| Index: cc/resources/texture_compressor_etc1_sse.cc
 | 
| diff --git a/cc/resources/texture_compressor_etc1_sse.cc b/cc/resources/texture_compressor_etc1_sse.cc
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..92ece570bb89fba086aa37289b3cd45ddddef7fe
 | 
| --- /dev/null
 | 
| +++ b/cc/resources/texture_compressor_etc1_sse.cc
 | 
| @@ -0,0 +1,821 @@
 | 
| +// Copyright 2015 The Chromium Authors. All rights reserved.
 | 
| +// Use of this source code is governed by a BSD-style license that can be
 | 
| +// found in the LICENSE file.
 | 
| +
 | 
| +#include "cc/resources/texture_compressor_etc1_sse.h"
 | 
| +
 | 
| +#include <emmintrin.h>
 | 
| +
 | 
| +#include "base/compiler_specific.h"
 | 
| +#include "base/logging.h"
 | 
| +// Using this header for common functions such as Color handling
 | 
| +// and codeword table.
 | 
| +#include "cc/resources/texture_compressor_etc1.h"
 | 
| +
 | 
| +namespace cc {
 | 
| +
 | 
| +namespace {
 | 
| +
 | 
| +inline uint32_t SetETC1MaxError(uint32_t avg_error) {
 | 
| +  // ETC1 codeword table is sorted in ascending order.
 | 
| +  // Our algorithm will try to identify the index that generates the minimum
 | 
| +  // error.
 | 
| +  // The min error calculated during ComputeLuminance main loop will converge
 | 
| +  // towards that value.
 | 
| +  // We use this threshold to determine when it doesn't make sense to iterate
 | 
| +  // further through the array.
 | 
| +  return avg_error + avg_error / 2 + 384;
 | 
| +}
 | 
| +
 | 
| +struct __sse_data {
 | 
| +  // This is used to store raw data.
 | 
| +  uint8_t* block;
 | 
| +  // This is used to store 8 bit packed values.
 | 
| +  __m128i* packed;
 | 
| +  // This is used to store 32 bit zero extended values into 4x4 arrays.
 | 
| +  __m128i* blue;
 | 
| +  __m128i* green;
 | 
| +  __m128i* red;
 | 
| +};
 | 
| +
 | 
| +// Commonly used registers throughout the code.
 | 
| +static const __m128i __sse_zero = _mm_set1_epi32(0);
 | 
| +static const __m128i __sse_max_int = _mm_set1_epi32(0x7FFFFFFF);
 | 
| +
 | 
| +inline __m128i AddAndClamp(const __m128i x, const __m128i y) {
 | 
| +  static const __m128i color_max = _mm_set1_epi32(0xFF);
 | 
| +  return _mm_max_epi16(__sse_zero,
 | 
| +                       _mm_min_epi16(_mm_add_epi16(x, y), color_max));
 | 
| +}
 | 
| +
 | 
| +inline __m128i GetColorErrorSSE(const __m128i x, const __m128i y) {
 | 
| +  // Changed from _mm_mullo_epi32 (SSE4) to _mm_mullo_epi16 (SSE2).
