Index: third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/scoped_ptr.h |
diff --git a/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/scoped_ptr.h b/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/scoped_ptr.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..fe15fca17e216743e1233bc116f8ce56543ddac4 |
--- /dev/null |
+++ b/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/scoped_ptr.h |
@@ -0,0 +1,445 @@ |
+// Copyright (c) 2012 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+// |
+// The original source code is from: |
+// https://code.google.com/p/libphonenumber/source/browse/trunk/cpp/src/phonenumbers/base/memory/scoped_ptr.h?r=621 |
+ |
+#ifndef I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ |
+#define I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ |
+ |
+// This is an implementation designed to match the anticipated future TR2 |
+// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated). |
+ |
+#include <assert.h> |
+#include <stddef.h> |
+#include <stdlib.h> |
+ |
+#include <algorithm> // For std::swap(). |
+ |
+#include <libaddressinput/util/basictypes.h> |
+#include <libaddressinput/util/template_util.h> |
+ |
+namespace i18n { |
+namespace addressinput { |
+ |
+// Function object which deletes its parameter, which must be a pointer. |
+// If C is an array type, invokes 'delete[]' on the parameter; otherwise, |
+// invokes 'delete'. The default deleter for scoped_ptr<T>. |
+template <class T> |
+struct DefaultDeleter { |
+ DefaultDeleter() {} |
+ template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { |
+ // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor |
+ // if U* is implicitly convertible to T* and U is not an array type. |
+ // |
+ // Correct implementation should use SFINAE to disable this |
+ // constructor. However, since there are no other 1-argument constructors, |
+ // using a COMPILE_ASSERT() based on is_convertible<> and requiring |
+ // complete types is simpler and will cause compile failures for equivalent |
+ // misuses. |
+ // |
+ // Note, the is_convertible<U*, T*> check also ensures that U is not an |
+ // array. T is guaranteed to be a non-array, so any U* where U is an array |
+ // cannot convert to T*. |
+ enum { T_must_be_complete = sizeof(T) }; |
+ enum { U_must_be_complete = sizeof(U) }; |
+ COMPILE_ASSERT((is_convertible<U*, T*>::value), |
+ U_ptr_must_implicitly_convert_to_T_ptr); |
+ } |
+ inline void operator()(T* ptr) const { |
+ enum { type_must_be_complete = sizeof(T) }; |
+ delete ptr; |
+ } |
+}; |
+ |
+// Specialization of DefaultDeleter for array types. |
+template <class T> |
+struct DefaultDeleter<T[]> { |
+ inline void operator()(T* ptr) const { |
+ enum { type_must_be_complete = sizeof(T) }; |
+ delete[] ptr; |
+ } |
+ |
+ private: |
+ // Disable this operator for any U != T because it is undefined to execute |
+ // an array delete when the static type of the array mismatches the dynamic |
+ // type. |
+ // |
+ // References: |
+ // C++98 [expr.delete]p3 |
+ // http://cplusplus.github.com/LWG/lwg-defects.html#938 |
+ template <typename U> void operator()(U* array) const; |
+}; |
+ |
+template <class T, int n> |
+struct DefaultDeleter<T[n]> { |
+ // Never allow someone to declare something like scoped_ptr<int[10]>. |
+ COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type); |
+}; |
+ |
+// Function object which invokes 'free' on its parameter, which must be |
+// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: |
+// |
+// scoped_ptr<int, base::FreeDeleter> foo_ptr( |
+// static_cast<int*>(malloc(sizeof(int)))); |
+struct FreeDeleter { |
+ inline void operator()(void* ptr) const { |
+ free(ptr); |
+ } |
+}; |
+ |
+// Minimal implementation of the core logic of scoped_ptr, suitable for |
+// reuse in both scoped_ptr and its specializations. |
+template <class T, class D> |
+class scoped_ptr_impl { |
+ public: |
+ explicit scoped_ptr_impl(T* p) : data_(p) { } |
+ |
+ // Initializer for deleters that have data parameters. |
+ scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} |
+ |
+ // Templated constructor that destructively takes the value from another |
+ // scoped_ptr_impl. |
+ template <typename U, typename V> |
+ scoped_ptr_impl(scoped_ptr_impl<U, V>* other) |
+ : data_(other->release(), other->get_deleter()) { |
+ // We do not support move-only deleters. We could modify our move |
