| Index: third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/scoped_ptr.h | 
| diff --git a/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/scoped_ptr.h b/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/scoped_ptr.h | 
| new file mode 100644 | 
| index 0000000000000000000000000000000000000000..fe15fca17e216743e1233bc116f8ce56543ddac4 | 
| --- /dev/null | 
| +++ b/third_party/libaddressinput/chromium/cpp/include/libaddressinput/util/scoped_ptr.h | 
| @@ -0,0 +1,445 @@ | 
| +// Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
| +// Use of this source code is governed by a BSD-style license that can be | 
| +// found in the LICENSE file. | 
| +// | 
| +// The original source code is from: | 
| +// https://code.google.com/p/libphonenumber/source/browse/trunk/cpp/src/phonenumbers/base/memory/scoped_ptr.h?r=621 | 
| + | 
| +#ifndef I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ | 
| +#define I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ | 
| + | 
| +// This is an implementation designed to match the anticipated future TR2 | 
| +// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated). | 
| + | 
| +#include <assert.h> | 
| +#include <stddef.h> | 
| +#include <stdlib.h> | 
| + | 
| +#include <algorithm>  // For std::swap(). | 
| + | 
| +#include <libaddressinput/util/basictypes.h> | 
| +#include <libaddressinput/util/template_util.h> | 
| + | 
| +namespace i18n { | 
| +namespace addressinput { | 
| + | 
| +// Function object which deletes its parameter, which must be a pointer. | 
| +// If C is an array type, invokes 'delete[]' on the parameter; otherwise, | 
| +// invokes 'delete'. The default deleter for scoped_ptr<T>. | 
| +template <class T> | 
| +struct DefaultDeleter { | 
| +  DefaultDeleter() {} | 
| +  template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { | 
| +    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor | 
| +    // if U* is implicitly convertible to T* and U is not an array type. | 
| +    // | 
| +    // Correct implementation should use SFINAE to disable this | 
| +    // constructor. However, since there are no other 1-argument constructors, | 
| +    // using a COMPILE_ASSERT() based on is_convertible<> and requiring | 
| +    // complete types is simpler and will cause compile failures for equivalent | 
| +    // misuses. | 
| +    // | 
| +    // Note, the is_convertible<U*, T*> check also ensures that U is not an | 
| +    // array. T is guaranteed to be a non-array, so any U* where U is an array | 
| +    // cannot convert to T*. | 
| +    enum { T_must_be_complete = sizeof(T) }; | 
| +    enum { U_must_be_complete = sizeof(U) }; | 
| +    COMPILE_ASSERT((is_convertible<U*, T*>::value), | 
| +                   U_ptr_must_implicitly_convert_to_T_ptr); | 
| +  } | 
| +  inline void operator()(T* ptr) const { | 
| +    enum { type_must_be_complete = sizeof(T) }; | 
| +    delete ptr; | 
| +  } | 
| +}; | 
| + | 
| +// Specialization of DefaultDeleter for array types. | 
| +template <class T> | 
| +struct DefaultDeleter<T[]> { | 
| +  inline void operator()(T* ptr) const { | 
| +    enum { type_must_be_complete = sizeof(T) }; | 
| +    delete[] ptr; | 
| +  } | 
| + | 
| + private: | 
| +  // Disable this operator for any U != T because it is undefined to execute | 
| +  // an array delete when the static type of the array mismatches the dynamic | 
| +  // type. | 
| +  // | 
| +  // References: | 
| +  //   C++98 [expr.delete]p3 | 
| +  //   http://cplusplus.github.com/LWG/lwg-defects.html#938 | 
| +  template <typename U> void operator()(U* array) const; | 
| +}; | 
| + | 
| +template <class T, int n> | 
| +struct DefaultDeleter<T[n]> { | 
| +  // Never allow someone to declare something like scoped_ptr<int[10]>. | 
| +  COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type); | 
| +}; | 
| + | 
| +// Function object which invokes 'free' on its parameter, which must be | 
