| Index: cc/resources/texture_compressor_etc1_sse.cc
|
| diff --git a/cc/resources/texture_compressor_etc1_sse.cc b/cc/resources/texture_compressor_etc1_sse.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..cf600ed0e178e1ac771deb347d4af8e16f7fac33
|
| --- /dev/null
|
| +++ b/cc/resources/texture_compressor_etc1_sse.cc
|
| @@ -0,0 +1,1025 @@
|
| +// Copyright 2015 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "texture_compressor_etc1_sse.h"
|
| +
|
| +#include <assert.h>
|
| +#include <emmintrin.h>
|
| +#include <stdio.h>
|
| +#include <stdlib.h>
|
| +#include <string.h>
|
| +#include <time.h>
|
| +#include <unistd.h>
|
| +
|
| +#include <cmath>
|
| +#include <limits>
|
| +#include <sstream>
|
| +
|
| +#include "base/compiler_specific.h"
|
| +#include "base/logging.h"
|
| +
|
| +// Defining the following macro will cause the error metric function to weigh
|
| +// each color channel differently depending on how the human eye can perceive
|
| +// them. This can give a slight improvement in image quality at the cost of a
|
| +// performance hit.
|
| +// #define USE_PERCEIVED_ERROR_METRIC
|
| +
|
| +namespace {
|
| +
|
| +template <typename T>
|
| +inline T clamp(T val, T min, T max) {
|
| + return val < min ? min : (val > max ? max : val);
|
| +}
|
| +
|
| +inline uint8_t round_to_5_bits(float val) {
|
| + return clamp<uint8_t>(val * 31.0f / 255.0f + 0.5f, 0, 31);
|
| +}
|
| +
|
| +inline uint8_t round_to_4_bits(float val) {
|
| + return clamp<uint8_t>(val * 15.0f / 255.0f + 0.5f, 0, 15);
|
| +}
|
| +
|
| +union Color {
|
| + struct BgraColorType {
|
| + uint8_t b;
|
| + uint8_t g;
|
| + uint8_t r;
|
| + uint8_t a;
|
| + } channels;
|
| + uint8_t components[4];
|
| + uint32_t bits;
|
| +};
|
| +
|
| +/*
|
| + * Codeword tables.
|
| + * See: Table 3.17.2
|
| + */
|
| +static const int16_t g_codeword_tables[8][4]
|
| + __attribute__((aligned(16))) = {{-8, -2, 2, 8},
|
| + {-17, -5, 5, 17},
|
| + {-29, -9, 9, 29},
|
| + {-42, -13, 13, 42},
|
| + {-60, -18, 18, 60},
|
| + {-80, -24, 24, 80},
|
| + {-106, -33, 33, 106},
|
| + {-183, -47, 47, 183}};
|
| +
|
| +/*
|
| + * Maps modifier indices to pixel index values.
|
| + * See: Table 3.17.3
|
| + */
|
| +static const uint8_t g_mod_to_pix[4] = {3, 2, 0, 1};
|
| +
|
| +/*
|
| + * The ETC1 specification index texels as follows:
|
| + *
|
| + * [a][e][i][m] [ 0][ 4][ 8][12]
|
| + * [b][f][j][n] <-> [ 1][ 5][ 9][13]
|
| + * [c][g][k][o] [ 2][ 6][10][14]
|
| + * [d][h][l][p] [ 3][ 7][11][15]
|
| + *
|
| + * However, when extracting sub blocks from BGRA data the natural array
|
| + * indexing order ends up different:
|
| + *
|
| + * vertical0: [a][e][b][f] horizontal0: [a][e][i][m]
|
| + * [c][g][d][h] [b][f][j][n]
|
| + * vertical1: [i][m][j][n] horizontal1: [c][g][k][o]
|
| + * [k][o][l][p] [d][h][l][p]
|
| + *
|
| + * In order to translate from the natural array indices in a sub block to the
|
| + * indices (number) used by specification and hardware we use this table.
|
| + */
|
| +static const uint8_t g_idx_to_num[4][8] = {
|
| + {0, 4, 1, 5, 2, 6, 3, 7}, // Vertical block 0.
|
| + {8, 12, 9, 13, 10, 14, 11, 15}, // Vertical block 1.
|
| + {0, 4, 8, 12, 1, 5, 9, 13}, // Horizontal block 0.
|
| + {2, 6, 10, 14, 3, 7, 11, 15} // Horizontal block 1.
|
| +};
|
| +
|
| +inline void WriteColors444(uint8_t* block,
|
| + const Color& color0,
|
| + const Color& color1) {
|
| + /* 0, 1, 2 - for ARM */
|
| + block[2] = (color0.channels.r & 0xf0) | (color1.channels.r >> 4);
|
| + block[1] = (color0.channels.g & 0xf0) | (color1.channels.g >> 4);
|
| + block[0] = (color0.channels.b & 0xf0) | (color1.channels.b >> 4);
|
| +}
|
| +
|
| +inline void WriteColors555(uint8_t* block,
|
| + const Color& color0,
|
| + const Color& color1) {
|
| + // Table for conversion to 3-bit two complement format.
