Index: cc/CCLayerSorter.cpp |
diff --git a/cc/CCLayerSorter.cpp b/cc/CCLayerSorter.cpp |
deleted file mode 100644 |
index cf8577797211258877e2df9c020e41952027e814..0000000000000000000000000000000000000000 |
--- a/cc/CCLayerSorter.cpp |
+++ /dev/null |
@@ -1,445 +0,0 @@ |
-// Copyright 2011 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "config.h" |
- |
-#include "CCLayerSorter.h" |
- |
-#include "CCMathUtil.h" |
-#include "CCRenderSurface.h" |
-#include <limits.h> |
-#include <public/WebTransformationMatrix.h> |
-#include <wtf/Deque.h> |
- |
-using namespace std; |
-using WebKit::WebTransformationMatrix; |
- |
-#define LOG_CHANNEL_PREFIX Log |
-#define SHOW_DEBUG_LOG 0 |
- |
-#if !defined( NDEBUG ) |
-#if SHOW_DEBUG_LOG |
-static WTFLogChannel LogCCLayerSorter = { 0x00000000, "", WTFLogChannelOn }; |
-#else |
-static WTFLogChannel LogCCLayerSorter = { 0x00000000, "", WTFLogChannelOff }; |
-#endif |
-#endif |
- |
-namespace cc { |
- |
-inline static float perpProduct(const FloatSize& u, const FloatSize& v) |
-{ |
- return u.width() * v.height() - u.height() * v.width(); |
-} |
- |
-// Tests if two edges defined by their endpoints (a,b) and (c,d) intersect. Returns true and the |
-// point of intersection if they do and false otherwise. |
-static bool edgeEdgeTest(const FloatPoint& a, const FloatPoint& b, const FloatPoint& c, const FloatPoint& d, FloatPoint& r) |
-{ |
- FloatSize u = b - a; |
- FloatSize v = d - c; |
- FloatSize w = a - c; |
- |
- float denom = perpProduct(u, v); |
- |
- // If denom == 0 then the edges are parallel. While they could be overlapping |
- // we don't bother to check here as the we'll find their intersections from the |
- // corner to quad tests. |
- if (!denom) |
- return false; |
- |
- float s = perpProduct(v, w) / denom; |
- if (s < 0 || s > 1) |
- return false; |
- |
- float t = perpProduct(u, w) / denom; |
- if (t < 0 || t > 1) |
- return false; |
- |
- u.scale(s); |
- r = a + u; |
- return true; |
-} |
- |
-CCLayerSorter::GraphNode::GraphNode(CCLayerImpl* cclayer) |
- : layer(cclayer) |
- , incomingEdgeWeight(0) |
-{ |
-} |
- |
-CCLayerSorter::GraphNode::~GraphNode() |
-{ |
-} |
- |
-CCLayerSorter::CCLayerSorter() |
- : m_zRange(0) |
-{ |
-} |
- |
-CCLayerSorter::~CCLayerSorter() |
-{ |
-} |
- |
-// Checks whether layer "a" draws on top of layer "b". The weight value returned is an indication of |
-// the maximum z-depth difference between the layers or zero if the layers are found to be intesecting |
-// (some features are in front and some are behind). |
-CCLayerSorter::ABCompareResult CCLayerSorter::checkOverlap(LayerShape* a, LayerShape* b, float zThreshold, float& weight) |
-{ |
- weight = 0; |
- |
- // Early out if the projected bounds don't overlap. |
- if (!a->projectedBounds.intersects(b->projectedBounds)) |
- return None; |
- |
- FloatPoint aPoints[4] = {a->projectedQuad.p1(), a->projectedQuad.p2(), a->projectedQuad.p3(), a->projectedQuad.p4() }; |
- FloatPoint bPoints[4] = {b->projectedQuad.p1(), b->projectedQuad.p2(), b->projectedQuad.p3(), b->projectedQuad.p4() }; |
- |
- // Make a list of points that inside both layer quad projections. |
- Vector<FloatPoint> overlapPoints; |
- |
- // Check all four corners of one layer against the other layer's quad. |
- for (int i = 0; i < 4; ++i) { |
- if (a->projectedQuad.containsPoint(bPoints[i])) |
- overlapPoints.append(bPoints[i]); |
- if (b->projectedQuad.containsPoint(aPoints[i])) |
- overlapPoints.append(aPoints[i]); |
- } |
- |
- // Check all the edges of one layer for intersection with the other layer's edges. |
- FloatPoint r; |
- for (int ea = 0; ea < 4; ++ea) |
- for (int eb = 0; eb < 4; ++eb) |
- if (edgeEdgeTest(aPoints[ea], aPoints[(ea + 1) % 4], |
- bPoints[eb], bPoints[(eb + 1) % 4], |
- r)) |
- overlapPoints.append(r); |
- |
- if (!overlapPoints.size()) |
- return None; |
- |
- // Check the corresponding layer depth value for all overlap points to determine |
- // which layer is in front. |
- float maxPositive = 0; |
- float maxNegative = 0; |
