| Index: src/core/SkBlitRow_D32.cpp
|
| diff --git a/src/core/SkBlitRow_D32.cpp b/src/core/SkBlitRow_D32.cpp
|
| index ac01e427bfb760a8fc3d6d77244604fb988ba921..de99894282b8fdd6adaa96db1be3b2966d93ce53 100644
|
| --- a/src/core/SkBlitRow_D32.cpp
|
| +++ b/src/core/SkBlitRow_D32.cpp
|
| @@ -131,37 +131,99 @@ SkBlitRow::Proc32 SkBlitRow::Factory32(unsigned flags) {
|
| return proc;
|
| }
|
|
|
| -SkBlitRow::Proc32 SkBlitRow::ColorProcFactory() {
|
| - SkBlitRow::ColorProc proc = PlatformColorProc();
|
| - if (NULL == proc) {
|
| - proc = Color32;
|
| - }
|
| - SkASSERT(proc);
|
| - return proc;
|
| -}
|
| -
|
| -#define SK_SUPPORT_LEGACY_COLOR32_MATHx
|
| -
|
| -// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
|
| -// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
|
| -// interesting edge cases, and it's quite a bit faster than blend_perfect.
|
| +// Color32 uses the blend_256_round_alt algorithm from tests/BlendTest.cpp.
|
| +// It's not quite perfect, but it's never wrong in the interesting edge cases,
|
| +// and it's quite a bit faster than blend_perfect.
|
| //
|
| // blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
|
| -void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
|
| - const SkPMColor* SK_RESTRICT src,
|
| - int count, SkPMColor color) {
|
| +void SkBlitRow::Color32(SkPMColor dst[], const SkPMColor src[], int count, SkPMColor color) {
|
| switch (SkGetPackedA32(color)) {
|
| case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
|
| case 255: sk_memset32(dst, color, count); return;
|
| }
|
|
|
| unsigned invA = 255 - SkGetPackedA32(color);
|
| -#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
|
| - unsigned round = 0;
|
| -#else // blend_256_round_alt, good
|
| invA += invA >> 7;
|
| + SkASSERT(invA < 256); // We've already handled alpha == 0 above.
|
| +
|
| +#if defined(SK_ARM_HAS_NEON)
|
| + uint16x8_t colorHigh = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
|
| + uint16x8_t colorAndRound = vaddq_u16(colorHigh, vdupq_n_u16(128));
|
| + uint8x8_t invA8 = vdup_n_u8(invA);
|
| +
|
| + // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
|
| + auto kernel = [&](const uint32x4_t& src4) -> uint32x4_t {
|
| + uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA8),
|
| + hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA8);
|
| + return (uint32x4_t)
|
| + vcombine_u8(vaddhn_u16(colorAndRound, lo), vaddhn_u16(colorAndRound, hi));
|
| + };
|
| +
|
| + while (count >= 8) {
|
| + uint32x4_t dst0 = kernel(vld1q_u32(src+0)),
|
| + dst4 = kernel(vld1q_u32(src+4));
|
| + vst1q_u32(dst+0, dst0);
|
| + vst1q_u32(dst+4, dst4);
|
| + src += 8;
|
| + dst += 8;
|
| + count -= 8;
|
| + }
|
| + if (count >= 4) {
|
| + vst1q_u32(dst, kernel(vld1q_u32(src)));
|
| + src += 4;
|
| + dst += 4;
|
| + count -= 4;
|
| + }
|
| + if (count >= 2) {
|
| + uint32x2_t src2 = vld1_u32(src);
|
| + vst1_u32(dst, vget_low_u32(kernel(vcombine_u32(src2, src2))));
|
| + src += 2;
|
| + dst += 2;
|
| + count -= 2;
|
| + }
|
| + if (count >= 1) {
|
| + vst1q_lane_u32(dst, kernel(vdupq_n_u32(*src)), 0);
|
| + }
|
| +
|
| +#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
|
| + __m128i colorHigh = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color));
|
| + __m128i colorAndRound = _mm_add_epi16(colorHigh, _mm_set1_epi16(128));
|
| + __m128i invA16 = _mm_set1_epi16(invA);
|
| +
|
| + // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
|
| + auto kernel = [&](const __m128i& src4) -> __m128i {
|
| + __m128i lo = _mm_mullo_epi16(invA16, _mm_unpacklo_epi8(src4, _mm_setzero_si128())),
|
| + hi = _mm_mullo_epi16(invA16, _mm_unpackhi_epi8(src4, _mm_setzero_si128()));
|
| + return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(colorAndRound, lo), 8),
|
| + _mm_srli_epi16(_mm_add_epi16(colorAndRound, hi), 8));
|
| + };
|
| +
|
| + while (count >= 8) {
|
| + __m128i dst0 = kernel(_mm_loadu_si128((const __m128i*)(src+0))),
|
| + dst4 = kernel(_mm_loadu_si128((const __m128i*)(src+4)));
|
| + _mm_storeu_si128((__m128i*)(dst+0), dst0);
|
| + _mm_storeu_si128((__m128i*)(dst+4), dst4);
|
| + src += 8;
|
| + dst += 8;
|
| + count -= 8;
|
| + }
|
| + if (count >= 4) {
|
| + _mm_storeu_si128((__m128i*)dst, kernel(_mm_loadu_si128((const __m128i*)src)));
|
| + src += 4;
|
| + dst += 4;
|
| + count -= 4;
|
| + }
|
| + if (count >= 2) {
|
| + _mm_storel_epi64((__m128i*)dst, kernel(_mm_loadl_epi64((const __m128i*)src)));
|
| + src += 2;
|
| + dst += 2;
|
| + count -= 2;
|
| + }
|
| + if (count >= 1) {
|
| + *dst = _mm_cvtsi128_si32(kernel(_mm_cvtsi32_si128(*src)));
|
| + }
|
| +#else // Neither NEON nor SSE2.
|
| unsigned round = (128 << 16) + (128 << 0);
|
| -#endif
|
|
|
| while (count --> 0) {
|
| // Our math is 16-bit, so we can do a little bit of SIMD in 32-bit registers.
|
| @@ -172,5 +234,6 @@ void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst,
|
| src++;
|
| dst++;
|
| }
|
| +#endif
|
| }
|
|
|
|
|