|
| + static const uint8_t two_compl_trans_table[8] = {
|
| + 4, // -4 (100b)
|
| + 5, // -3 (101b)
|
| + 6, // -2 (110b)
|
| + 7, // -1 (111b)
|
| + 0, // 0 (000b)
|
| + 1, // 1 (001b)
|
| + 2, // 2 (010b)
|
| + 3, // 3 (011b)
|
| + };
|
| +
|
| + int16_t delta_r =
|
| + static_cast<int16_t>(color1.channels.r >> 3) - (color0.channels.r >> 3);
|
| + int16_t delta_g =
|
| + static_cast<int16_t>(color1.channels.g >> 3) - (color0.channels.g >> 3);
|
| + int16_t delta_b =
|
| + static_cast<int16_t>(color1.channels.b >> 3) - (color0.channels.b >> 3);
|
| + DCHECK(delta_r >= -4 && delta_r <= 3);
|
| + DCHECK(delta_g >= -4 && delta_g <= 3);
|
| + DCHECK(delta_b >= -4 && delta_b <= 3);
|
| +
|
| + /* 0, 1, 2 - for ARM */
|
| + block[2] = (color0.channels.r & 0xf8) | two_compl_trans_table[delta_r + 4];
|
| + block[1] = (color0.channels.g & 0xf8) | two_compl_trans_table[delta_g + 4];
|
| + block[0] = (color0.channels.b & 0xf8) | two_compl_trans_table[delta_b + 4];
|
| +}
|
| +
|
| +inline void WriteCodewordTable(uint8_t* block,
|
| + uint8_t sub_block_id,
|
| + uint8_t table) {
|
| + DCHECK_LT(sub_block_id, 2);
|
| + DCHECK_LT(table, 8);
|
| +
|
| + uint8_t shift = (2 + (3 - sub_block_id * 3));
|
| + block[3] &= ~(0x07 << shift);
|
| + block[3] |= table << shift;
|
| +}
|
| +
|
| +inline void WritePixelData(uint8_t* block, uint32_t pixel_data) {
|
| + block[4] |= pixel_data >> 24;
|
| + block[5] |= (pixel_data >> 16) & 0xff;
|
| + block[6] |= (pixel_data >> 8) & 0xff;
|
| + block[7] |= pixel_data & 0xff;
|
| +}
|
| +
|
| +inline void WriteFlip(uint8_t* block, bool flip) {
|
| + block[3] &= ~0x01;
|
| + block[3] |= static_cast<uint8_t>(flip);
|
| +}
|
| +
|
| +inline void WriteDiff(uint8_t* block, bool diff) {
|
| + block[3] &= ~0x02;
|
| + block[3] |= static_cast<uint8_t>(diff) << 1;
|
| +}
|
| +
|
| +/**
|
| + * Compress and rounds BGR888 into BGR444. The resulting BGR444 color is
|
| + * expanded to BGR888 as it would be in hardware after decompression. The
|
| + * actual 444-bit data is available in the four most significant bits of each
|
| + * channel.
|
| + */
|
| +inline Color MakeColor444(const float* bgr) {
|
| + uint8_t b4 = round_to_4_bits(bgr[0]);
|
| + uint8_t g4 = round_to_4_bits(bgr[1]);
|
| + uint8_t r4 = round_to_4_bits(bgr[2]);
|
| + Color bgr444;
|
| + bgr444.channels.b = (b4 << 4) | b4;
|
| + bgr444.channels.g = (g4 << 4) | g4;
|
| + bgr444.channels.r = (r4 << 4) | r4;
|
| + bgr444.channels.a = 0x44; /* added by Radu */
|
| + return bgr444;
|
| +}
|
| +
|
| +/**
|
| + * Compress and rounds BGR888 into BGR555. The resulting BGR555 color is
|
| + * expanded to BGR888 as it would be in hardware after decompression. The
|
| + * actual 555-bit data is available in the five most significant bits of each
|
| + * channel.
|
| + */
|
| +inline Color MakeColor555(const float* bgr) {
|
| + uint8_t b5 = round_to_5_bits(bgr[0]);
|
| + uint8_t g5 = round_to_5_bits(bgr[1]);
|
| + uint8_t r5 = round_to_5_bits(bgr[2]);
|
| + Color bgr555;
|
| + bgr555.channels.b = (b5 << 3) | (b5 >> 2);
|
| + bgr555.channels.g = (g5 << 3) | (g5 >> 2);
|
| + bgr555.channels.r = (r5 << 3) | (r5 >> 2);
|
| + bgr555.channels.a = 0x55; /* added by Radu */
|
| + return bgr555;
|
| +}
|
| +
|
| +/**
|
| + * Constructs a color from a given base color and luminance value.
|
| + */
|
| +inline Color MakeColor(const Color& base, int16_t lum) {
|
| + int b = static_cast<int>(base.channels.b) + lum;
|
| + int g = static_cast<int>(base.channels.g) + lum;
|
| + int r = static_cast<int>(base.channels.r) + lum;
|
| + Color color;
|
| + color.channels.b = static_cast<uint8_t>(clamp(b, 0, 255));
|
| + color.channels.g = static_cast<uint8_t>(clamp(g, 0, 255));
|
| + color.channels.r = static_cast<uint8_t>(clamp(r, 0, 255));
|
| + return color;
|
| +}
|
| +
|
| +/**
|
| + * Calculates the error metric for two colors. A small error signals that the
|
| + * colors are similar to each other, a large error the signals the opposite.
