Index: src/core/SkBlitRow_D32.cpp |
diff --git a/src/core/SkBlitRow_D32.cpp b/src/core/SkBlitRow_D32.cpp |
index 0b9e916e6eebe51a958947d1ac6d44280b1abbf7..ac01e427bfb760a8fc3d6d77244604fb988ba921 100644 |
--- a/src/core/SkBlitRow_D32.cpp |
+++ b/src/core/SkBlitRow_D32.cpp |
@@ -131,99 +131,37 @@ |
return proc; |
} |
-// Color32 uses the blend_256_round_alt algorithm from tests/BlendTest.cpp. |
-// It's not quite perfect, but it's never wrong in the interesting edge cases, |
-// and it's quite a bit faster than blend_perfect. |
+SkBlitRow::Proc32 SkBlitRow::ColorProcFactory() { |
+ SkBlitRow::ColorProc proc = PlatformColorProc(); |
+ if (NULL == proc) { |
+ proc = Color32; |
+ } |
+ SkASSERT(proc); |
+ return proc; |
+} |
+ |
+#define SK_SUPPORT_LEGACY_COLOR32_MATHx |
+ |
+// Color32 and its SIMD specializations use the blend_256_round_alt algorithm |
+// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the |
+// interesting edge cases, and it's quite a bit faster than blend_perfect. |
// |
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one. |
-void SkBlitRow::Color32(SkPMColor dst[], const SkPMColor src[], int count, SkPMColor color) { |
+void SkBlitRow::Color32(SkPMColor* SK_RESTRICT dst, |
+ const SkPMColor* SK_RESTRICT src, |
+ int count, SkPMColor color) { |
switch (SkGetPackedA32(color)) { |
case 0: memmove(dst, src, count * sizeof(SkPMColor)); return; |
case 255: sk_memset32(dst, color, count); return; |
} |
unsigned invA = 255 - SkGetPackedA32(color); |
+#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted |
+ unsigned round = 0; |
+#else // blend_256_round_alt, good |
invA += invA >> 7; |
- SkASSERT(invA < 256); // We've already handled alpha == 0 above. |
- |
-#if defined(SK_ARM_HAS_NEON) |
- uint16x8_t colorHigh = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8); |
- uint16x8_t colorAndRound = vaddq_u16(colorHigh, vdupq_n_u16(128)); |
- uint8x8_t invA8 = vdup_n_u8(invA); |
- |
- // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels. |
- auto kernel = [&](const uint32x4_t& src4) -> uint32x4_t { |
- uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA8), |
- hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA8); |
- return (uint32x4_t) |
- vcombine_u8(vaddhn_u16(colorAndRound, lo), vaddhn_u16(colorAndRound, hi)); |
- }; |
- |
- while (count >= 8) { |
- uint32x4_t dst0 = kernel(vld1q_u32(src+0)), |
- dst4 = kernel(vld1q_u32(src+4)); |
- vst1q_u32(dst+0, dst0); |
- vst1q_u32(dst+4, dst4); |
- src += 8; |
- dst += 8; |
- count -= 8; |
- } |
- if (count >= 4) { |
- vst1q_u32(dst, kernel(vld1q_u32(src))); |
- src += 4; |
- dst += 4; |
- count -= 4; |
- } |
- if (count >= 2) { |
- uint32x2_t src2 = vld1_u32(src); |
- vst1_u32(dst, vget_low_u32(kernel(vcombine_u32(src2, src2)))); |
- src += 2; |
- dst += 2; |
- count -= 2; |
- } |
- if (count >= 1) { |
- vst1q_lane_u32(dst, kernel(vdupq_n_u32(*src)), 0); |
- } |
- |
-#elif SK_CPU_SSE_LEVEL >= SK_CPU_LEVEL_SSE2 |
- __m128i colorHigh = _mm_unpacklo_epi8(_mm_setzero_si128(), _mm_set1_epi32(color)); |
- __m128i colorAndRound = _mm_add_epi16(colorHigh, _mm_set1_epi16(128)); |
- __m128i invA16 = _mm_set1_epi16(invA); |
- |
- // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels. |
- auto kernel = [&](const __m128i& src4) -> __m128i { |
- __m128i lo = _mm_mullo_epi16(invA16, _mm_unpacklo_epi8(src4, _mm_setzero_si128())), |
- hi = _mm_mullo_epi16(invA16, _mm_unpackhi_epi8(src4, _mm_setzero_si128())); |
- return _mm_packus_epi16(_mm_srli_epi16(_mm_add_epi16(colorAndRound, lo), 8), |
- _mm_srli_epi16(_mm_add_epi16(colorAndRound, hi), 8)); |
- }; |
- |
- while (count >= 8) { |
- __m128i dst0 = kernel(_mm_loadu_si128((const __m128i*)(src+0))), |
- dst4 = kernel(_mm_loadu_si128((const __m128i*)(src+4))); |
- _mm_storeu_si128((__m128i*)(dst+0), dst0); |
- _mm_storeu_si128((__m128i*)(dst+4), dst4); |
- src += 8; |
- dst += 8; |
- count -= 8; |
- } |
- if (count >= 4) { |
- _mm_storeu_si128((__m128i*)dst, kernel(_mm_loadu_si128((const __m128i*)src))); |
- src += 4; |
- dst += 4; |
- count -= 4; |
- } |
- if (count >= 2) { |
- _mm_storel_epi64((__m128i*)dst, kernel(_mm_loadl_epi64((const __m128i*)src))); |
- src += 2; |
- dst += 2; |
- count -= 2; |
- } |
- if (count >= 1) { |
- *dst = _mm_cvtsi128_si32(kernel(_mm_cvtsi32_si128(*src))); |
- } |
-#else // Neither NEON nor SSE2. |
unsigned round = (128 << 16) + (128 << 0); |
+#endif |
while (count --> 0) { |
// Our math is 16-bit, so we can do a little bit of SIMD in 32-bit registers. |
@@ -234,6 +172,5 @@ |
src++; |
dst++; |
} |
-#endif |
} |