+ // emulation to have base::subtle::move() and base::subtle::forward() |
+ // functions that are imperfect emulations of their C++11 equivalents, |
+ // but until there's a requirement, just assume deleters are copyable. |
+ } |
+ |
+ template <typename U, typename V> |
+ void TakeState(scoped_ptr_impl<U, V>* other) { |
+ // See comment in templated constructor above regarding lack of support |
+ // for move-only deleters. |
+ reset(other->release()); |
+ get_deleter() = other->get_deleter(); |
+ } |
+ |
+ ~scoped_ptr_impl() { |
+ if (data_.ptr != NULL) { |
+ // Not using get_deleter() saves one function call in non-optimized |
+ // builds. |
+ static_cast<D&>(data_)(data_.ptr); |
+ } |
+ } |
+ |
+ void reset(T* p) { |
+ // This is a self-reset, which is no longer allowed: http://crbug.com/162971 |
+ if (p != NULL && p == data_.ptr) |
+ abort(); |
+ |
+ // Note that running data_.ptr = p can lead to undefined behavior if |
+ // get_deleter()(get()) deletes this. In order to pevent this, reset() |
+ // should update the stored pointer before deleting its old value. |
+ // |
+ // However, changing reset() to use that behavior may cause current code to |
+ // break in unexpected ways. If the destruction of the owned object |
+ // dereferences the scoped_ptr when it is destroyed by a call to reset(), |
+ // then it will incorrectly dispatch calls to |p| rather than the original |
+ // value of |data_.ptr|. |
+ // |
+ // During the transition period, set the stored pointer to NULL while |
+ // deleting the object. Eventually, this safety check will be removed to |
+ // prevent the scenario initially described from occuring and |
+ // http://crbug.com/176091 can be closed. |
+ T* old = data_.ptr; |
+ data_.ptr = NULL; |
+ if (old != NULL) |
+ static_cast<D&>(data_)(old); |
+ data_.ptr = p; |
+ } |
+ |
+ T* get() const { return data_.ptr; } |
+ |
+ D& get_deleter() { return data_; } |
+ const D& get_deleter() const { return data_; } |
+ |
+ void swap(scoped_ptr_impl& p2) { |
+ // Standard swap idiom: 'using std::swap' ensures that std::swap is |
+ // present in the overload set, but we call swap unqualified so that |
+ // any more-specific overloads can be used, if available. |
+ using std::swap; |
+ swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); |
+ swap(data_.ptr, p2.data_.ptr); |
+ } |
+ |
+ T* release() { |
+ T* old_ptr = data_.ptr; |
+ data_.ptr = NULL; |
+ return old_ptr; |
+ } |
+ |
+ private: |
+ // Needed to allow type-converting constructor. |
+ template <typename U, typename V> friend class scoped_ptr_impl; |
+ |
+ // Use the empty base class optimization to allow us to have a D |
+ // member, while avoiding any space overhead for it when D is an |
+ // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good |
+ // discussion of this technique. |
+ struct Data : public D { |
+ explicit Data(T* ptr_in) : ptr(ptr_in) {} |
+ Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} |
+ T* ptr; |
+ }; |
+ |
+ Data data_; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); |
+}; |
+ |
+// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
+// automatically deletes the pointer it holds (if any). |
+// That is, scoped_ptr<T> owns the T object that it points to. |
+// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. |
+// Also like T*, scoped_ptr<T> is thread-compatible, and once you |
+// dereference it, you get the thread safety guarantees of T. |
+// |
+// The size of scoped_ptr is small. On most compilers, when using the |
+// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will |
+// increase the size proportional to whatever state they need to have. See |
+// comments inside scoped_ptr_impl<> for details. |
+// |
+// Current implementation targets having a strict subset of C++11's |
+// unique_ptr<> features. Known deficiencies include not supporting move-only |
+// deleteres, function pointers as deleters, and deleters with reference |
+// types. |
+template <class T, class D = DefaultDeleter<T> > |
+class scoped_ptr { |
+ public: |
+ // The element and deleter types. |
+ typedef T element_type; |
+ typedef D deleter_type; |
+ |
+ // Constructor. Defaults to initializing with NULL. |
+ scoped_ptr() : impl_(NULL) { } |
+ |
+ // Constructor. Takes ownership of p. |
+ explicit scoped_ptr(element_type* p) : impl_(p) { } |
+ |
+ // Constructor. Allows initialization of a stateful deleter. |