|
| + */
|
| +inline uint32_t GetColorError(const Color& u, const Color& v) {
|
| +#ifdef USE_PERCEIVED_ERROR_METRIC
|
| + float delta_b = static_cast<float>(u.channels.b) - v.channels.b;
|
| + float delta_g = static_cast<float>(u.channels.g) - v.channels.g;
|
| + float delta_r = static_cast<float>(u.channels.r) - v.channels.r;
|
| + return static_cast<uint32_t>(0.299f * delta_b * delta_b +
|
| + 0.587f * delta_g * delta_g +
|
| + 0.114f * delta_r * delta_r);
|
| +#else
|
| + int delta_b = static_cast<int>(u.channels.b) - v.channels.b;
|
| + int delta_g = static_cast<int>(u.channels.g) - v.channels.g;
|
| + int delta_r = static_cast<int>(u.channels.r) - v.channels.r;
|
| + return delta_b * delta_b + delta_g * delta_g + delta_r * delta_r;
|
| +#endif
|
| +}
|
| +
|
| +/**************** START OF SSE CODE ******/
|
| +
|
| +struct __sse_data {
|
| + /* raw data */
|
| + uint8_t* block;
|
| + /* 8 bit packed values */
|
| + __m128i* packed;
|
| + /* 32 bit zero extended values - 4x4 arrays */
|
| + __m128i* blue;
|
| + __m128i* green;
|
| + __m128i* red;
|
| + // __m128i *alpha;
|
| +};
|
| +
|
| +/* commonly used registers */
|
| +static const __m128i __sse_zero = _mm_set1_epi32(0);
|
| +static const __m128i __sse_max_int = _mm_set1_epi32(0x7FFFFFFF);
|
| +
|
| +inline __m128i AddAndClamp(const __m128i x, const __m128i y) {
|
| + static const __m128i color_max = _mm_set1_epi32(0xFF);
|
| + return _mm_max_epi16(__sse_zero,
|
| + _mm_min_epi16(_mm_add_epi32(x, y), color_max));
|
| +}
|
| +
|
| +inline __m128i GetColorErrorSSE(const __m128i x, const __m128i y) {
|
| + /* changed from _mm_mullo_epi32 to _mm_mullo_epi16 */
|
| + __m128i ret = _mm_sub_epi16(x, y);
|
| + return _mm_mullo_epi16(ret, ret);
|
| +}
|
| +
|
| +inline __m128i AddChannelError(const __m128i x,
|
| + const __m128i y,
|
| + const __m128i z) {
|
| + return _mm_add_epi32(x, _mm_add_epi32(y, z));
|
| +}
|
| +
|
| +inline uint32_t GetVerticalError(const __sse_data* data,
|
| + const __m128i* blue_avg,
|
| + const __m128i* green_avg,
|
| + const __m128i* red_avg) {
|
| + __m128i error = __sse_zero;
|
| +
|
| +#pragma unroll
|
| + for (int i = 0; i < 4; i++) {
|
| + error = _mm_add_epi32(error, GetColorErrorSSE(data->blue[i], blue_avg[0]));
|
| + error =
|
| + _mm_add_epi32(error, GetColorErrorSSE(data->green[i], green_avg[0]));
|
| + error = _mm_add_epi32(error, GetColorErrorSSE(data->red[i], red_avg[0]));
|
| + }
|
| +
|
| + error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E));
|
| + error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0xB1));
|
| +
|
| + return _mm_cvtsi128_si32(error);
|
| +}
|
| +
|
| +inline uint32_t GetHorizontalError(const __sse_data* data,
|
| + const __m128i* blue_avg,
|
| + const __m128i* green_avg,
|
| + const __m128i* red_avg) {
|
| + __m128i error = __sse_zero;
|
| + int first_index, second_index;
|
| +
|
| +#pragma unroll
|
| + for (int i = 0; i < 2; i++) {
|
| + first_index = 2 * i;
|
| + second_index = first_index + 1;
|
| +
|
| + error = _mm_add_epi32(
|
| + error, GetColorErrorSSE(data->blue[first_index], blue_avg[i]));
|
| + error = _mm_add_epi32(
|
| + error, GetColorErrorSSE(data->blue[second_index], blue_avg[i]));
|
| + error = _mm_add_epi32(
|
| + error, GetColorErrorSSE(data->green[first_index], green_avg[i]));
|
| + error = _mm_add_epi32(
|
| + error, GetColorErrorSSE(data->green[second_index], green_avg[i]));
|
| + error = _mm_add_epi32(error,
|
| + GetColorErrorSSE(data->red[first_index], red_avg[i]));
|
| + error = _mm_add_epi32(
|
| + error, GetColorErrorSSE(data->red[second_index], red_avg[i]));
|
| + }
|
| +
|
| + error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E));
|
| + error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0xB1));
|
| + return _mm_cvtsi128_si32(error);
|
| +}
|
| +
|
| +inline void GetAvgColors(const __sse_data* data,
|
| + float* output,
|
| + bool* __sse_use_diff) {
|
| + __m128i sum[2], tmp;
|
| +
|
| + // TODO(radu.velea): _mm_avg_epu8 on packed data maybe
|
| +
|
| + /* get avg red */
|
| + /* [S0 S0 S1 S1] */
|
| + sum[0] = _mm_add_epi32(data->red[0], data->red[1]);
|
| + sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
|
| +
|
| + /* [S2 S2 S3 S3] */
|
| + sum[1] = _mm_add_epi32(data->red[2], data->red[3]);
|
| + sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
|
| +
|
| + float hred[2], vred[2];
|
| + hred[0] = (_mm_cvtsi128_si32(
|
| + _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
|
| + 8.0f;
|
| + hred[1] = (_mm_cvtsi128_si32(
|
| + _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
|
| + 8.0f;
|
| +
|
| + tmp = _mm_add_epi32(sum[0], sum[1]);
|
| + vred[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
|
| + vred[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
|
| +
|
| + /* get avg green */
|
| + /* [S0 S0 S1 S1] */
|
| + sum[0] = _mm_add_epi32(data->green[0], data->green[1]);
|
| + sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
|
| +
|
| + /* [S2 S2 S3 S3] */
|
| + sum[1] = _mm_add_epi32(data->green[2], data->green[3]);