| +// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: | 
| +// | 
| +// scoped_ptr<int, base::FreeDeleter> foo_ptr( | 
| +//     static_cast<int*>(malloc(sizeof(int)))); | 
| +struct FreeDeleter { | 
| +  inline void operator()(void* ptr) const { | 
| +    free(ptr); | 
| +  } | 
| +}; | 
| + | 
| +// Minimal implementation of the core logic of scoped_ptr, suitable for | 
| +// reuse in both scoped_ptr and its specializations. | 
| +template <class T, class D> | 
| +class scoped_ptr_impl { | 
| + public: | 
| +  explicit scoped_ptr_impl(T* p) : data_(p) { } | 
| + | 
| +  // Initializer for deleters that have data parameters. | 
| +  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} | 
| + | 
| +  // Templated constructor that destructively takes the value from another | 
| +  // scoped_ptr_impl. | 
| +  template <typename U, typename V> | 
| +  scoped_ptr_impl(scoped_ptr_impl<U, V>* other) | 
| +      : data_(other->release(), other->get_deleter()) { | 
| +    // We do not support move-only deleters.  We could modify our move | 
| +    // emulation to have base::subtle::move() and base::subtle::forward() | 
| +    // functions that are imperfect emulations of their C++11 equivalents, | 
| +    // but until there's a requirement, just assume deleters are copyable. | 
| +  } | 
| + | 
| +  template <typename U, typename V> | 
| +  void TakeState(scoped_ptr_impl<U, V>* other) { | 
| +    // See comment in templated constructor above regarding lack of support | 
| +    // for move-only deleters. | 
| +    reset(other->release()); | 
| +    get_deleter() = other->get_deleter(); | 
| +  } | 
| + | 
| +  ~scoped_ptr_impl() { | 
| +    if (data_.ptr != NULL) { | 
| +      // Not using get_deleter() saves one function call in non-optimized | 
| +      // builds. | 
| +      static_cast<D&>(data_)(data_.ptr); | 
| +    } | 
| +  } | 
| + | 
| +  void reset(T* p) { | 
| +    // This is a self-reset, which is no longer allowed: http://crbug.com/162971 | 
| +    if (p != NULL && p == data_.ptr) | 
| +      abort(); | 
| + | 
| +    // Note that running data_.ptr = p can lead to undefined behavior if | 
| +    // get_deleter()(get()) deletes this. In order to pevent this, reset() | 
| +    // should update the stored pointer before deleting its old value. | 
| +    // | 
| +    // However, changing reset() to use that behavior may cause current code to | 
| +    // break in unexpected ways. If the destruction of the owned object | 
| +    // dereferences the scoped_ptr when it is destroyed by a call to reset(), | 
| +    // then it will incorrectly dispatch calls to |p| rather than the original | 
| +    // value of |data_.ptr|. | 
| +    // | 
| +    // During the transition period, set the stored pointer to NULL while | 
| +    // deleting the object. Eventually, this safety check will be removed to | 
| +    // prevent the scenario initially described from occuring and | 
| +    // http://crbug.com/176091 can be closed. | 
| +    T* old = data_.ptr; | 
| +    data_.ptr = NULL; | 
| +    if (old != NULL) | 
| +      static_cast<D&>(data_)(old); | 
| +    data_.ptr = p; | 
| +  } | 
| + | 
| +  T* get() const { return data_.ptr; } | 
| + | 
| +  D& get_deleter() { return data_; } | 
| +  const D& get_deleter() const { return data_; } | 
| + | 
| +  void swap(scoped_ptr_impl& p2) { | 
| +    // Standard swap idiom: 'using std::swap' ensures that std::swap is | 
| +    // present in the overload set, but we call swap unqualified so that | 
| +    // any more-specific overloads can be used, if available. | 
| +    using std::swap; | 
| +    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); | 
| +    swap(data_.ptr, p2.data_.ptr); | 
| +  } | 
| + | 
| +  T* release() { | 
| +    T* old_ptr = data_.ptr; | 
| +    data_.ptr = NULL; | 
| +    return old_ptr; | 
| +  } | 
| + | 
| + private: | 
| +  // Needed to allow type-converting constructor. | 
| +  template <typename U, typename V> friend class scoped_ptr_impl; | 
