Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(118)

Side by Side Diff: cc/CCDelayBasedTimeSource.cpp

Issue 11122003: [cc] Rename all cc/ filenames to Chromium style (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Created 8 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « cc/CCDelayBasedTimeSource.h ('k') | cc/CCDelegatedRendererLayerImpl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "config.h"
6
7 #include "CCDelayBasedTimeSource.h"
8
9 #include "TraceEvent.h"
10 #include <algorithm>
11 #include <wtf/CurrentTime.h>
12 #include <wtf/MathExtras.h>
13
14 namespace cc {
15
16 namespace {
17
18 // doubleTickThreshold prevents ticks from running within the specified fraction of an interval.
19 // This helps account for jitter in the timebase as well as quick timer reactiva tion.
20 const double doubleTickThreshold = 0.25;
21
22 // intervalChangeThreshold is the fraction of the interval that will trigger an immediate interval change.
23 // phaseChangeThreshold is the fraction of the interval that will trigger an imm ediate phase change.
24 // If the changes are within the thresholds, the change will take place on the n ext tick.
25 // If either change is outside the thresholds, the next tick will be canceled an d reissued immediately.
26 const double intervalChangeThreshold = 0.25;
27 const double phaseChangeThreshold = 0.25;
28
29 }
30
31
32 PassRefPtr<CCDelayBasedTimeSource> CCDelayBasedTimeSource::create(base::TimeDelt a interval, CCThread* thread)
33 {
34 return adoptRef(new CCDelayBasedTimeSource(interval, thread));
35 }
36
37 CCDelayBasedTimeSource::CCDelayBasedTimeSource(base::TimeDelta interval, CCThrea d* thread)
38 : m_client(0)
39 , m_hasTickTarget(false)
40 , m_currentParameters(interval, base::TimeTicks())
41 , m_nextParameters(interval, base::TimeTicks())
42 , m_state(STATE_INACTIVE)
43 , m_timer(thread, this)
44 {
45 turnOffVerifier();
46 }
47
48 CCDelayBasedTimeSource::~CCDelayBasedTimeSource()
49 {
50 }
51
52 void CCDelayBasedTimeSource::setActive(bool active)
53 {
54 TRACE_EVENT1("cc", "CCDelayBasedTimeSource::setActive", "active", active);
55 if (!active) {
56 m_state = STATE_INACTIVE;
57 m_timer.stop();
58 return;
59 }
60
61 if (m_state == STATE_STARTING || m_state == STATE_ACTIVE)
62 return;
63
64 if (!m_hasTickTarget) {
65 // Becoming active the first time is deferred: we post a 0-delay task. W hen
66 // it runs, we use that to establish the timebase, become truly active, and
67 // fire the first tick.
68 m_state = STATE_STARTING;
69 m_timer.startOneShot(0);
70 return;
71 }
72
73 m_state = STATE_ACTIVE;
74
75 postNextTickTask(now());
76 }
77
78 bool CCDelayBasedTimeSource::active() const
79 {
80 return m_state != STATE_INACTIVE;
81 }
82
83 base::TimeTicks CCDelayBasedTimeSource::lastTickTime()
84 {
85 return m_lastTickTime;
86 }
87
88 base::TimeTicks CCDelayBasedTimeSource::nextTickTime()
89 {
90 return active() ? m_currentParameters.tickTarget : base::TimeTicks();
91 }
92
93 void CCDelayBasedTimeSource::onTimerFired()
94 {
95 ASSERT(m_state != STATE_INACTIVE);
96
97 base::TimeTicks now = this->now();
98 m_lastTickTime = now;
99
100 if (m_state == STATE_STARTING) {
101 setTimebaseAndInterval(now, m_currentParameters.interval);
102 m_state = STATE_ACTIVE;
103 }
104
105 postNextTickTask(now);
106
107 // Fire the tick
108 if (m_client)
109 m_client->onTimerTick();
110 }
111
112 void CCDelayBasedTimeSource::setClient(CCTimeSourceClient* client)
113 {
114 m_client = client;
115 }
116
117 void CCDelayBasedTimeSource::setTimebaseAndInterval(base::TimeTicks timebase, ba se::TimeDelta interval)
118 {
119 m_nextParameters.interval = interval;
120 m_nextParameters.tickTarget = timebase;
121 m_hasTickTarget = true;
122
123 if (m_state != STATE_ACTIVE) {
124 // If we aren't active, there's no need to reset the timer.
125 return;
126 }
127
128 // If the change in interval is larger than the change threshold,
129 // request an immediate reset.
130 double intervalDelta = std::abs((interval - m_currentParameters.interval).In SecondsF());
131 double intervalChange = intervalDelta / interval.InSecondsF();
132 if (intervalChange > intervalChangeThreshold) {
133 setActive(false);
134 setActive(true);
135 return;
136 }
137
138 // If the change in phase is greater than the change threshold in either
139 // direction, request an immediate reset. This logic might result in a false
140 // negative if there is a simultaneous small change in the interval and the
141 // fmod just happens to return something near zero. Assuming the timebase
142 // is very recent though, which it should be, we'll still be ok because the
143 // old clock and new clock just happen to line up.