|
| + sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
|
| +
|
| + float hgreen[2], vgreen[2];
|
| + hgreen[0] = (_mm_cvtsi128_si32(
|
| + _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
|
| + 8.0f;
|
| + hgreen[1] = (_mm_cvtsi128_si32(
|
| + _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
|
| + 8.0f;
|
| +
|
| + tmp = _mm_add_epi32(sum[0], sum[1]);
|
| + vgreen[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
|
| + vgreen[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
|
| +
|
| + /* get avg blue */
|
| + /* [S0 S0 S1 S1] */
|
| + sum[0] = _mm_add_epi32(data->blue[0], data->blue[1]);
|
| + sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
|
| +
|
| + /* [S2 S2 S3 S3] */
|
| + sum[1] = _mm_add_epi32(data->blue[2], data->blue[3]);
|
| + sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
|
| +
|
| + float hblue[2], vblue[2];
|
| + hblue[0] = (_mm_cvtsi128_si32(
|
| + _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
|
| + 8.0f;
|
| + hblue[1] = (_mm_cvtsi128_si32(
|
| + _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
|
| + 8.0f;
|
| +
|
| + tmp = _mm_add_epi32(sum[0], sum[1]);
|
| + vblue[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
|
| + vblue[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
|
| +
|
| + /* TODO(radu.velea): return int's instead of floats */
|
| + output[0] = vblue[0];
|
| + output[1] = vgreen[0];
|
| + output[2] = vred[0];
|
| +
|
| + output[3] = vblue[1];
|
| + output[4] = vgreen[1];
|
| + output[5] = vred[1];
|
| +
|
| + output[6] = hblue[0];
|
| + output[7] = hgreen[0];
|
| + output[8] = hred[0];
|
| +
|
| + output[9] = hblue[1];
|
| + output[10] = hgreen[1];
|
| + output[11] = hred[1];
|
| +
|
| + __m128i threashhold_upper = _mm_set1_epi32(3);
|
| + __m128i threashhold_lower = _mm_set1_epi32(-4);
|
| +
|
| + __m128 factor_v = _mm_set1_ps(31.0f / 255.0f);
|
| + __m128 rounding_v = _mm_set1_ps(0.5f);
|
| + __m128 h_avg_0 = _mm_set_ps(hblue[0], hgreen[0], hred[0], 0);
|
| + __m128 h_avg_1 = _mm_set_ps(hblue[1], hgreen[1], hred[1], 0);
|
| +
|
| + __m128 v_avg_0 = _mm_set_ps(vblue[0], vgreen[0], vred[0], 0);
|
| + __m128 v_avg_1 = _mm_set_ps(vblue[1], vgreen[1], vred[1], 0);
|
| +
|
| + h_avg_0 = _mm_mul_ps(h_avg_0, factor_v);
|
| + h_avg_1 = _mm_mul_ps(h_avg_1, factor_v);
|
| + v_avg_0 = _mm_mul_ps(v_avg_0, factor_v);
|
| + v_avg_1 = _mm_mul_ps(v_avg_1, factor_v);
|
| +
|
| + h_avg_0 = _mm_add_ps(h_avg_0, rounding_v);
|
| + h_avg_1 = _mm_add_ps(h_avg_1, rounding_v);
|
| + v_avg_0 = _mm_add_ps(v_avg_0, rounding_v);
|
| + v_avg_1 = _mm_add_ps(v_avg_1, rounding_v);
|
| +
|
| + __m128i h_avg_0i = _mm_cvttps_epi32(h_avg_0);
|
| + __m128i h_avg_1i = _mm_cvttps_epi32(h_avg_1);
|
| +
|
| + __m128i v_avg_0i = _mm_cvttps_epi32(v_avg_0);
|
| + __m128i v_avg_1i = _mm_cvttps_epi32(v_avg_1);
|
| +
|
| + h_avg_0i = _mm_sub_epi32(h_avg_1i, h_avg_0i);
|
| + v_avg_0i = _mm_sub_epi32(v_avg_1i, v_avg_0i);
|
| +
|
| + __sse_use_diff[0] =
|
| + (0 == _mm_movemask_epi8(_mm_cmplt_epi32(v_avg_0i, threashhold_lower)));
|
| + __sse_use_diff[0] &=
|
| + (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(v_avg_0i, threashhold_upper)));
|
| +
|
| + __sse_use_diff[1] =
|
| + (0 == _mm_movemask_epi8(_mm_cmplt_epi32(h_avg_0i, threashhold_lower)));
|
| + __sse_use_diff[1] &=
|
| + (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(h_avg_0i, threashhold_upper)));
|
| +}
|
| +
|
| +void ComputeLuminanceSSE(uint8_t* block,
|
| + const Color& base,
|
| + const int sub_block_id,
|
| + const uint8_t* idx_to_num_tab,
|
| + const __sse_data* data) {
|
| + uint8_t my_best_tbl_idx = 0;
|
| + uint32_t my_best_error = 0x7FFFFFFF;
|
| + uint8_t my_best_mod_idx[8][8]; // [table][texel]
|
| +
|
| + const __m128i base_blue = _mm_set1_epi32(base.channels.b);
|
| + const __m128i base_green = _mm_set1_epi32(base.channels.g);
|
| + const __m128i base_red = _mm_set1_epi32(base.channels.r);
|
| +
|
| + __m128i test_red, test_blue, test_green, tmp, tmp_blue, tmp_green, tmp_red;
|
| + __m128i block_error, mask;
|
| +
|
| + /* this will have the minimum errors for each 4 pixels */
|
| + __m128i first_half_min;
|
| + __m128i second_half_min;
|
| +
|
| + /* this will have the matching table index combo for each 4 pixels */
|
| + __m128i first_half_pattern;
|
| + __m128i second_half_pattern;
|
| +
|
| + const __m128i first_blue_data_block = data->blue[2 * sub_block_id];
|
| + const __m128i first_green_data_block = data->green[2 * sub_block_id];
|
| + const __m128i first_red_data_block = data->red[2 * sub_block_id];
|
| +
|
| + const __m128i second_blue_data_block = data->blue[2 * sub_block_id + 1];
|
| + const __m128i second_green_data_block = data->green[2 * sub_block_id + 1];
|
| + const __m128i second_red_data_block = data->red[2 * sub_block_id + 1];
|
| +
|
| + uint32_t min;
|
| +
|
| + for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
|
| + tmp = _mm_set_epi32(
|
| + g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2],
|
| + g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]);