 | 
| +  __m128i ret = _mm_sub_epi16(x, y);
 | 
| +  return _mm_mullo_epi16(ret, ret);
 | 
| +}
 | 
| +
 | 
| +inline __m128i AddChannelError(const __m128i x,
 | 
| +                               const __m128i y,
 | 
| +                               const __m128i z) {
 | 
| +  return _mm_add_epi32(x, _mm_add_epi32(y, z));
 | 
| +}
 | 
| +
 | 
| +inline uint32_t SumSSE(const __m128i x) {
 | 
| +  __m128i sum = _mm_add_epi32(x, _mm_shuffle_epi32(x, 0x4E));
 | 
| +  sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1));
 | 
| +
 | 
| +  return _mm_cvtsi128_si32(sum);
 | 
| +}
 | 
| +
 | 
| +inline uint32_t GetVerticalError(const __sse_data* data,
 | 
| +                                 const __m128i* blue_avg,
 | 
| +                                 const __m128i* green_avg,
 | 
| +                                 const __m128i* red_avg,
 | 
| +                                 uint32_t* verror) {
 | 
| +  __m128i error = __sse_zero;
 | 
| +
 | 
| +  for (int i = 0; i < 4; i++) {
 | 
| +    error = _mm_add_epi32(error, GetColorErrorSSE(data->blue[i], blue_avg[0]));
 | 
| +    error =
 | 
| +        _mm_add_epi32(error, GetColorErrorSSE(data->green[i], green_avg[0]));
 | 
| +    error = _mm_add_epi32(error, GetColorErrorSSE(data->red[i], red_avg[0]));
 | 
| +  }
 | 
| +
 | 
| +  error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E));
 | 
| +
 | 
| +  verror[0] = _mm_cvtsi128_si32(error);
 | 
| +  verror[1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(error, 0xB1));
 | 
| +
 | 
| +  return verror[0] + verror[1];
 | 
| +}
 | 
| +
 | 
| +inline uint32_t GetHorizontalError(const __sse_data* data,
 | 
| +                                   const __m128i* blue_avg,
 | 
| +                                   const __m128i* green_avg,
 | 
| +                                   const __m128i* red_avg,
 | 
| +                                   uint32_t* verror) {
 | 
| +  __m128i error = __sse_zero;
 | 
| +  int first_index, second_index;
 | 
| +
 | 
| +  for (int i = 0; i < 2; i++) {
 | 
| +    first_index = 2 * i;
 | 
| +    second_index = first_index + 1;
 | 
| +
 | 
| +    error = _mm_add_epi32(
 | 
| +        error, GetColorErrorSSE(data->blue[first_index], blue_avg[i]));
 | 
| +    error = _mm_add_epi32(
 | 
| +        error, GetColorErrorSSE(data->blue[second_index], blue_avg[i]));
 | 
| +    error = _mm_add_epi32(
 | 
| +        error, GetColorErrorSSE(data->green[first_index], green_avg[i]));
 | 
| +    error = _mm_add_epi32(
 | 
| +        error, GetColorErrorSSE(data->green[second_index], green_avg[i]));
 | 
| +    error = _mm_add_epi32(error,
 | 
| +                          GetColorErrorSSE(data->red[first_index], red_avg[i]));
 | 
| +    error = _mm_add_epi32(
 | 
| +        error, GetColorErrorSSE(data->red[second_index], red_avg[i]));
 | 
| +  }
 | 
| +
 | 
| +  error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E));
 | 
| +
 | 
| +  verror[0] = _mm_cvtsi128_si32(error);
 | 
| +  verror[1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(error, 0xB1));
 | 
| +
 | 
| +  return verror[0] + verror[1];
 | 
| +}
 | 
| +
 | 
| +inline void GetAvgColors(const __sse_data* data,
 | 
| +                         float* output,
 | 
| +                         bool* __sse_use_diff) {
 | 
| +  __m128i sum[2], tmp;
 | 
| +
 | 
| +  // TODO(radu.velea): _mm_avg_epu8 on packed data maybe.
 | 
| +
 | 
| +  // Compute avg red value.
 | 
| +  // [S0 S0 S1 S1]
 | 
| +  sum[0] = _mm_add_epi32(data->red[0], data->red[1]);
 | 
| +  sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
 | 
| +
 | 
| +  // [S2 S2 S3 S3]
 | 
| +  sum[1] = _mm_add_epi32(data->red[2], data->red[3]);
 | 
| +  sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
 | 
| +
 | 
| +  float hred[2], vred[2];
 | 
| +  hred[0] = (_mm_cvtsi128_si32(
 | 
| +                _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
 | 
| +            8.0f;
 | 
| +  hred[1] = (_mm_cvtsi128_si32(
 | 
| +                _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
 | 
| +            8.0f;
 | 
| +
 | 
| +  tmp = _mm_add_epi32(sum[0], sum[1]);
 | 
| +  vred[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
 | 
| +  vred[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
 | 
| +
 | 
| +  // Compute avg green value.