- for (unsigned o = 0; o < overlapPoints.size(); o++) { |
- float za = a->layerZFromProjectedPoint(overlapPoints[o]); |
- float zb = b->layerZFromProjectedPoint(overlapPoints[o]); |
- |
- float diff = za - zb; |
- if (diff > maxPositive) |
- maxPositive = diff; |
- if (diff < maxNegative) |
- maxNegative = diff; |
- } |
- |
- float maxDiff = (fabsf(maxPositive) > fabsf(maxNegative) ? maxPositive : maxNegative); |
- |
- // If the results are inconsistent (and the z difference substantial to rule out |
- // numerical errors) then the layers are intersecting. We will still return an |
- // order based on the maximum depth difference but with an edge weight of zero |
- // these layers will get priority if a graph cycle is present and needs to be broken. |
- if (maxPositive > zThreshold && maxNegative < -zThreshold) |
- weight = 0; |
- else |
- weight = fabsf(maxDiff); |
- |
- // Maintain relative order if the layers have the same depth at all intersection points. |
- if (maxDiff <= 0) |
- return ABeforeB; |
- |
- return BBeforeA; |
-} |
- |
-CCLayerSorter::LayerShape::LayerShape() |
-{ |
-} |
- |
-CCLayerSorter::LayerShape::LayerShape(float width, float height, const WebTransformationMatrix& drawTransform) |
-{ |
- FloatQuad layerQuad(FloatRect(0, 0, width, height)); |
- |
- // Compute the projection of the layer quad onto the z = 0 plane. |
- |
- FloatPoint clippedQuad[8]; |
- int numVerticesInClippedQuad; |
- CCMathUtil::mapClippedQuad(drawTransform, layerQuad, clippedQuad, numVerticesInClippedQuad); |
- |
- if (numVerticesInClippedQuad < 3) { |
- projectedBounds = FloatRect(); |
- return; |
- } |
- |
- projectedBounds = CCMathUtil::computeEnclosingRectOfVertices(clippedQuad, numVerticesInClippedQuad); |
- |
- // NOTE: it will require very significant refactoring and overhead to deal with |
- // generalized polygons or multiple quads per layer here. For the sake of layer |
- // sorting it is equally correct to take a subsection of the polygon that can be made |
- // into a quad. This will only be incorrect in the case of intersecting layers, which |
- // are not supported yet anyway. |
- projectedQuad.setP1(clippedQuad[0]); |
- projectedQuad.setP2(clippedQuad[1]); |
- projectedQuad.setP3(clippedQuad[2]); |
- if (numVerticesInClippedQuad >= 4) |
- projectedQuad.setP4(clippedQuad[3]); |
- else |
- projectedQuad.setP4(clippedQuad[2]); // this will be a degenerate quad that is actually a triangle. |
- |
- // Compute the normal of the layer's plane. |
- bool clipped = false; |
- FloatPoint3D c1 = CCMathUtil::mapPoint(drawTransform, FloatPoint3D(0, 0, 0), clipped); |
- FloatPoint3D c2 = CCMathUtil::mapPoint(drawTransform, FloatPoint3D(0, 1, 0), clipped); |
- FloatPoint3D c3 = CCMathUtil::mapPoint(drawTransform, FloatPoint3D(1, 0, 0), clipped); |
- // FIXME: Deal with clipping. |
- FloatPoint3D c12 = c2 - c1; |
- FloatPoint3D c13 = c3 - c1; |
- layerNormal = c13.cross(c12); |
- |
- transformOrigin = c1; |
-} |
- |
-// Returns the Z coordinate of a point on the layer that projects |
-// to point p which lies on the z = 0 plane. It does it by computing the |
-// intersection of a line starting from p along the Z axis and the plane |
-// of the layer. |
-float CCLayerSorter::LayerShape::layerZFromProjectedPoint(const FloatPoint& p) const |
-{ |
- const FloatPoint3D zAxis(0, 0, 1); |
- FloatPoint3D w = FloatPoint3D(p) - transformOrigin; |
- |
- float d = layerNormal.dot(zAxis); |
- float n = -layerNormal.dot(w); |
- |
- // Check if layer is parallel to the z = 0 axis which will make it |
- // invisible and hence returning zero is fine. |
- if (!d) |
- return 0; |
- |
- // The intersection point would be given by: |
- // p + (n / d) * u but since we are only interested in the |
- // z coordinate and p's z coord is zero, all we need is the value of n/d. |
- return n / d; |
-} |
- |
-void CCLayerSorter::createGraphNodes(LayerList::iterator first, LayerList::iterator last) |
-{ |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "Creating graph nodes:\n"); |
-#endif |
- float minZ = FLT_MAX; |
- float maxZ = -FLT_MAX; |