+ scoped_ptr(element_type* p, const D& d) : impl_(p, d) { } |
+ |
+ // Constructor. Allows construction from a scoped_ptr rvalue for a |
+ // convertible type and deleter. |
+ // |
+ // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct |
+ // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor |
+ // has different post-conditions if D is a reference type. Since this |
+ // implementation does not support deleters with reference type, |
+ // we do not need a separate move constructor allowing us to avoid one |
+ // use of SFINAE. You only need to care about this if you modify the |
+ // implementation of scoped_ptr. |
+ template <typename U, typename V> |
+ scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) { |
+ COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array); |
+ } |
+ |
+ // operator=. Allows assignment from a scoped_ptr rvalue for a convertible |
+ // type and deleter. |
+ // |
+ // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from |
+ // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated |
+ // form has different requirements on for move-only Deleters. Since this |
+ // implementation does not support move-only Deleters, we do not need a |
+ // separate move assignment operator allowing us to avoid one use of SFINAE. |
+ // You only need to care about this if you modify the implementation of |
+ // scoped_ptr. |
+ template <typename U, typename V> |
+ scoped_ptr& operator=(scoped_ptr<U, V> rhs) { |
+ COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array); |
+ impl_.TakeState(&rhs.impl_); |
+ return *this; |
+ } |
+ |
+ // Reset. Deletes the currently owned object, if any. |
+ // Then takes ownership of a new object, if given. |
+ void reset(element_type* p = NULL) { impl_.reset(p); } |
+ |
+ // Accessors to get the owned object. |
+ // operator* and operator-> will assert() if there is no current object. |
+ element_type& operator*() const { |
+ assert(impl_.get() != NULL); |
+ return *impl_.get(); |
+ } |
+ element_type* operator->() const { |
+ assert(impl_.get() != NULL); |
+ return impl_.get(); |
+ } |
+ element_type* get() const { return impl_.get(); } |
+ |
+ // Access to the deleter. |
+ deleter_type& get_deleter() { return impl_.get_deleter(); } |
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
+ |
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
+ // implicitly convertible to a real bool (which is dangerous). |
+ private: |
+ typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable; |
+ |
+ public: |
+ operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } |
+ |
+ // Comparison operators. |
+ // These return whether two scoped_ptr refer to the same object, not just to |
+ // two different but equal objects. |
+ bool operator==(const element_type* p) const { return impl_.get() == p; } |
+ bool operator!=(const element_type* p) const { return impl_.get() != p; } |
+ |
+ // Swap two scoped pointers. |
+ void swap(scoped_ptr& p2) { |
+ impl_.swap(p2.impl_); |
+ } |
+ |
+ // Release a pointer. |
+ // The return value is the current pointer held by this object. |
+ // If this object holds a NULL pointer, the return value is NULL. |
+ // After this operation, this object will hold a NULL pointer, |
+ // and will not own the object any more. |
+ element_type* release() { |
+ return impl_.release(); |
+ } |
+ |
+ private: |
+ // Needed to reach into |impl_| in the constructor. |
+ template <typename U, typename V> friend class scoped_ptr; |
+ scoped_ptr_impl<element_type, deleter_type> impl_; |
+ |
+ // Forbid comparison of scoped_ptr types. If U != T, it totally |
+ // doesn't make sense, and if U == T, it still doesn't make sense |
+ // because you should never have the same object owned by two different |
+ // scoped_ptrs. |
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
+}; |
+ |
+template <class T, class D> |
+class scoped_ptr<T[], D> { |
+ public: |
+ // The element and deleter types. |
+ typedef T element_type; |
+ typedef D deleter_type; |
+ |
+ // Constructor. Defaults to initializing with NULL. |
+ scoped_ptr() : impl_(NULL) { } |
+ |
+ // Constructor. Stores the given array. Note that the argument's type |
+ // must exactly match T*. In particular: |
+ // - it cannot be a pointer to a type derived from T, because it is |
+ // inherently unsafe in the general case to access an array through a |