 | 
| +  // [S0 S0 S1 S1]
 | 
| +  sum[0] = _mm_add_epi32(data->green[0], data->green[1]);
 | 
| +  sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
 | 
| +
 | 
| +  // [S2 S2 S3 S3]
 | 
| +  sum[1] = _mm_add_epi32(data->green[2], data->green[3]);
 | 
| +  sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
 | 
| +
 | 
| +  float hgreen[2], vgreen[2];
 | 
| +  hgreen[0] = (_mm_cvtsi128_si32(
 | 
| +                  _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
 | 
| +              8.0f;
 | 
| +  hgreen[1] = (_mm_cvtsi128_si32(
 | 
| +                  _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
 | 
| +              8.0f;
 | 
| +
 | 
| +  tmp = _mm_add_epi32(sum[0], sum[1]);
 | 
| +  vgreen[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
 | 
| +  vgreen[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
 | 
| +
 | 
| +  // Compute avg blue value.
 | 
| +  // [S0 S0 S1 S1]
 | 
| +  sum[0] = _mm_add_epi32(data->blue[0], data->blue[1]);
 | 
| +  sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1));
 | 
| +
 | 
| +  // [S2 S2 S3 S3]
 | 
| +  sum[1] = _mm_add_epi32(data->blue[2], data->blue[3]);
 | 
| +  sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1));
 | 
| +
 | 
| +  float hblue[2], vblue[2];
 | 
| +  hblue[0] = (_mm_cvtsi128_si32(
 | 
| +                 _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) /
 | 
| +             8.0f;
 | 
| +  hblue[1] = (_mm_cvtsi128_si32(
 | 
| +                 _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) /
 | 
| +             8.0f;
 | 
| +
 | 
| +  tmp = _mm_add_epi32(sum[0], sum[1]);
 | 
| +  vblue[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f;
 | 
| +  vblue[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f;
 | 
| +
 | 
| +  // TODO(radu.velea): Return int's instead of floats, based on Quality.
 | 
| +  output[0] = vblue[0];
 | 
| +  output[1] = vgreen[0];
 | 
| +  output[2] = vred[0];
 | 
| +
 | 
| +  output[3] = vblue[1];
 | 
| +  output[4] = vgreen[1];
 | 
| +  output[5] = vred[1];
 | 
| +
 | 
| +  output[6] = hblue[0];
 | 
| +  output[7] = hgreen[0];
 | 
| +  output[8] = hred[0];
 | 
| +
 | 
| +  output[9] = hblue[1];
 | 
| +  output[10] = hgreen[1];
 | 
| +  output[11] = hred[1];
 | 
| +
 | 
| +  __m128i threshold_upper = _mm_set1_epi32(3);
 | 
| +  __m128i threshold_lower = _mm_set1_epi32(-4);
 | 
| +
 | 
| +  __m128 factor_v = _mm_set1_ps(31.0f / 255.0f);
 | 
| +  __m128 rounding_v = _mm_set1_ps(0.5f);
 | 
| +  __m128 h_avg_0 = _mm_set_ps(hblue[0], hgreen[0], hred[0], 0);
 | 
| +  __m128 h_avg_1 = _mm_set_ps(hblue[1], hgreen[1], hred[1], 0);
 | 
| +
 | 
| +  __m128 v_avg_0 = _mm_set_ps(vblue[0], vgreen[0], vred[0], 0);
 | 
| +  __m128 v_avg_1 = _mm_set_ps(vblue[1], vgreen[1], vred[1], 0);
 | 
| +
 | 
| +  h_avg_0 = _mm_mul_ps(h_avg_0, factor_v);
 | 
| +  h_avg_1 = _mm_mul_ps(h_avg_1, factor_v);
 | 
| +  v_avg_0 = _mm_mul_ps(v_avg_0, factor_v);
 | 
| +  v_avg_1 = _mm_mul_ps(v_avg_1, factor_v);