- for (LayerList::const_iterator it = first; it < last; it++) { |
- m_nodes.append(GraphNode(*it)); |
- GraphNode& node = m_nodes.at(m_nodes.size() - 1); |
- CCRenderSurface* renderSurface = node.layer->renderSurface(); |
- if (!node.layer->drawsContent() && !renderSurface) |
- continue; |
- |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "Layer %d (%d x %d)\n", node.layer->id(), node.layer->bounds().width(), node.layer->bounds().height()); |
-#endif |
- |
- WebTransformationMatrix drawTransform; |
- float layerWidth, layerHeight; |
- if (renderSurface) { |
- drawTransform = renderSurface->drawTransform(); |
- layerWidth = renderSurface->contentRect().width(); |
- layerHeight = renderSurface->contentRect().height(); |
- } else { |
- drawTransform = node.layer->drawTransform(); |
- layerWidth = node.layer->contentBounds().width(); |
- layerHeight = node.layer->contentBounds().height(); |
- } |
- |
- node.shape = LayerShape(layerWidth, layerHeight, drawTransform); |
- |
- maxZ = max(maxZ, node.shape.transformOrigin.z()); |
- minZ = min(minZ, node.shape.transformOrigin.z()); |
- } |
- |
- m_zRange = fabsf(maxZ - minZ); |
-} |
- |
-void CCLayerSorter::createGraphEdges() |
-{ |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "Edges:\n"); |
-#endif |
- // Fraction of the total zRange below which z differences |
- // are not considered reliable. |
- const float zThresholdFactor = 0.01f; |
- float zThreshold = m_zRange * zThresholdFactor; |
- |
- for (unsigned na = 0; na < m_nodes.size(); na++) { |
- GraphNode& nodeA = m_nodes[na]; |
- if (!nodeA.layer->drawsContent() && !nodeA.layer->renderSurface()) |
- continue; |
- for (unsigned nb = na + 1; nb < m_nodes.size(); nb++) { |
- GraphNode& nodeB = m_nodes[nb]; |
- if (!nodeB.layer->drawsContent() && !nodeB.layer->renderSurface()) |
- continue; |
- float weight = 0; |
- ABCompareResult overlapResult = checkOverlap(&nodeA.shape, &nodeB.shape, zThreshold, weight); |
- GraphNode* startNode = 0; |
- GraphNode* endNode = 0; |
- if (overlapResult == ABeforeB) { |
- startNode = &nodeA; |
- endNode = &nodeB; |
- } else if (overlapResult == BBeforeA) { |
- startNode = &nodeB; |
- endNode = &nodeA; |
- } |
- |
- if (startNode) { |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "%d -> %d\n", startNode->layer->id(), endNode->layer->id()); |
-#endif |
- m_edges.append(GraphEdge(startNode, endNode, weight)); |
- } |
- } |
- } |
- |
- for (unsigned i = 0; i < m_edges.size(); i++) { |
- GraphEdge& edge = m_edges[i]; |
- m_activeEdges.add(&edge, &edge); |
- edge.from->outgoing.append(&edge); |
- edge.to->incoming.append(&edge); |
- edge.to->incomingEdgeWeight += edge.weight; |
- } |
-} |
- |
-// Finds and removes an edge from the list by doing a swap with the |
-// last element of the list. |
-void CCLayerSorter::removeEdgeFromList(GraphEdge* edge, Vector<GraphEdge*>& list) |
-{ |
- size_t edgeIndex = list.find(edge); |
- ASSERT(edgeIndex != notFound); |
- if (list.size() == 1) { |
- ASSERT(!edgeIndex); |
- list.clear(); |
- return; |
- } |
- if (edgeIndex != list.size() - 1) |
- list[edgeIndex] = list[list.size() - 1]; |
- |
- list.removeLast(); |
-} |
- |
-// Sorts the given list of layers such that they can be painted in a back-to-front |
-// order. Sorting produces correct results for non-intersecting layers that don't have |
-// cyclical order dependencies. Cycles and intersections are broken (somewhat) aribtrarily. |
-// Sorting of layers is done via a topological sort of a directed graph whose nodes are |
-// the layers themselves. An edge from node A to node B signifies that layer A needs to |
-// be drawn before layer B. If A and B have no dependency between each other, then we |
-// preserve the ordering of those layers as they were in the original list. |
-// |
-// The draw order between two layers is determined by projecting the two triangles making |
-// up each layer quad to the Z = 0 plane, finding points of intersection between the triangles |
-// and backprojecting those points to the plane of the layer to determine the corresponding Z |
-// coordinate. The layer with the lower Z coordinate (farther from the eye) needs to be rendered |
-// first. |
-// |
-// If the layer projections don't intersect, then no edges (dependencies) are created |
-// between them in the graph. HOWEVER, in this case we still need to preserve the ordering |
-// of the original list of layers, since that list should already have proper z-index |
-// ordering of layers. |
-// |
-void CCLayerSorter::sort(LayerList::iterator first, LayerList::iterator last) |
-{ |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "Sorting start ----\n"); |
-#endif |
- createGraphNodes(first, last); |
- |
- createGraphEdges(); |
- |
- Vector<GraphNode*> sortedList; |
- Deque<GraphNode*> noIncomingEdgeNodeList; |
- |
- // Find all the nodes that don't have incoming edges. |
- for (NodeList::iterator la = m_nodes.begin(); la < m_nodes.end(); la++) { |
- if (!la->incoming.size()) |
- noIncomingEdgeNodeList.append(la); |
- } |
- |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "Sorted list: "); |
-#endif |
- while (m_activeEdges.size() || noIncomingEdgeNodeList.size()) { |
- while (noIncomingEdgeNodeList.size()) { |
- |
- // It is necessary to preserve the existing ordering of layers, when there are |
- // no explicit dependencies (because this existing ordering has correct |
- // z-index/layout ordering). To preserve this ordering, we process Nodes in |
- // the same order that they were added to the list. |
- GraphNode* fromNode = noIncomingEdgeNodeList.takeFirst(); |
- |
- // Add it to the final list. |
- sortedList.append(fromNode); |
- |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "%d, ", fromNode->layer->id()); |
-#endif |
- |
- // Remove all its outgoing edges from the graph. |
- for (unsigned i = 0; i < fromNode->outgoing.size(); i++) { |
- GraphEdge* outgoingEdge = fromNode->outgoing[i]; |
- |
- m_activeEdges.remove(outgoingEdge); |
- removeEdgeFromList(outgoingEdge, outgoingEdge->to->incoming); |
- outgoingEdge->to->incomingEdgeWeight -= outgoingEdge->weight; |
- |
- if (!outgoingEdge->to->incoming.size()) |
- noIncomingEdgeNodeList.append(outgoingEdge->to); |
- } |
- fromNode->outgoing.clear(); |
- } |
- |
- if (!m_activeEdges.size()) |
- break; |
- |
- // If there are still active edges but the list of nodes without incoming edges |
- // is empty then we have run into a cycle. Break the cycle by finding the node |
- // with the smallest overall incoming edge weight and use it. This will favor |
- // nodes that have zero-weight incoming edges i.e. layers that are being |
- // occluded by a layer that intersects them. |
- float minIncomingEdgeWeight = FLT_MAX; |
- GraphNode* nextNode = 0; |
- for (unsigned i = 0; i < m_nodes.size(); i++) { |
- if (m_nodes[i].incoming.size() && m_nodes[i].incomingEdgeWeight < minIncomingEdgeWeight) { |
- minIncomingEdgeWeight = m_nodes[i].incomingEdgeWeight; |
- nextNode = &m_nodes[i]; |
- } |
- } |
- ASSERT(nextNode); |
- // Remove all its incoming edges. |
- for (unsigned e = 0; e < nextNode->incoming.size(); e++) { |
- GraphEdge* incomingEdge = nextNode->incoming[e]; |
- |
- m_activeEdges.remove(incomingEdge); |
- removeEdgeFromList(incomingEdge, incomingEdge->from->outgoing); |
- } |
- nextNode->incoming.clear(); |
- nextNode->incomingEdgeWeight = 0; |
- noIncomingEdgeNodeList.append(nextNode); |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "Breaking cycle by cleaning up incoming edges from %d (weight = %f)\n", nextNode->layer->id(), minIncomingEdgeWeight); |
-#endif |
- } |
- |
- // Note: The original elements of the list are in no danger of having their ref count go to zero |
- // here as they are all nodes of the layer hierarchy and are kept alive by their parent nodes. |
- int count = 0; |
- for (LayerList::iterator it = first; it < last; it++) |
- *it = sortedList[count++]->layer; |
- |
-#if !defined( NDEBUG ) |
- LOG(CCLayerSorter, "Sorting end ----\n"); |
-#endif |
- |
- m_nodes.clear(); |
- m_edges.clear(); |
- m_activeEdges.clear(); |
-} |
- |
-} |