|
| +
|
| + test_blue = AddAndClamp(tmp, base_blue);
|
| + test_green = AddAndClamp(tmp, base_green);
|
| + test_red = AddAndClamp(tmp, base_red);
|
| +
|
| + first_half_min = __sse_max_int;
|
| + second_half_min = __sse_max_int;
|
| +
|
| + first_half_pattern = __sse_zero;
|
| + second_half_pattern = __sse_zero;
|
| +
|
| +#pragma unroll
|
| + for (uint8_t imm8 :
|
| + {0x1B, 0x4E, 0xB1, 0xE4}) { /* important they are sorted ascending */
|
| + switch (imm8) {
|
| + case 0x1B:
|
| + tmp_blue = _mm_shuffle_epi32(test_blue, 0x1B);
|
| + tmp_green = _mm_shuffle_epi32(test_green, 0x1B);
|
| + tmp_red = _mm_shuffle_epi32(test_red, 0x1B);
|
| + break;
|
| + case 0x4E:
|
| + tmp_blue = _mm_shuffle_epi32(test_blue, 0x4E);
|
| + tmp_green = _mm_shuffle_epi32(test_green, 0x4E);
|
| + tmp_red = _mm_shuffle_epi32(test_red, 0x4E);
|
| + break;
|
| + case 0xB1:
|
| + tmp_blue = _mm_shuffle_epi32(test_blue, 0xB1);
|
| + tmp_green = _mm_shuffle_epi32(test_green, 0xB1);
|
| + tmp_red = _mm_shuffle_epi32(test_red, 0xB1);
|
| + break;
|
| + case 0xE4:
|
| + tmp_blue = _mm_shuffle_epi32(test_blue, 0xE4);
|
| + tmp_green = _mm_shuffle_epi32(test_green, 0xE4);
|
| + tmp_red = _mm_shuffle_epi32(test_red, 0xE4);
|
| + break;
|
| + default:
|
| + tmp_blue = test_blue;
|
| + tmp_green = test_green;
|
| + tmp_red = test_red;
|
| + }
|
| +
|
| + tmp = _mm_set1_epi32(imm8);
|
| +
|
| + block_error =
|
| + AddChannelError(GetColorErrorSSE(tmp_blue, first_blue_data_block),
|
| + GetColorErrorSSE(tmp_green, first_green_data_block),
|
| + GetColorErrorSSE(tmp_red, first_red_data_block));
|
| +
|
| + /* save winning pattern */
|
| + first_half_pattern = _mm_max_epi16(
|
| + first_half_pattern,
|
| + _mm_and_si128(tmp, _mm_cmpgt_epi32(first_half_min, block_error)));
|
| + /* should use _mm_min_epi32(first_half_min, block_error); otherwise
|
| + * performance penalty */
|
| + mask = _mm_cmplt_epi32(block_error, first_half_min);
|
| + first_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error),
|
| + _mm_andnot_si128(mask, first_half_min));
|
| +
|
| + /* Second part of the block */
|
| + block_error =
|
| + AddChannelError(GetColorErrorSSE(tmp_blue, second_blue_data_block),
|
| + GetColorErrorSSE(tmp_green, second_green_data_block),
|
| + GetColorErrorSSE(tmp_red, second_red_data_block));
|
| +
|
| + /* save winning pattern */
|
| + second_half_pattern = _mm_max_epi16(
|
| + second_half_pattern,
|
| + _mm_and_si128(tmp, _mm_cmpgt_epi32(second_half_min, block_error)));
|
| + /* should use _mm_min_epi32(second_half_min, block_error); otherwise
|
| + * performance penalty */
|
| + mask = _mm_cmplt_epi32(block_error, second_half_min);
|
| + second_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error),
|
| + _mm_andnot_si128(mask, second_half_min));
|
| + }
|
| +
|
| + first_half_min = _mm_add_epi32(first_half_min, second_half_min);
|
| + first_half_min =
|
| + _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0x4E));
|
| + first_half_min =
|
| + _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0xB1));
|
| +
|
| + min = _mm_cvtsi128_si32(first_half_min);
|
| +
|
| + if (min < my_best_error) {
|
| + my_best_tbl_idx = tbl_idx;
|
| + my_best_error = min;
|
| +#if O3_OPTIMIZATION
|
| +#pragma unroll
|
| + for (int i = 0; i < 4; i++) {
|
| + my_best_mod_idx[tbl_idx][i] =
|
| + (_mm_extract_epi32(first_half_pattern, i) >> (2 * i)) & 3;
|
| + my_best_mod_idx[tbl_idx][i + 4] =
|
| + (_mm_extract_epi32(second_half_pattern, i) >> (2 * i)) & 3;
|
| + }
|
| +#endif
|
| + // _mm_shuffle_epi32
|
| + my_best_mod_idx[tbl_idx][0] =
|
| + (_mm_cvtsi128_si32(first_half_pattern) >> (0)) & 3;
|
| + my_best_mod_idx[tbl_idx][4] =
|
| + (_mm_cvtsi128_si32(second_half_pattern) >> (0)) & 3;
|
| +
|
| + my_best_mod_idx[tbl_idx][1] =
|
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x1)) >>
|
| + (2)) &
|
| + 3;
|
| + my_best_mod_idx[tbl_idx][5] =
|
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x1)) >>
|
| + (2)) &
|
| + 3;
|
| +
|
| + my_best_mod_idx[tbl_idx][2] =
|
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x2)) >>
|
| + (4)) &
|
| + 3;
|
| + my_best_mod_idx[tbl_idx][6] =
|
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x2)) >>
|
| + (4)) &
|
| + 3;
|
| +
|
| + my_best_mod_idx[tbl_idx][3] =
|
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x3)) >>
|
| + (6)) &
|
| + 3;
|
| + my_best_mod_idx[tbl_idx][7] =
|
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x3)) >>
|
| + (6)) &
|
| + 3;
|
| +
|
| + if (my_best_error == 0) {
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + WriteCodewordTable(block, sub_block_id, my_best_tbl_idx);
|
| +
|
| + uint32_t pix_data = 0;
|
| + uint8_t mod_idx;
|
| + uint8_t pix_idx;
|
| + uint32_t lsb;
|
| + uint32_t msb;
|
| + int texel_num;
|
| +
|
| + for (unsigned int i = 0; i < 8; ++i) {
|
| + mod_idx = my_best_mod_idx[my_best_tbl_idx][i];
|
| + pix_idx = g_mod_to_pix[mod_idx];
|
| +
|
| + lsb = pix_idx & 0x1;
|
| + msb = pix_idx >> 1;
|
| +
|
| + // Obtain the texel number as specified in the standard.
|
| + texel_num = idx_to_num_tab[i];
|
| + pix_data |= msb << (texel_num + 16);
|
| + pix_data |= lsb << (texel_num);
|
| + }
|
| +
|
| + WritePixelData(block, pix_data);
|
| +}
|
| +
|
| +void CompressBlock(uint8_t* dst, __sse_data* data) {
|
| + /* first 3 vertical 1, seconds 3 vertical 2, third 3 horizontal 1, last 3
|
| + * horizontal 2 */
|
| + float __sse_avg_colors[12] = {
|
| + 0,
|
| + };
|
| + bool use_differential[2] = {true, true};
|
| + GetAvgColors(data, __sse_avg_colors, use_differential);
|
| + Color sub_block_avg[4];
|
| +
|
| + /* TODO(radu.velea): remove floating point operations and use only int's +
|
| + * normal
|
| + * rounding and shifts */
|
| + for (int i = 0, j = 1; i < 4; i += 2, j += 2) {
|
| + if (use_differential[i / 2] == false) {
|
| + sub_block_avg[i] = MakeColor444(&__sse_avg_colors[i * 3]);
|
| + sub_block_avg[j] = MakeColor444(&__sse_avg_colors[j * 3]);
|
| + } else {
|
| + sub_block_avg[i] = MakeColor555(&__sse_avg_colors[i * 3]);
|
| + sub_block_avg[j] = MakeColor555(&__sse_avg_colors[j * 3]);
|
| + }
|
| + }
|
| +
|
| + __m128i red_avg[2], green_avg[2], blue_avg[2];
|
| +
|
| + // TODO(radu.velea): perfect accuracy, maybe skip floating variables
|
| + blue_avg[0] =
|
| + _mm_set_epi32((int)__sse_avg_colors[3], (int)__sse_avg_colors[3],
|
| + (int)__sse_avg_colors[0], (int)__sse_avg_colors[0]);
|
| +
|
| + green_avg[0] =
|
| + _mm_set_epi32((int)__sse_avg_colors[4], (int)__sse_avg_colors[4],
|
| + (int)__sse_avg_colors[1], (int)__sse_avg_colors[1]);
|
| +
|
| + red_avg[0] =
|
| + _mm_set_epi32((int)__sse_avg_colors[5], (int)__sse_avg_colors[5],
|
| + (int)__sse_avg_colors[2], (int)__sse_avg_colors[2]);
|
| +
|
| + uint32_t vertical_error =
|
| + GetVerticalError(data, blue_avg, green_avg, red_avg);
|
| +
|
| + // TODO(radu.velea): perfect accuracy, maybe skip floating variables
|
| + blue_avg[0] = _mm_set1_epi32((int)__sse_avg_colors[6]);
|
| + blue_avg[1] = _mm_set1_epi32((int)__sse_avg_colors[9]);
|
| +
|
| + green_avg[0] = _mm_set1_epi32((int)__sse_avg_colors[7]);
|
| + green_avg[1] = _mm_set1_epi32((int)__sse_avg_colors[10]);
|
| +
|
| + red_avg[0] = _mm_set1_epi32((int)__sse_avg_colors[8]);
|
| + red_avg[1] = _mm_set1_epi32((int)__sse_avg_colors[11]);
|
| +
|
| + uint32_t horizontal_error =
|
| + GetHorizontalError(data, blue_avg, green_avg, red_avg);
|
| +
|
| + bool flip = horizontal_error < vertical_error;
|
| +
|
| + // Clear destination buffer so that we can "or" in the results.
|
| + memset(dst, 0, 8);
|
| +
|
| + WriteDiff(dst, use_differential[!!flip]);
|
| + WriteFlip(dst, flip);
|
| +
|
| + uint8_t sub_block_off_0 = flip ? 2 : 0;
|
| + uint8_t sub_block_off_1 = sub_block_off_0 + 1;
|
| +
|
| + if (use_differential[!!flip]) {
|
| + WriteColors555(dst, sub_block_avg[sub_block_off_0],
|
| + sub_block_avg[sub_block_off_1]);
|
| + } else {
|
| + WriteColors444(dst, sub_block_avg[sub_block_off_0],
|
| + sub_block_avg[sub_block_off_1]);
|
| + }
|
| +
|
| + if (flip == false) {
|
| + /* transpose vertical data into horizontal lines */
|
| + __m128i tmp;
|
| +#pragma unroll
|
| + for (int i = 0; i < 4; i += 2) {
|
| + tmp = data->blue[i];
|
| + data->blue[i] = _mm_add_epi32(
|
| + _mm_move_epi64(data->blue[i]),
|
| + _mm_shuffle_epi32(_mm_move_epi64(data->blue[i + 1]), 0x4E));
|
| + data->blue[i + 1] = _mm_add_epi32(
|
| + _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
|
| + _mm_shuffle_epi32(
|
| + _mm_move_epi64(_mm_shuffle_epi32(data->blue[i + 1], 0x4E)),
|
| + 0x4E));
|
| +
|
| + tmp = data->green[i];
|
| + data->green[i] = _mm_add_epi32(
|
| + _mm_move_epi64(data->green[i]),
|
| + _mm_shuffle_epi32(_mm_move_epi64(data->green[i + 1]), 0x4E));
|
| + data->green[i + 1] = _mm_add_epi32(
|
| + _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
|
| + _mm_shuffle_epi32(
|
| + _mm_move_epi64(_mm_shuffle_epi32(data->green[i + 1], 0x4E)),
|
| + 0x4E));
|
| +
|
| + tmp = data->red[i];
|
| + data->red[i] = _mm_add_epi32(
|
| + _mm_move_epi64(data->red[i]),
|
| + _mm_shuffle_epi32(_mm_move_epi64(data->red[i + 1]), 0x4E));
|
| + data->red[i + 1] = _mm_add_epi32(
|
| + _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
|
| + _mm_shuffle_epi32(
|
| + _mm_move_epi64(_mm_shuffle_epi32(data->red[i + 1], 0x4E)), 0x4E));
|
| + }
|
| +
|
| + tmp = data->blue[1];
|
| + data->blue[1] = data->blue[2];
|
| + data->blue[2] = tmp;
|
| +
|
| + tmp = data->green[1];
|
| + data->green[1] = data->green[2];
|
| + data->green[2] = tmp;
|
| +
|
| + tmp = data->red[1];
|
| + data->red[1] = data->red[2];
|
| + data->red[2] = tmp;
|
| + }
|
| +
|
| + // Compute luminance for the first sub block.
|
| + ComputeLuminanceSSE(dst, sub_block_avg[sub_block_off_0], 0,
|
| + g_idx_to_num[sub_block_off_0], data);
|
| + // Compute luminance for the second sub block.
|
| + ComputeLuminanceSSE(dst, sub_block_avg[sub_block_off_1], 1,
|
| + g_idx_to_num[sub_block_off_1], data);
|
| +}
|
| +
|
| +static void LegacyExtractBlock(uint8_t* dst, const uint8_t* src, int width) {
|
| + for (int j = 0; j < 4; ++j) {
|
| + memcpy(&dst[j * 4 * 4], src, 4 * 4);
|
| + src += width * 4;
|
| + }
|
| +}
|
| +
|
| +inline void TransposeBlock(uint8_t* block, __m128i* transposed /* [4] */) {
|
| + __m128i tmp3, tmp2, tmp1, tmp0;
|
| +
|
| + transposed[0] = _mm_loadu_si128((__m128i*)(block)); // a0,a1,a2,...a7, ...a15
|
| + transposed[1] =
|
| + _mm_loadu_si128((__m128i*)(block + 16)); // b0, b1,b2,...b7.... b15
|
| + transposed[2] =
|
| + _mm_loadu_si128((__m128i*)(block + 32)); // c0, c1,c2,...c7....c15
|
| + transposed[3] =
|
| + _mm_loadu_si128((__m128i*)(block + 48)); // d0,d1,d2,...d7....d15
|
| +
|
| + tmp0 = _mm_unpacklo_epi8(
|
| + transposed[0], transposed[1]); // a0,b0, a1,b1, a2,b2, a3,b3,....a7,b7
|
| + tmp1 = _mm_unpacklo_epi8(
|
| + transposed[2], transposed[3]); // c0,d0, c1,d1, c2,d2, c3,d3,... c7,d7
|
| + tmp2 = _mm_unpackhi_epi8(
|
| + transposed[0],
|
| + transposed[1]); // a8,b8, a9,b9, a10,b10, a11,b11,...a15,b15
|
| + tmp3 = _mm_unpackhi_epi8(
|
| + transposed[2],
|
| + transposed[3]); // c8,d8, c9,d9, c10,d10, c11,d11,...c15,d15
|
| +
|
| + transposed[0] = _mm_unpacklo_epi8(
|
| + tmp0, tmp2); // a0,a8, b0,b8, a1,a9, b1,b9, ....a3,a11, b3,b11
|
| + transposed[1] = _mm_unpackhi_epi8(
|
| + tmp0, tmp2); // a4,a12, b4,b12, a5,a13, b5,b13,....a7,a15,b7,b15
|
| + transposed[2] =
|
| + _mm_unpacklo_epi8(tmp1, tmp3); // c0,c8, d0,d8, c1,c9, d1,d9.....d3,d11
|
| + transposed[3] = _mm_unpackhi_epi8(
|
| + tmp1, tmp3); // c4,c12,d4,d12, c5,c13, d5,d13,....d7,d15
|
| +
|
| + tmp0 = _mm_unpacklo_epi32(transposed[0], transposed[2]); // a0,a8, b0,b8,
|
| + // c0,c8, d0,d8,
|
| + // a1,a9, b1,b9,
|
| + // c1,c9, d1,d9
|
| + tmp1 = _mm_unpackhi_epi32(transposed[0], transposed[2]); // a2,a10, b2,b10,
|
| + // c2,c10, d2,d10,
|
| + // a3,a11, b3,b11,
|
| + // c3,c11, d3,d11
|
| + tmp2 = _mm_unpacklo_epi32(transposed[1], transposed[3]); // a4,a12, b4,b12,
|
| + // c4,c12, d4,d12,
|
| + // a5,a13, b5,b13,
|
| + // c5,c13, d5,d13,
|
| + tmp3 = _mm_unpackhi_epi32(transposed[1],
|
| + transposed[3]); // a6,a14, b6,b14, c6,c14, d6,d14,
|
| + // a7,a15,b7,b15,c7,c15,d7,d15
|
| +
|
| + transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2); // a0,a4, a8, a12, b0,b4,
|
| + // b8,b12, c0,c4, c8, c12,
|
| + // d0,d4, d8, d12
|
| + transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2); // a1,a5, a9, a13, b1,b5,
|
| + // b9,b13, c1,c5, c9, c13,
|
| + // d1,d5, d9, d13
|
| + transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3); // a2,a6, a10,a14, b2,b6,
|
| + // b10,b14, c2,c6, c10,c14,
|
| + // d2,d6, d10,d14
|
| + transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3); // a3,a7, a11,a15, b3,b7,
|
| + // b11,b15, c3,c7, c11,c15,
|
| + // d3,d7, d11,d15
|
| +}
|
| +
|
| +inline void UnpackBlock(__m128i* packed,
|
| + __m128i* red,
|
| + __m128i* green,
|
| + __m128i* blue,
|
| + __m128i* alpha) {
|
| + const __m128i zero = _mm_set1_epi8(0);
|
| + __m128i tmp_low, tmp_high;
|
| +
|
| + /* unpack red */
|
| + tmp_low = _mm_unpacklo_epi8(packed[0], zero);
|
| + tmp_high = _mm_unpackhi_epi8(packed[0], zero);
|
| +
|
| + red[0] = _mm_unpacklo_epi16(tmp_low, zero);
|
| + red[1] = _mm_unpackhi_epi16(tmp_low, zero);
|
| +
|
| + red[2] = _mm_unpacklo_epi16(tmp_high, zero);
|
| + red[3] = _mm_unpackhi_epi16(tmp_high, zero);
|
| +
|
| + /* unpack green */
|
| + tmp_low = _mm_unpacklo_epi8(packed[1], zero);
|
| + tmp_high = _mm_unpackhi_epi8(packed[1], zero);
|
| +
|
| + green[0] = _mm_unpacklo_epi16(tmp_low, zero);
|
| + green[1] = _mm_unpackhi_epi16(tmp_low, zero);
|
| +
|
| + green[2] = _mm_unpacklo_epi16(tmp_high, zero);
|
| + green[3] = _mm_unpackhi_epi16(tmp_high, zero);
|
| +
|
| + /* unpack blue */
|
| + tmp_low = _mm_unpacklo_epi8(packed[2], zero);
|
| + tmp_high = _mm_unpackhi_epi8(packed[2], zero);
|
| +
|
| + blue[0] = _mm_unpacklo_epi16(tmp_low, zero);
|
| + blue[1] = _mm_unpackhi_epi16(tmp_low, zero);
|
| +
|
| + blue[2] = _mm_unpacklo_epi16(tmp_high, zero);
|
| + blue[3] = _mm_unpackhi_epi16(tmp_high, zero);
|
| +
|
| + /* unpack alpha */
|
| + tmp_low = _mm_unpacklo_epi8(packed[3], zero);
|
| + tmp_high = _mm_unpackhi_epi8(packed[3], zero);
|
| +
|
| + alpha[0] = _mm_unpacklo_epi16(tmp_low, zero);
|
| + alpha[1] = _mm_unpackhi_epi16(tmp_low, zero);
|
| +
|
| + alpha[2] = _mm_unpacklo_epi16(tmp_high, zero);
|
| + alpha[3] = _mm_unpackhi_epi16(tmp_high, zero);
|
| +}
|
| +
|
| +inline int BlockIsConstant(const uint8_t* block, const __m128i* transposed) {
|
| + __m128i first = _mm_set1_epi8(block[0]);
|
| + first = _mm_cmpeq_epi8(transposed[0], first);
|
| + if (_mm_movemask_epi8(first) != 0xFFFF) {
|
| + return 0;
|
| + }
|
| +
|
| + first = _mm_set1_epi8(block[1]);
|
| + first = _mm_cmpeq_epi8(transposed[1], first);
|
| +
|
| + if (_mm_movemask_epi8(first) != 0xFFFF) {
|
| + return 0;
|
| + }
|
| +
|
| + first = _mm_set1_epi8(block[2]);
|
| + first = _mm_cmpeq_epi8(transposed[2], first);
|
| +
|
| + if (_mm_movemask_epi8(first) != 0xFFFF) {
|
| + return 0;
|
| + }
|
| +
|
| + return 1;
|
| +}
|
| +
|
| +inline void CompressSolid(uint8_t* dst, uint8_t* block) {
|
| + // Clear destination buffer so that we can "or" in the results.
|
| + memset(dst, 0, 8);
|
| +
|
| + float src_color_float[3] = {static_cast<float>(block[0]),
|
| + static_cast<float>(block[1]),
|
| + static_cast<float>(block[2])};
|
| + Color base = MakeColor555(src_color_float);
|
| + Color constant;
|
| + constant.channels.b = block[0];
|
| + constant.channels.g = block[1];
|
| + constant.channels.r = block[2];
|
| +
|
| + WriteDiff(dst, true);
|
| + WriteFlip(dst, false);
|
| + WriteColors555(dst, base, base);
|
| +
|
| + uint8_t best_tbl_idx = 0;
|
| + uint8_t best_mod_idx = 0;
|
| + uint32_t best_mod_err = std::numeric_limits<uint32_t>::max();
|
| +
|
| + // Try all codeword tables to find the one giving the best results for this
|
| + // block.
|
| + for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
|
| + // Try all modifiers in the current table to find which one gives the
|
| + // smallest error.
|
| + for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) {
|
| + int16_t lum = g_codeword_tables[tbl_idx][mod_idx];
|
| + const Color& color = MakeColor(base, lum);
|
| +
|
| + uint32_t mod_err = GetColorError(constant, color);
|
| + if (mod_err < best_mod_err) {
|
| + best_tbl_idx = tbl_idx;
|
| + best_mod_idx = mod_idx;
|
| + best_mod_err = mod_err;
|
| +
|
| + if (mod_err == 0)
|
| + break; // We cannot do any better than this.
|
| + }
|
| + }
|
| +
|
| + if (best_mod_err == 0)
|
| + break;
|
| + }
|
| +
|
| + WriteCodewordTable(dst, 0, best_tbl_idx);
|
| + WriteCodewordTable(dst, 1, best_tbl_idx);
|
| +
|
| + uint8_t pix_idx = g_mod_to_pix[best_mod_idx];
|
| + uint32_t lsb = pix_idx & 0x1;
|
| + uint32_t msb = pix_idx >> 1;
|
| +
|
| + uint32_t pix_data = 0;
|
| + for (unsigned int i = 0; i < 2; ++i) {
|
| + for (unsigned int j = 0; j < 8; ++j) {
|
| + // Obtain the texel number as specified in the standard.
|
| + int texel_num = g_idx_to_num[i][j];
|
| + pix_data |= msb << (texel_num + 16);
|
| + pix_data |= lsb << (texel_num);
|
| + }
|
| + }
|
| +
|
| + WritePixelData(dst, pix_data);
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +namespace cc {
|
| +
|
| +void TextureCompressorETC1_SSE::Compress(const uint8_t* src,
|
| + uint8_t* dst,
|
| + int width,
|
| + int height,
|
| + Quality quality) {
|
| + DCHECK(width >= 4 && (width & 3) == 0);
|
| + DCHECK(height >= 4 && (height & 3) == 0);
|
| +
|
| + uint8_t block[64] __attribute__((aligned(16)));
|
| + __m128i packed[4];
|
| + __m128i red[4], green[4], blue[4], alpha[4];
|
| + __sse_data data;
|
| +
|
| + for (int y = 0; y < height; y += 4, src += width * 4 * 4) {
|
| + for (int x = 0; x < width; x += 4, dst += 8) {
|
| + /* SSE */
|
| + LegacyExtractBlock(block, src + x * 4, width);
|
| + TransposeBlock(block, packed);
|
| + if (BlockIsConstant(block, packed) == 1) {
|
| + /* TODO(radu.velea): handle constant blocks in SSE */
|
| + CompressSolid(dst, block);
|
| + } else {
|
| + UnpackBlock(packed, blue, green, red, alpha);
|
| +
|
| + data.block = block;
|
| + data.packed = packed;
|
| + data.red = red;
|
| + data.blue = blue;
|
| + data.green = green;
|
| +
|
| + CompressBlock(dst, &data);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +} // namespace cc
|
|
|