 | 
| +
 | 
| +  h_avg_0 = _mm_add_ps(h_avg_0, rounding_v);
 | 
| +  h_avg_1 = _mm_add_ps(h_avg_1, rounding_v);
 | 
| +  v_avg_0 = _mm_add_ps(v_avg_0, rounding_v);
 | 
| +  v_avg_1 = _mm_add_ps(v_avg_1, rounding_v);
 | 
| +
 | 
| +  __m128i h_avg_0i = _mm_cvttps_epi32(h_avg_0);
 | 
| +  __m128i h_avg_1i = _mm_cvttps_epi32(h_avg_1);
 | 
| +
 | 
| +  __m128i v_avg_0i = _mm_cvttps_epi32(v_avg_0);
 | 
| +  __m128i v_avg_1i = _mm_cvttps_epi32(v_avg_1);
 | 
| +
 | 
| +  h_avg_0i = _mm_sub_epi32(h_avg_1i, h_avg_0i);
 | 
| +  v_avg_0i = _mm_sub_epi32(v_avg_1i, v_avg_0i);
 | 
| +
 | 
| +  __sse_use_diff[0] =
 | 
| +      (0 == _mm_movemask_epi8(_mm_cmplt_epi32(v_avg_0i, threshold_lower)));
 | 
| +  __sse_use_diff[0] &=
 | 
| +      (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(v_avg_0i, threshold_upper)));
 | 
| +
 | 
| +  __sse_use_diff[1] =
 | 
| +      (0 == _mm_movemask_epi8(_mm_cmplt_epi32(h_avg_0i, threshold_lower)));
 | 
| +  __sse_use_diff[1] &=
 | 
| +      (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(h_avg_0i, threshold_upper)));
 | 
| +}
 | 
| +
 | 
| +void ComputeLuminance(uint8_t* block,
 | 
| +                      const Color& base,
 | 
| +                      const int sub_block_id,
 | 
| +                      const uint8_t* idx_to_num_tab,
 | 
| +                      const __sse_data* data,
 | 
| +                      const uint32_t expected_error) {
 | 
| +  uint8_t best_tbl_idx = 0;
 | 
| +  uint32_t best_error = 0x7FFFFFFF;
 | 
| +  uint8_t best_mod_idx[8][8];  // [table][texel]
 | 
| +
 | 
| +  const __m128i base_blue = _mm_set1_epi32(base.channels.b);
 | 
| +  const __m128i base_green = _mm_set1_epi32(base.channels.g);
 | 
| +  const __m128i base_red = _mm_set1_epi32(base.channels.r);
 | 
| +
 | 
| +  __m128i test_red, test_blue, test_green, tmp, tmp_blue, tmp_green, tmp_red;
 | 
| +  __m128i block_error, mask;
 | 
| +
 | 
| +  // This will have the minimum errors for each 4 pixels.
 | 
| +  __m128i first_half_min;
 | 
| +  __m128i second_half_min;
 | 
| +
 | 
| +  // This will have the matching table index combo for each 4 pixels.
 | 
| +  __m128i first_half_pattern;
 | 
| +  __m128i second_half_pattern;
 | 
| +
 | 
| +  const __m128i first_blue_data_block = data->blue[2 * sub_block_id];
 | 
| +  const __m128i first_green_data_block = data->green[2 * sub_block_id];
 | 
| +  const __m128i first_red_data_block = data->red[2 * sub_block_id];
 | 
| +
 | 
| +  const __m128i second_blue_data_block = data->blue[2 * sub_block_id + 1];
 | 
| +  const __m128i second_green_data_block = data->green[2 * sub_block_id + 1];
 | 
| +  const __m128i second_red_data_block = data->red[2 * sub_block_id + 1];
 | 
| +
 | 
| +  uint32_t min;
 | 
| +  // Fail early to increase speed.
 | 
| +  long delta = INT32_MAX;
 | 
| +  uint32_t last_min = INT32_MAX;
 | 
| +
 | 
| +  const uint8_t shuffle_mask[] = {
 | 
| +      0x1B, 0x4E, 0xB1, 0xE4};  // Important they are sorted ascending.