| + | 
| +  // Use the empty base class optimization to allow us to have a D | 
| +  // member, while avoiding any space overhead for it when D is an | 
| +  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good | 
| +  // discussion of this technique. | 
| +  struct Data : public D { | 
| +    explicit Data(T* ptr_in) : ptr(ptr_in) {} | 
| +    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} | 
| +    T* ptr; | 
| +  }; | 
| + | 
| +  Data data_; | 
| + | 
| +  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); | 
| +}; | 
| + | 
| +// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> | 
| +// automatically deletes the pointer it holds (if any). | 
| +// That is, scoped_ptr<T> owns the T object that it points to. | 
| +// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. | 
| +// Also like T*, scoped_ptr<T> is thread-compatible, and once you | 
| +// dereference it, you get the thread safety guarantees of T. | 
| +// | 
| +// The size of scoped_ptr is small. On most compilers, when using the | 
| +// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will | 
| +// increase the size proportional to whatever state they need to have. See | 
| +// comments inside scoped_ptr_impl<> for details. | 
| +// | 
| +// Current implementation targets having a strict subset of  C++11's | 
| +// unique_ptr<> features. Known deficiencies include not supporting move-only | 
| +// deleteres, function pointers as deleters, and deleters with reference | 
| +// types. | 
| +template <class T, class D = DefaultDeleter<T> > | 
| +class scoped_ptr { | 
| + public: | 
| +  // The element and deleter types. | 
| +  typedef T element_type; | 
| +  typedef D deleter_type; | 
| + | 
| +  // Constructor.  Defaults to initializing with NULL. | 
| +  scoped_ptr() : impl_(NULL) { } | 
| + | 
| +  // Constructor.  Takes ownership of p. | 
| +  explicit scoped_ptr(element_type* p) : impl_(p) { } | 
| + | 
| +  // Constructor.  Allows initialization of a stateful deleter. | 
| +  scoped_ptr(element_type* p, const D& d) : impl_(p, d) { } | 
| + | 
| +  // Constructor.  Allows construction from a scoped_ptr rvalue for a | 
| +  // convertible type and deleter. | 
| +  // | 
| +  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct | 
| +  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor | 
| +  // has different post-conditions if D is a reference type. Since this | 
| +  // implementation does not support deleters with reference type, | 
| +  // we do not need a separate move constructor allowing us to avoid one | 
| +  // use of SFINAE. You only need to care about this if you modify the | 
| +  // implementation of scoped_ptr. | 
| +  template <typename U, typename V> | 
| +  scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) { | 
| +    COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array); | 
| +  } | 
| + | 
| +  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible | 
| +  // type and deleter. | 
| +  // | 
| +  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from | 
| +  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated | 
| +  // form has different requirements on for move-only Deleters. Since this | 
| +  // implementation does not support move-only Deleters, we do not need a | 
| +  // separate move assignment operator allowing us to avoid one use of SFINAE. | 
| +  // You only need to care about this if you modify the implementation of | 
| +  // scoped_ptr. | 
| +  template <typename U, typename V> | 
| +  scoped_ptr& operator=(scoped_ptr<U, V> rhs) { | 
| +    COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array); | 
| +    impl_.TakeState(&rhs.impl_); | 
| +    return *this; | 
| +  } | 
| + | 
| +  // Reset.  Deletes the currently owned object, if any. | 
| +  // Then takes ownership of a new object, if given. | 
| +  void reset(element_type* p = NULL) { impl_.reset(p); } | 
| + | 
| +  // Accessors to get the owned object. | 