144 double targetDelta = std::abs((timebase - m_currentParameters.tickTarget).In SecondsF());
145 double phaseChange = fmod(targetDelta, interval.InSecondsF()) / interval.InS econdsF();
146 if (phaseChange > phaseChangeThreshold && phaseChange < (1.0 - phaseChangeTh reshold)) {
147 setActive(false);
148 setActive(true);
149 return;
150 }
151 }
152
153 base::TimeTicks CCDelayBasedTimeSource::now() const
154 {
155 return base::TimeTicks::Now();
156 }
157
158 // This code tries to achieve an average tick rate as close to m_interval as pos sible.
159 // To do this, it has to deal with a few basic issues:
160 // 1. postDelayedTask can delay only at a millisecond granularity. So, 16.666 has to
161 // posted as 16 or 17.
162 // 2. A delayed task may come back a bit late (a few ms), or really late (fram es later)
163 //
164 // The basic idea with this scheduler here is to keep track of where we *want* t o run in
165 // m_tickTarget. We update this with the exact interval.
166 //
167 // Then, when we post our task, we take the floor of (m_tickTarget and now()). I f we
168 // started at now=0, and 60FPs (all times in milliseconds):
169 // now=0 target=16.667 postDelayedTask(16)
170 //
171 // When our callback runs, we figure out how far off we were from that goal. Bec ause of the flooring
172 // operation, and assuming our timer runs exactly when it should, this yields:
173 // now=16 target=16.667
174 //
175 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a tick. Then,
176 // we update target to be 33.333. We now post another task based on the differen ce between our target
177 // and now:
178 // now=16 tickTarget=16.667 newTarget=33.333 --> postDelayedTask(floor (33.333 - 16)) --> postDelayedTask(17)
179 //
180 // Over time, with no late tasks, this leads to us posting tasks like this:
181 // now=0 tickTarget=0 newTarget=16.667 --> tick(), postDelayedTa sk(16)
182 // now=16 tickTarget=16.667 newTarget=33.333 --> tick(), postDelayedTa sk(17)
183 // now=33 tickTarget=33.333 newTarget=50.000 --> tick(), postDelayedTa sk(17)
184 // now=50 tickTarget=50.000 newTarget=66.667 --> tick(), postDelayedTa sk(16)
185 //
186 // We treat delays in tasks differently depending on the amount of delay we enco unter. Suppose we
187 // posted a task with a target=16.667:
188 // Case 1: late but not unrecoverably-so
189 // now=18 tickTarget=16.667
190 //
191 // Case 2: so late we obviously missed the tick
192 // now=25.0 tickTarget=16.667
193 //
194 // We treat the first case as a tick anyway, and assume the delay was
195 // unusual. Thus, we compute the newTarget based on the old timebase:
196 // now=18 tickTarget=16.667 newTarget=33.333 --> tick(), postDelayedTa sk(floor(33.333-18)) --> postDelayedTask(15)
197 // This brings us back to 18+15 = 33, which was where we would have been if the task hadn't been late.
198 //
199 // For the really late delay, we we move to the next logical tick. The timebase is not reset.
200 // now=37 tickTarget=16.667 newTarget=50.000 --> tick(), postDelayedTas k(floor(50.000-37)) --> postDelayedTask(13)
201 base::TimeTicks CCDelayBasedTimeSource::nextTickTarget(base::TimeTicks now)
202 {
203 base::TimeDelta newInterval = m_nextParameters.interval;
204 int intervalsElapsed = static_cast<int>(floor((now - m_nextParameters.tickTa rget).InSecondsF() / newInterval.InSecondsF()));
205 base::TimeTicks lastEffectiveTick = m_nextParameters.tickTarget + newInterva l * intervalsElapsed;
206 base::TimeTicks newTickTarget = lastEffectiveTick + newInterval;
207 ASSERT(newTickTarget > now);
208
209 // Avoid double ticks when:
210 // 1) Turning off the timer and turning it right back on.
211 // 2) Jittery data is passed to setTimebaseAndInterval().
212 if (newTickTarget - m_lastTickTime <= newInterval / static_cast<int>(1.0 / d oubleTickThreshold))
213 newTickTarget += newInterval;
214
215 return newTickTarget;
216 }
217
218 void CCDelayBasedTimeSource::postNextTickTask(base::TimeTicks now)
219 {
220 base::TimeTicks newTickTarget = nextTickTarget(now);
221
222 // Post another task *before* the tick and update state
223 base::TimeDelta delay = newTickTarget - now;
224 ASSERT(delay.InMillisecondsF() <=
225 m_nextParameters.interval.InMillisecondsF() * (1.0 + doubleTickThresh old));
226 m_timer.startOneShot(delay.InSecondsF());
227
228 m_nextParameters.tickTarget = newTickTarget;
229 m_currentParameters = m_nextParameters;
230 }
231
232 }
OLDNEW
« no previous file with comments | « cc/CCDelayBasedTimeSource.h ('k') | cc/CCDelegatedRendererLayerImpl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698