| Index: tools/perf/metrics/timeline.py
|
| diff --git a/tools/perf/metrics/timeline.py b/tools/perf/metrics/timeline.py
|
| index 1a1ca25e219edde5f445920118c05da1725b3db6..bdfcbcf99d678b40008a2d4564a8bc2f086629c3 100644
|
| --- a/tools/perf/metrics/timeline.py
|
| +++ b/tools/perf/metrics/timeline.py
|
| @@ -127,23 +127,13 @@ def ThreadCategoryName(thread_name):
|
| thread_category = TimelineThreadCategories[thread_name]
|
| return thread_category
|
|
|
| -def ThreadCpuTimeResultName(thread_category):
|
| - # This isn't a good name, but I don't want to change it and lose continuity.
|
| - return "thread_" + thread_category + "_cpu_time_per_frame"
|
| -
|
| -def ThreadTasksResultName(thread_category):
|
| - return "tasks_per_frame_" + thread_category
|
| -
|
| -def ThreadMeanFrameTimeResultName(thread_category):
|
| - return "mean_frame_time_" + thread_category
|
| -
|
| def ThreadDetailResultName(thread_category, detail):
|
| detail_sanitized = detail.replace('.','_')
|
| return "thread_" + thread_category + "|" + detail_sanitized
|
|
|
|
|
| class ResultsForThread(object):
|
| - def __init__(self, model, record_ranges, name):
|
| + def __init__(self, model, record_ranges, name, measure_per_frame):
|
| self.model = model
|
| self.toplevel_slices = []
|
| self.all_slices = []
|
| @@ -151,6 +141,7 @@ class ResultsForThread(object):
|
| self.record_ranges = record_ranges
|
| self.all_action_time = \
|
| sum([record_range.bounds for record_range in self.record_ranges])
|
| + self.measure_per_frame = measure_per_frame
|
|
|
| @property
|
| def clock_time(self):
|
| @@ -191,25 +182,28 @@ class ResultsForThread(object):
|
| # Currently we report cpu-time per frame, tasks per frame, and possibly
|
| # the mean frame (if there is a trace specified to find it).
|
| def AddResults(self, num_frames, results):
|
| - cpu_per_frame = Rate(self.cpu_time, num_frames)
|
| - tasks_per_frame = Rate(len(self.toplevel_slices), num_frames)
|
| + num_intervals = num_frames if self.measure_per_frame else 1
|
| + cpu_per_interval = Rate(self.cpu_time, num_intervals)
|
| + tasks_per_interval = Rate(len(self.toplevel_slices), num_intervals)
|
| results.AddValue(scalar.ScalarValue(
|
| - results.current_page, ThreadCpuTimeResultName(self.name),
|
| - 'ms', cpu_per_frame))
|
| + results.current_page,
|
| + self.ThreadCpuTimeResultName(self.name), 'ms', cpu_per_interval))
|
| results.AddValue(scalar.ScalarValue(
|
| - results.current_page, ThreadTasksResultName(self.name),
|
| - 'tasks', tasks_per_frame))
|
| + results.current_page, self.ThreadTasksResultName(self.name),
|
| + 'tasks', tasks_per_interval))
|
| # Report mean frame time if this is the thread we are using for normalizing
|
| # other results. We could report other frame rates (eg. renderer_main) but
|
| # this might get confusing.
|
| if self.name == FrameTraceThreadName:
|
| - num_frames = self.CountTracesWithName(FrameTraceName)
|
| - mean_frame_time = Rate(self.all_action_time, num_frames)
|
| + num_intervals = self.CountTracesWithName(FrameTraceName) \
|
| + if self.measure_per_frame else 1
|
| + frame_time = Rate(self.all_action_time, num_intervals)
|
| results.AddValue(scalar.ScalarValue(
|
| - results.current_page, ThreadMeanFrameTimeResultName(self.name),
|
| - 'ms', mean_frame_time))
|
| + results.current_page, self.ThreadFrameTimeResultName(self.name),
|
| + 'ms', frame_time))
|
|
|
| def AddDetailedResults(self, num_frames, results):
|
| + num_intervals = num_frames if self.measure_per_frame else 1
|
| slices_by_category = collections.defaultdict(list)
|
| for s in self.all_slices:
|
| slices_by_category[s.category].append(s)
|
| @@ -217,13 +211,15 @@ class ResultsForThread(object):
|
| for category, slices_in_category in slices_by_category.iteritems():
|
| self_time = sum([x.self_time for x in slices_in_category])
|
| all_self_times.append(self_time)
|
| - self_time_result = (float(self_time) / num_frames) if num_frames else 0
|
| + self_time_result = \
|
| + (float(self_time) / num_intervals) if num_intervals else 0
|
| results.AddValue(scalar.ScalarValue(
|
| results.current_page, ThreadDetailResultName(self.name, category),
|
| 'ms', self_time_result))
|
| all_measured_time = sum(all_self_times)
|
| idle_time = max(0, self.all_action_time - all_measured_time)
|
| - idle_time_result = (float(idle_time) / num_frames) if num_frames else 0
|
| + idle_time_result = \
|
| + (float(idle_time) / num_intervals) if num_intervals else 0
|
| results.AddValue(scalar.ScalarValue(
|
| results.current_page, ThreadDetailResultName(self.name, "idle"),
|
| 'ms', idle_time_result))
|
| @@ -235,19 +231,38 @@ class ResultsForThread(object):
|
| count += 1
|
| return count
|
|
|
| + def ThreadCpuTimeResultName(self, thread_category):
|
| + # This isn't a good name, but I don't want to change it and lose continuity.
|
| + if self.measure_per_frame:
|
| + return "thread_" + thread_category + "_cpu_time_per_frame"
|
| + return "thread_" + thread_category + "_cpu_time_total"
|
| +
|
| + def ThreadTasksResultName(self, thread_category):
|
| + if self.measure_per_frame:
|
| + return "tasks_per_frame_" + thread_category
|
| + return "tasks_" + thread_category
|
| +
|
| + def ThreadFrameTimeResultName(self, thread_category):
|
| + if self.measure_per_frame:
|
| + return "mean_frame_time_" + thread_category
|
| + return "total_frame_time_" + thread_category
|
| +
|
| +
|
| class ThreadTimesTimelineMetric(timeline_based_metric.TimelineBasedMetric):
|
| - def __init__(self):
|
| + def __init__(self, measure_per_frame=True):
|
| super(ThreadTimesTimelineMetric, self).__init__()
|
| # Minimal traces, for minimum noise in CPU-time measurements.
|
| self.results_to_report = AllThreads
|
| self.details_to_report = NoThreads
|
| + self.measure_per_frame = measure_per_frame
|
|
|
| def AddResults(self, model, _, interaction_records, results):
|
| # Set up each thread category for consistant results.
|
| thread_category_results = {}
|
| for name in TimelineThreadCategories.values():
|
| thread_category_results[name] = ResultsForThread(
|
| - model, [r.GetBounds() for r in interaction_records], name)
|
| + model, [r.GetBounds() for r in interaction_records], name,
|
| + self.measure_per_frame)
|
|
|
| # Group the slices by their thread category.
|
| for thread in model.GetAllThreads():
|
|
|