| +  // operator* and operator-> will assert() if there is no current object. | 
| +  element_type& operator*() const { | 
| +    assert(impl_.get() != NULL); | 
| +    return *impl_.get(); | 
| +  } | 
| +  element_type* operator->() const  { | 
| +    assert(impl_.get() != NULL); | 
| +    return impl_.get(); | 
| +  } | 
| +  element_type* get() const { return impl_.get(); } | 
| + | 
| +  // Access to the deleter. | 
| +  deleter_type& get_deleter() { return impl_.get_deleter(); } | 
| +  const deleter_type& get_deleter() const { return impl_.get_deleter(); } | 
| + | 
| +  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not | 
| +  // implicitly convertible to a real bool (which is dangerous). | 
| + private: | 
| +  typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable; | 
| + | 
| + public: | 
| +  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } | 
| + | 
| +  // Comparison operators. | 
| +  // These return whether two scoped_ptr refer to the same object, not just to | 
| +  // two different but equal objects. | 
| +  bool operator==(const element_type* p) const { return impl_.get() == p; } | 
| +  bool operator!=(const element_type* p) const { return impl_.get() != p; } | 
| + | 
| +  // Swap two scoped pointers. | 
| +  void swap(scoped_ptr& p2) { | 
| +    impl_.swap(p2.impl_); | 
| +  } | 
| + | 
| +  // Release a pointer. | 
| +  // The return value is the current pointer held by this object. | 
| +  // If this object holds a NULL pointer, the return value is NULL. | 
| +  // After this operation, this object will hold a NULL pointer, | 
| +  // and will not own the object any more. | 
| +  element_type* release() { | 
| +    return impl_.release(); | 
| +  } | 
| + | 
| + private: | 
| +  // Needed to reach into |impl_| in the constructor. | 
| +  template <typename U, typename V> friend class scoped_ptr; | 
| +  scoped_ptr_impl<element_type, deleter_type> impl_; | 
| + | 
| +  // Forbid comparison of scoped_ptr types.  If U != T, it totally | 
| +  // doesn't make sense, and if U == T, it still doesn't make sense | 
| +  // because you should never have the same object owned by two different | 
| +  // scoped_ptrs. | 
| +  template <class U> bool operator==(scoped_ptr<U> const& p2) const; | 
| +  template <class U> bool operator!=(scoped_ptr<U> const& p2) const; | 
| +}; | 
| + | 
| +template <class T, class D> | 
| +class scoped_ptr<T[], D> { | 
| + public: | 
| +  // The element and deleter types. | 
| +  typedef T element_type; | 
| +  typedef D deleter_type; | 
| + | 
| +  // Constructor.  Defaults to initializing with NULL. | 
| +  scoped_ptr() : impl_(NULL) { } | 
| + | 
| +  // Constructor. Stores the given array. Note that the argument's type | 
| +  // must exactly match T*. In particular: | 
| +  // - it cannot be a pointer to a type derived from T, because it is | 
| +  //   inherently unsafe in the general case to access an array through a | 
| +  //   pointer whose dynamic type does not match its static type (eg., if | 
| +  //   T and the derived types had different sizes access would be | 
| +  //   incorrectly calculated). Deletion is also always undefined | 
| +  //   (C++98 [expr.delete]p3). If you're doing this, fix your code. | 
| +  // - it cannot be NULL, because NULL is an integral expression, not a | 
| +  //   pointer to T. Use the no-argument version instead of explicitly | 
| +  //   passing NULL. | 
| +  // - it cannot be const-qualified differently from T per unique_ptr spec | 
| +  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting | 
| +  //   to work around this may use implicit_cast<const T*>(). | 
| +  //   However, because of the first bullet in this comment, users MUST | 
| +  //   NOT use implicit_cast<Base*>() to upcast the static type of the array. | 
| +  explicit scoped_ptr(element_type* array) : impl_(array) { } | 
| + | 
| +  // Reset.  Deletes the currently owned array, if any. | 
