| OLD | NEW |
| (Empty) | |
| 1 /* This file is generated automatically by configure */ |
| 2 /* It is valid only for the system type x86_64-unknown-linux-gnu */ |
| 3 |
| 4 #ifndef __BYTEORDER_H |
| 5 #define __BYTEORDER_H |
| 6 |
| 7 /* ntohl and relatives live here */ |
| 8 #include <arpa/inet.h> |
| 9 |
| 10 /* Define generic byte swapping functions */ |
| 11 #include <byteswap.h> |
| 12 #define swap16(x) bswap_16(x) |
| 13 #define swap32(x) bswap_32(x) |
| 14 #define swap64(x) bswap_64(x) |
| 15 |
| 16 /* The byte swapping macros have the form: */ |
| 17 /* EENN[a]toh or htoEENN[a] where EE is be (big endian) or */ |
| 18 /* le (little-endian), NN is 16 or 32 (number of bits) and a, */ |
| 19 /* if present, indicates that the endian side is a pointer to an */ |
| 20 /* array of uint8_t bytes instead of an integer of the specified length. */ |
| 21 /* h refers to the host's ordering method. */ |
| 22 |
| 23 /* So, to convert a 32-bit integer stored in a buffer in little-endian */ |
| 24 /* format into a uint32_t usable on this machine, you could use: */ |
| 25 /* uint32_t value = le32atoh(&buf[3]); */ |
| 26 /* To put that value back into the buffer, you could use: */ |
| 27 /* htole32a(&buf[3], value); */ |
| 28 |
| 29 /* Define aliases for the standard byte swapping macros */ |
| 30 /* Arguments to these macros must be properly aligned on natural word */ |
| 31 /* boundaries in order to work properly on all architectures */ |
| 32 #ifndef htobe16 |
| 33 # define htobe16(x) htons(x) |
| 34 #endif |
| 35 #ifndef htobe32 |
| 36 # define htobe32(x) htonl(x) |
| 37 #endif |
| 38 #ifndef be16toh |
| 39 # define be16toh(x) ntohs(x) |
| 40 #endif |
| 41 #ifndef be32toh |
| 42 # define be32toh(x) ntohl(x) |
| 43 #endif |
| 44 |
| 45 #define HTOBE16(x) (x) = htobe16(x) |
| 46 #define HTOBE32(x) (x) = htobe32(x) |
| 47 #define BE32TOH(x) (x) = be32toh(x) |
| 48 #define BE16TOH(x) (x) = be16toh(x) |
| 49 |
| 50 /* On little endian machines, these macros are null */ |
| 51 #ifndef htole16 |
| 52 # define htole16(x) (x) |
| 53 #endif |
| 54 #ifndef htole32 |
| 55 # define htole32(x) (x) |
| 56 #endif |
| 57 #ifndef htole64 |
| 58 # define htole64(x) (x) |
| 59 #endif |
| 60 #ifndef le16toh |
| 61 # define le16toh(x) (x) |
| 62 #endif |
| 63 #ifndef le32toh |
| 64 # define le32toh(x) (x) |
| 65 #endif |
| 66 #ifndef le64toh |
| 67 # define le64toh(x) (x) |
| 68 #endif |
| 69 |
| 70 #define HTOLE16(x) (void) (x) |
| 71 #define HTOLE32(x) (void) (x) |
| 72 #define HTOLE64(x) (void) (x) |
| 73 #define LE16TOH(x) (void) (x) |
| 74 #define LE32TOH(x) (void) (x) |
| 75 #define LE64TOH(x) (void) (x) |
| 76 |
| 77 /* These don't have standard aliases */ |
| 78 #ifndef htobe64 |
| 79 # define htobe64(x) swap64(x) |
| 80 #endif |
| 81 #ifndef be64toh |
| 82 # define be64toh(x) swap64(x) |
| 83 #endif |
| 84 |
| 85 #define HTOBE64(x) (x) = htobe64(x) |
| 86 #define BE64TOH(x) (x) = be64toh(x) |
| 87 |
| 88 /* Define the C99 standard length-specific integer types */ |
| 89 #include <_stdint.h> |
| 90 |
| 91 /* Here are some macros to create integers from a byte array */ |
| 92 /* These are used to get and put integers from/into a uint8_t array */ |
| 93 /* with a specific endianness. This is the most portable way to generate */ |
| 94 /* and read messages to a network or serial device. Each member of a */ |
| 95 /* packet structure must be handled separately. */ |
| 96 |
| 97 /* Non-optimized but portable macros */ |
| 98 #define be16atoh(x) ((uint16_t)(((x)[0]<<8)|(x)[1])) |
| 99 #define be32atoh(x) ((uint32_t)(((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]
)) |
| 100 #define be64atoh_x(x,off,shift) (((uint64_t)((x)[off]))<<shift) |
| 101 #define be64atoh(x) ((uint64_t)(be64atoh_x(x,0,56)|be64atoh_x(x,1,48)|be64at
oh_x(x,2,40)| \ |
| 102 be64atoh_x(x,3,32)|be64atoh_x(x,4,24)|be64atoh_x(x,5,16)|be64atoh_x(x,6,
8)|((x)[7]))) |
| 103 #define le16atoh(x) ((uint16_t)(((x)[1]<<8)|(x)[0])) |
| 104 #define le32atoh(x) ((uint32_t)(((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0]
)) |
| 105 #define le64atoh_x(x,off,shift) (((uint64_t)(x)[off])<<shift) |
| 106 #define le64atoh(x) ((uint64_t)(le64atoh_x(x,7,56)|le64atoh_x(x,6,48)|le64at
oh_x(x,5,40)| \ |
| 107 le64atoh_x(x,4,32)|le64atoh_x(x,3,24)|le64atoh_x(x,2,16)|le64atoh_x(x,1,
8)|((x)[0]))) |
| 108 |
| 109 #define htobe16a(a,x) (a)[0]=(uint8_t)((x)>>8), (a)[1]=(uint8_t)(x) |
| 110 #define htobe32a(a,x) (a)[0]=(uint8_t)((x)>>24), (a)[1]=(uint8_t)((x)>>16), \ |
| 111 (a)[2]=(uint8_t)((x)>>8), (a)[3]=(uint8_t)(x) |
| 112 #define htobe64a(a,x) (a)[0]=(uint8_t)((x)>>56), (a)[1]=(uint8_t)((x)>>48), \ |
| 113 (a)[2]=(uint8_t)((x)>>40), (a)[3]=(uint8_t)((x)>>32), \ |
| 114 (a)[4]=(uint8_t)((x)>>24), (a)[5]=(uint8_t)((x)>>16), \ |
| 115 (a)[6]=(uint8_t)((x)>>8), (a)[7]=(uint8_t)(x) |
| 116 #define htole16a(a,x) (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) |
| 117 #define htole32a(a,x) (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \ |
| 118 (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) |
| 119 #define htole64a(a,x) (a)[7]=(uint8_t)((x)>>56), (a)[6]=(uint8_t)((x)>>48), \ |
| 120 (a)[5]=(uint8_t)((x)>>40), (a)[4]=(uint8_t)((x)>>32), \ |
| 121 (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \ |
| 122 (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) |
| 123 |
| 124 #endif /*__BYTEORDER_H*/ |
| OLD | NEW |