+ // pointer whose dynamic type does not match its static type (eg., if |
+ // T and the derived types had different sizes access would be |
+ // incorrectly calculated). Deletion is also always undefined |
+ // (C++98 [expr.delete]p3). If you're doing this, fix your code. |
+ // - it cannot be NULL, because NULL is an integral expression, not a |
+ // pointer to T. Use the no-argument version instead of explicitly |
+ // passing NULL. |
+ // - it cannot be const-qualified differently from T per unique_ptr spec |
+ // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting |
+ // to work around this may use implicit_cast<const T*>(). |
+ // However, because of the first bullet in this comment, users MUST |
+ // NOT use implicit_cast<Base*>() to upcast the static type of the array. |
+ explicit scoped_ptr(element_type* array) : impl_(array) { } |
+ |
+ // Reset. Deletes the currently owned array, if any. |
+ // Then takes ownership of a new object, if given. |
+ void reset(element_type* array = NULL) { impl_.reset(array); } |
+ |
+ // Accessors to get the owned array. |
+ element_type& operator[](size_t i) const { |
+ assert(impl_.get() != NULL); |
+ return impl_.get()[i]; |
+ } |
+ element_type* get() const { return impl_.get(); } |
+ |
+ // Access to the deleter. |
+ deleter_type& get_deleter() { return impl_.get_deleter(); } |
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
+ |
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
+ // implicitly convertible to a real bool (which is dangerous). |
+ private: |
+ typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable; |
+ |
+ public: |
+ operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } |
+ |
+ // Comparison operators. |
+ // These return whether two scoped_ptr refer to the same object, not just to |
+ // two different but equal objects. |
+ bool operator==(element_type* array) const { return impl_.get() == array; } |
+ bool operator!=(element_type* array) const { return impl_.get() != array; } |
+ |
+ // Swap two scoped pointers. |
+ void swap(scoped_ptr& p2) { |
+ impl_.swap(p2.impl_); |
+ } |
+ |
+ // Release a pointer. |
+ // The return value is the current pointer held by this object. |
+ // If this object holds a NULL pointer, the return value is NULL. |
+ // After this operation, this object will hold a NULL pointer, |
+ // and will not own the object any more. |
+ element_type* release() { |
+ return impl_.release(); |
+ } |
+ |
+ private: |
+ // Force element_type to be a complete type. |
+ enum { type_must_be_complete = sizeof(element_type) }; |
+ |
+ // Actually hold the data. |
+ scoped_ptr_impl<element_type, deleter_type> impl_; |
+ |
+ // Disable initialization from any type other than element_type*, by |
+ // providing a constructor that matches such an initialization, but is |
+ // private and has no definition. This is disabled because it is not safe to |
+ // call delete[] on an array whose static type does not match its dynamic |
+ // type. |
+ template <typename U> explicit scoped_ptr(U* array); |
+ explicit scoped_ptr(int disallow_construction_from_null); |
+ |
+ // Disable reset() from any type other than element_type*, for the same |
+ // reasons as the constructor above. |
+ template <typename U> void reset(U* array); |
+ void reset(int disallow_reset_from_null); |
+ |
+ // Forbid comparison of scoped_ptr types. If U != T, it totally |
+ // doesn't make sense, and if U == T, it still doesn't make sense |
+ // because you should never have the same object owned by two different |
+ // scoped_ptrs. |
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
+}; |
+ |
+// Free functions |
+template <class T, class D> |
+void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { |
+ p1.swap(p2); |
+} |
+ |
+template <class T, class D> |
+bool operator==(T* p1, const scoped_ptr<T, D>& p2) { |
+ return p1 == p2.get(); |
+} |
+ |
+template <class T, class D> |
+bool operator!=(T* p1, const scoped_ptr<T, D>& p2) { |
+ return p1 != p2.get(); |
+} |
+ |
+// A function to convert T* into scoped_ptr<T> |
+// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation |
+// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) |
+template <typename T> |
+scoped_ptr<T> make_scoped_ptr(T* ptr) { |
+ return scoped_ptr<T>(ptr); |
+} |
+ |
+} // namespace addressinput |
+} // namespace i18n |
+ |
+#endif // I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ |