxRandomGradientColors]; |
- SkScalar stopsArray[kMaxRandomGradientColors]; |
- SkScalar* stops = stopsArray; |
- SkShader::TileMode tm; |
- int colorCount = RandomGradientParams(random, colors, &stops, &tm); |
- SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointRadial(center1, radius1, |
- center2, radius2, |
- colors, stops, colorCount, |
- tm)); |
- SkPaint paint; |
- GrFragmentProcessor* fp; |
- GrColor paintColor; |
- SkAssertResult(shader->asFragmentProcessor(context, paint, |
- GrTest::TestMatrix(random), NULL, |
- &paintColor, &fp)); |
- return fp; |
-} |
- |
-///////////////////////////////////////////////////////////////////// |
- |
-GrGLRadial2Gradient::GrGLRadial2Gradient(const GrProcessor& processor) |
- : fVSVaryingName(NULL) |
- , fFSVaryingName(NULL) |
- , fCachedCenter(SK_ScalarMax) |
- , fCachedRadius(-SK_ScalarMax) |
- , fCachedPosRoot(0) { |
- |
- const GrRadial2Gradient& data = processor.cast<GrRadial2Gradient>(); |
- fIsDegenerate = data.isDegenerate(); |
-} |
- |
-void GrGLRadial2Gradient::emitCode(GrGLFPBuilder* builder, |
- const GrFragmentProcessor& fp, |
- const char* outputColor, |
- const char* inputColor, |
- const TransformedCoordsArray& coords, |
- const TextureSamplerArray& samplers) { |
- const GrRadial2Gradient& ge = fp.cast<GrRadial2Gradient>(); |
- this->emitUniforms(builder, ge); |
- fParamUni = builder->addUniformArray(GrGLProgramBuilder::kFragment_Visibility, |
- kFloat_GrSLType, kDefault_GrSLPrecision, |
- "Radial2FSParams", 6); |
- |
- SkString cName("c"); |
- SkString ac4Name("ac4"); |
- SkString rootName("root"); |
- SkString t; |
- SkString p0; |
- SkString p1; |
- SkString p2; |
- SkString p3; |
- SkString p4; |
- SkString p5; |
- builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0); |
- builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1); |
- builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2); |
- builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3); |
- builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4); |
- builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5); |
- |
- GrGLFragmentBuilder* fsBuilder = builder->getFragmentShaderBuilder(); |
- // We interpolate the linear component in coords[1]. |
- SkASSERT(coords[0].getType() == coords[1].getType()); |
- const char* coords2D; |
- SkString bVar; |
- if (kVec3f_GrSLType == coords[0].getType()) { |
- fsBuilder->codeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n", |
- coords[0].c_str(), coords[1].c_str(), coords[0].c_str()); |
- coords2D = "interpolants.xy"; |
- bVar = "interpolants.z"; |
- } else { |
- coords2D = coords[0].c_str(); |
- bVar.printf("%s.x", coords[1].c_str()); |
- } |
- |
- // c = (x^2)+(y^2) - params[4] |
- fsBuilder->codeAppendf("\tfloat %s = dot(%s, %s) - %s;\n", |
- cName.c_str(), coords2D, coords2D, p4.c_str()); |
- |
- // If we aren't degenerate, emit some extra code, and accept a slightly |
- // more complex coord. |
- if (!fIsDegenerate) { |
- |
- // ac4 = 4.0 * params[0] * c |
- fsBuilder->codeAppendf("\tfloat %s = %s * 4.0 * %s;\n", |
- ac4Name.c_str(), p0.c_str(), |
- cName.c_str()); |
- |
- // root = sqrt(b^2-4ac) |
- // (abs to avoid exception due to fp precision) |
- fsBuilder->codeAppendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n", |
- rootName.c_str(), bVar.c_str(), bVar.c_str(), |
- ac4Name.c_str()); |
- |
- // t is: (-b + params[5] * sqrt(b^2-4ac)) * params[1] |
- t.printf("(-%s + %s * %s) * %s", bVar.c_str(), p5.c_str(), |
- rootName.c_str(), p1.c_str()); |
- } else { |
- // t is: -c/b |
- t.printf("-%s / %s", cName.c_str(), bVar.c_str()); |
- } |
- |
- this->emitColor(builder, ge, t.c_str(), outputColor, inputColor, samplers); |
-} |
- |
-void GrGLRadial2Gradient::setData(const GrGLProgramDataManager& pdman, |
- const GrProcessor& processor) { |
- INHERITED::setData(pdman, processor); |
- const GrRadial2Gradient& data = processor.cast<GrRadial2Gradient>(); |
- SkASSERT(data.isDegenerate() == fIsDegenerate); |
- SkScalar centerX1 = data.center(); |
- SkScalar radius0 = data.radius(); |
- if (fCachedCenter != centerX1 || |
- fCachedRadius != radius0 || |
- fCachedPosRoot != data.isPosRoot()) { |
- |
- SkScalar a = SkScalarMul(centerX1, centerX1) - SK_Scalar1; |
- |
- // When we're in the degenerate (linear) case, the second |
- // value will be INF but the program doesn't read it. (We |
- // use the same 6 uniforms even though we don't need them |
- // all in the linear case just to keep the code complexity |
- // down). |
- float values[6] = { |
- SkScalarToFloat(a), |
- 1 / (2.f * SkScalarToFloat(a)), |
- SkScalarToFloat(centerX1), |
- SkScalarToFloat(radius0), |
- SkScalarToFloat(SkScalarMul(radius0, radius0)), |
- data.isPosRoot() ? 1.f : -1.f |
- }; |
- |
- pdman.set1fv(fParamUni, 6, values); |
- fCachedCenter = centerX1; |
- fCachedRadius = radius0; |
- fCachedPosRoot = data.isPosRoot(); |
- } |
-} |
- |
-void GrGLRadial2Gradient::GenKey(const GrProcessor& processor, |
- const GrGLSLCaps&, GrProcessorKeyBuilder* b) { |
- uint32_t* key = b->add32n(2); |
- key[0] = GenBaseGradientKey(processor); |
- key[1] = processor.cast<GrRadial2Gradient>().isDegenerate(); |
-} |
- |
-///////////////////////////////////////////////////////////////////// |
- |
-bool SkTwoPointRadialGradient::asFragmentProcessor(GrContext* context, const SkPaint& paint, |
- const SkMatrix&, |
- const SkMatrix* localMatrix, GrColor* paintColor, |
- GrFragmentProcessor** fp) const { |
- SkASSERT(context); |
- |
- // invert the localM, translate to center1 (fPtsToUni), rotate so center2 is on x axis. |
- SkMatrix matrix; |
- if (!this->getLocalMatrix().invert(&matrix)) { |
- return false; |
- } |
- if (localMatrix) { |
- SkMatrix inv; |
- if (!localMatrix->invert(&inv)) { |
- return false; |
- } |
- matrix.postConcat(inv); |
- } |
- matrix.postConcat(fPtsToUnit); |
- |
- SkScalar diffLen = fDiff.length(); |
- if (0 != diffLen) { |
- SkScalar invDiffLen = SkScalarInvert(diffLen); |
- SkMatrix rot; |
- rot.setSinCos(-SkScalarMul(invDiffLen, fDiff.fY), |
- SkScalarMul(invDiffLen, fDiff.fX)); |
- matrix.postConcat(rot); |
- } |
- |
- *paintColor = SkColor2GrColorJustAlpha(paint.getColor()); |
- *fp = GrRadial2Gradient::Create(context, *this, matrix, fTileMode); |
- |
- return true; |
-} |
- |
-#else |
- |
-bool SkTwoPointRadialGradient::asFragmentProcessor(GrContext*, const SkPaint&, const SkMatrix&, |
- const SkMatrix*, |
- GrColor*, GrFragmentProcessor**) const { |
- SkDEBUGFAIL("Should not call in GPU-less build"); |
- return false; |
-} |
- |
-#endif |