| +  // Then takes ownership of a new object, if given. | 
| +  void reset(element_type* array = NULL) { impl_.reset(array); } | 
| + | 
| +  // Accessors to get the owned array. | 
| +  element_type& operator[](size_t i) const { | 
| +    assert(impl_.get() != NULL); | 
| +    return impl_.get()[i]; | 
| +  } | 
| +  element_type* get() const { return impl_.get(); } | 
| + | 
| +  // Access to the deleter. | 
| +  deleter_type& get_deleter() { return impl_.get_deleter(); } | 
| +  const deleter_type& get_deleter() const { return impl_.get_deleter(); } | 
| + | 
| +  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not | 
| +  // implicitly convertible to a real bool (which is dangerous). | 
| + private: | 
| +  typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable; | 
| + | 
| + public: | 
| +  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; } | 
| + | 
| +  // Comparison operators. | 
| +  // These return whether two scoped_ptr refer to the same object, not just to | 
| +  // two different but equal objects. | 
| +  bool operator==(element_type* array) const { return impl_.get() == array; } | 
| +  bool operator!=(element_type* array) const { return impl_.get() != array; } | 
| + | 
| +  // Swap two scoped pointers. | 
| +  void swap(scoped_ptr& p2) { | 
| +    impl_.swap(p2.impl_); | 
| +  } | 
| + | 
| +  // Release a pointer. | 
| +  // The return value is the current pointer held by this object. | 
| +  // If this object holds a NULL pointer, the return value is NULL. | 
| +  // After this operation, this object will hold a NULL pointer, | 
| +  // and will not own the object any more. | 
| +  element_type* release() { | 
| +    return impl_.release(); | 
| +  } | 
| + | 
| + private: | 
| +  // Force element_type to be a complete type. | 
| +  enum { type_must_be_complete = sizeof(element_type) }; | 
| + | 
| +  // Actually hold the data. | 
| +  scoped_ptr_impl<element_type, deleter_type> impl_; | 
| + | 
| +  // Disable initialization from any type other than element_type*, by | 
| +  // providing a constructor that matches such an initialization, but is | 
| +  // private and has no definition. This is disabled because it is not safe to | 
| +  // call delete[] on an array whose static type does not match its dynamic | 
| +  // type. | 
| +  template <typename U> explicit scoped_ptr(U* array); | 
| +  explicit scoped_ptr(int disallow_construction_from_null); | 
| + | 
| +  // Disable reset() from any type other than element_type*, for the same | 
| +  // reasons as the constructor above. | 
| +  template <typename U> void reset(U* array); | 
| +  void reset(int disallow_reset_from_null); | 
| + | 
| +  // Forbid comparison of scoped_ptr types.  If U != T, it totally | 
| +  // doesn't make sense, and if U == T, it still doesn't make sense | 
| +  // because you should never have the same object owned by two different | 
| +  // scoped_ptrs. | 
| +  template <class U> bool operator==(scoped_ptr<U> const& p2) const; | 
| +  template <class U> bool operator!=(scoped_ptr<U> const& p2) const; | 
| +}; | 
| + | 
| +// Free functions | 
| +template <class T, class D> | 
| +void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { | 
| +  p1.swap(p2); | 
| +} | 
| + | 
| +template <class T, class D> | 
| +bool operator==(T* p1, const scoped_ptr<T, D>& p2) { | 
| +  return p1 == p2.get(); | 
| +} | 
| + | 
| +template <class T, class D> | 
| +bool operator!=(T* p1, const scoped_ptr<T, D>& p2) { | 
| +  return p1 != p2.get(); | 
| +} | 
| + | 
| +// A function to convert T* into scoped_ptr<T> | 
| +// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation | 
| +// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) | 
| +template <typename T> | 
| +scoped_ptr<T> make_scoped_ptr(T* ptr) { | 
| +  return scoped_ptr<T>(ptr); | 
| +} | 
| + | 
| +}  // namespace addressinput | 
| +}  // namespace i18n | 
| + | 
| +#endif  // I18N_ADDRESSINPUT_UTIL_SCOPED_PTR_H_ | 
|  |