 | 
| +
 | 
| +  for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
 | 
| +    tmp = _mm_set_epi32(
 | 
| +        g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2],
 | 
| +        g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]);
 | 
| +
 | 
| +    test_blue = AddAndClamp(tmp, base_blue);
 | 
| +    test_green = AddAndClamp(tmp, base_green);
 | 
| +    test_red = AddAndClamp(tmp, base_red);
 | 
| +
 | 
| +    first_half_min = __sse_max_int;
 | 
| +    second_half_min = __sse_max_int;
 | 
| +
 | 
| +    first_half_pattern = __sse_zero;
 | 
| +    second_half_pattern = __sse_zero;
 | 
| +
 | 
| +    for (uint8_t imm8 : shuffle_mask) {
 | 
| +      switch (imm8) {
 | 
| +        case 0x1B:
 | 
| +          tmp_blue = _mm_shuffle_epi32(test_blue, 0x1B);
 | 
| +          tmp_green = _mm_shuffle_epi32(test_green, 0x1B);
 | 
| +          tmp_red = _mm_shuffle_epi32(test_red, 0x1B);
 | 
| +          break;
 | 
| +        case 0x4E:
 | 
| +          tmp_blue = _mm_shuffle_epi32(test_blue, 0x4E);
 | 
| +          tmp_green = _mm_shuffle_epi32(test_green, 0x4E);
 | 
| +          tmp_red = _mm_shuffle_epi32(test_red, 0x4E);
 | 
| +          break;
 | 
| +        case 0xB1:
 | 
| +          tmp_blue = _mm_shuffle_epi32(test_blue, 0xB1);
 | 
| +          tmp_green = _mm_shuffle_epi32(test_green, 0xB1);
 | 
| +          tmp_red = _mm_shuffle_epi32(test_red, 0xB1);
 | 
| +          break;
 | 
| +        case 0xE4:
 | 
| +          tmp_blue = _mm_shuffle_epi32(test_blue, 0xE4);
 | 
| +          tmp_green = _mm_shuffle_epi32(test_green, 0xE4);
 | 
| +          tmp_red = _mm_shuffle_epi32(test_red, 0xE4);
 | 
| +          break;
 | 
| +        default:
 | 
| +          tmp_blue = test_blue;
 | 
| +          tmp_green = test_green;
 | 
| +          tmp_red = test_red;
 | 
| +      }
 | 
| +
 | 
| +      tmp = _mm_set1_epi32(imm8);
 | 
| +
 | 
| +      block_error =
 | 
| +          AddChannelError(GetColorErrorSSE(tmp_blue, first_blue_data_block),
 | 
| +                          GetColorErrorSSE(tmp_green, first_green_data_block),
 | 
| +                          GetColorErrorSSE(tmp_red, first_red_data_block));
 | 
| +
 | 
| +      // Save winning pattern.
 | 
| +      first_half_pattern = _mm_max_epi16(
 | 
| +          first_half_pattern,
 | 
| +          _mm_and_si128(tmp, _mm_cmpgt_epi32(first_half_min, block_error)));
 | 
| +      // Should use _mm_min_epi32(first_half_min, block_error); from SSE4
 | 
| +      // otherwise we have a small performance penalty.
 | 
| +      mask = _mm_cmplt_epi32(block_error, first_half_min);
 | 
| +      first_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error),
 | 
| +                                     _mm_andnot_si128(mask, first_half_min));
 | 
| +
 | 
| +      // Compute second part of the block.
 | 
| +      block_error =
 | 
| +          AddChannelError(GetColorErrorSSE(tmp_blue, second_blue_data_block),
 | 
| +                          GetColorErrorSSE(tmp_green, second_green_data_block),
 | 
| +                          GetColorErrorSSE(tmp_red, second_red_data_block));
 | 
| +
 | 
| +      // Save winning pattern.
 | 
| +      second_half_pattern = _mm_max_epi16(
 | 
| +          second_half_pattern,
 | 
| +          _mm_and_si128(tmp, _mm_cmpgt_epi32(second_half_min, block_error)));
 | 
| +      // Should use _mm_min_epi32(second_half_min, block_error); from SSE4
 | 
| +      // otherwise we have a small performance penalty.
 | 
| +      mask = _mm_cmplt_epi32(block_error, second_half_min);
 | 
| +      second_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error),
 | 
| +                                      _mm_andnot_si128(mask, second_half_min));
 | 
| +    }
 | 
| +
 | 
| +    first_half_min = _mm_add_epi32(first_half_min, second_half_min);
 | 
| +    first_half_min =
 | 
| +        _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0x4E));
 | 
| +    first_half_min =
 | 
| +        _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0xB1));
 | 
| +
 | 
| +    min = _mm_cvtsi128_si32(first_half_min);
 | 
| +
 | 
| +    delta = min - last_min;
 | 
| +    last_min = min;
 | 
| +
 | 
| +    if (min < best_error) {
 | 
| +      best_tbl_idx = tbl_idx;
 | 
| +      best_error = min;
 | 
| +
 | 
| +      best_mod_idx[tbl_idx][0] =
 | 
| +          (_mm_cvtsi128_si32(first_half_pattern) >> (0)) & 3;
 | 
| +      best_mod_idx[tbl_idx][4] =
 | 
| +          (_mm_cvtsi128_si32(second_half_pattern) >> (0)) & 3;
 | 
| +
 | 
| +      best_mod_idx[tbl_idx][1] =
 | 
| +          (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x1)) >>
 | 
| +           (2)) &
 | 
| +          3;
 | 
| +      best_mod_idx[tbl_idx][5] =
 | 
| +          (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x1)) >>
 | 
| +           (2)) &
 | 
| +          3;
 | 
| +
 | 
| +      best_mod_idx[tbl_idx][2] =
 | 
| +          (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x2)) >>
 | 
| +           (4)) &
 | 
| +          3;
 | 
| +      best_mod_idx[tbl_idx][6] =
 | 
| +          (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x2)) >>
 | 
| +           (4)) &
 | 
| +          3;
 | 
| +
 | 
| +      best_mod_idx[tbl_idx][3] =
 | 
| +          (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x3)) >>
 | 
| +           (6)) &
 | 
| +          3;
 | 
| +      best_mod_idx[tbl_idx][7] =
 | 
| +          (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x3)) >>
 | 
| +           (6)) &
 | 
| +          3;
 | 
| +
 | 
| +      if (best_error == 0) {
 | 
| +        break;
 | 
| +      }
 | 
| +    } else if (delta > 0 && expected_error < min) {
 | 
| +      // The error is growing and is well beyond expected threshold.
 | 
| +      break;
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  WriteCodewordTable(block, sub_block_id, best_tbl_idx);
 | 
| +
 | 
| +  uint32_t pix_data = 0;
 | 
| +  uint8_t mod_idx;
 | 
| +  uint8_t pix_idx;
 | 
| +  uint32_t lsb;
 | 
| +  uint32_t msb;
 | 
| +  int texel_num;
 | 
| +
 | 
| +  for (unsigned int i = 0; i < 8; ++i) {
 | 
| +    mod_idx = best_mod_idx[best_tbl_idx][i];
 | 
| +    pix_idx = g_mod_to_pix[mod_idx];
 | 
| +
 | 
| +    lsb = pix_idx & 0x1;
 | 
| +    msb = pix_idx >> 1;
 | 
| +
 | 
| +    // Obtain the texel number as specified in the standard.
 | 
| +    texel_num = idx_to_num_tab[i];
 | 
| +    pix_data |= msb << (texel_num + 16);
 | 
| +    pix_data |= lsb << (texel_num);
 | 
| +  }
 | 
| +
 | 
| +  WritePixelData(block, pix_data);
 | 
| +}
 | 
| +
 | 
| +void CompressBlock(uint8_t* dst, __sse_data* data) {
 | 
| +  // First 3 values are for vertical 1, second 3 vertical 2, third 3 horizontal
 | 
| +  // 1, last 3
 | 
| +  // horizontal 2.
 | 
| +  float __sse_avg_colors[12] = {
 | 
| +      0,
 | 
| +  };
 | 
| +  bool use_differential[2] = {true, true};
 | 
| +  GetAvgColors(data, __sse_avg_colors, use_differential);
 | 
| +  Color sub_block_avg[4];
 | 
| +
 | 
| +  // TODO(radu.velea): Remove floating point operations and use only int's +
 | 
| +  // normal rounding and shifts for reduced Quality.
 | 
| +  for (int i = 0, j = 1; i < 4; i += 2, j += 2) {
 | 
| +    if (use_differential[i / 2] == false) {
 | 
| +      sub_block_avg[i] = MakeColor444(&__sse_avg_colors[i * 3]);
 | 
| +      sub_block_avg[j] = MakeColor444(&__sse_avg_colors[j * 3]);
 | 
| +    } else {
 | 
| +      sub_block_avg[i] = MakeColor555(&__sse_avg_colors[i * 3]);
 | 
| +      sub_block_avg[j] = MakeColor555(&__sse_avg_colors[j * 3]);
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  __m128i red_avg[2], green_avg[2], blue_avg[2];
 | 
| +
 | 
| +  // TODO(radu.velea): Perfect accuracy, maybe skip floating variables.
 | 
| +  blue_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[3]),
 | 
| +                              static_cast<int>(__sse_avg_colors[3]),
 | 
| +                              static_cast<int>(__sse_avg_colors[0]),
 | 
| +                              static_cast<int>(__sse_avg_colors[0]));
 | 
| +
 | 
| +  green_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[4]),
 | 
| +                               static_cast<int>(__sse_avg_colors[4]),
 | 
| +                               static_cast<int>(__sse_avg_colors[1]),
 | 
| +                               static_cast<int>(__sse_avg_colors[1]));
 | 
| +
 | 
| +  red_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[5]),
 | 
| +                             static_cast<int>(__sse_avg_colors[5]),
 | 
| +                             static_cast<int>(__sse_avg_colors[2]),
 | 
| +                             static_cast<int>(__sse_avg_colors[2]));
 | 
| +
 | 
| +  uint32_t vertical_error[2];
 | 
| +  GetVerticalError(data, blue_avg, green_avg, red_avg, vertical_error);
 | 
| +
 | 
| +  // TODO(radu.velea): Perfect accuracy, maybe skip floating variables.
 | 
| +  blue_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[6]));
 | 
| +  blue_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[9]));
 | 
| +
 | 
| +  green_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[7]));
 | 
| +  green_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[10]));
 | 
| +
 | 
| +  red_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[8]));
 | 
| +  red_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[11]));
 | 
| +
 | 
| +  uint32_t horizontal_error[2];
 | 
| +  GetHorizontalError(data, blue_avg, green_avg, red_avg, horizontal_error);
 | 
| +
 | 
| +  bool flip = (horizontal_error[0] + horizontal_error[1]) <
 | 
| +              (vertical_error[0] + vertical_error[1]);
 | 
| +  uint32_t* expected_errors = flip ? horizontal_error : vertical_error;
 | 
| +
 | 
| +  // Clear destination buffer so that we can "or" in the results.
 | 
| +  memset(dst, 0, 8);
 | 
| +
 | 
| +  WriteDiff(dst, use_differential[!!flip]);
 | 
| +  WriteFlip(dst, flip);
 | 
| +
 | 
| +  uint8_t sub_block_off_0 = flip ? 2 : 0;
 | 
| +  uint8_t sub_block_off_1 = sub_block_off_0 + 1;
 | 
| +
 | 
| +  if (use_differential[!!flip]) {
 | 
| +    WriteColors555(dst, sub_block_avg[sub_block_off_0],
 | 
| +                   sub_block_avg[sub_block_off_1]);
 | 
| +  } else {
 | 
| +    WriteColors444(dst, sub_block_avg[sub_block_off_0],
 | 
| +                   sub_block_avg[sub_block_off_1]);
 | 
| +  }
 | 
| +
 | 
| +  if (!flip) {
 | 
| +    // Transpose vertical data into horizontal lines.
 | 
| +    __m128i tmp;
 | 
| +    for (int i = 0; i < 4; i += 2) {
 | 
| +      tmp = data->blue[i];
 | 
| +      data->blue[i] = _mm_add_epi32(
 | 
| +          _mm_move_epi64(data->blue[i]),
 | 
| +          _mm_shuffle_epi32(_mm_move_epi64(data->blue[i + 1]), 0x4E));
 | 
| +      data->blue[i + 1] = _mm_add_epi32(
 | 
| +          _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
 | 
| +          _mm_shuffle_epi32(
 | 
| +              _mm_move_epi64(_mm_shuffle_epi32(data->blue[i + 1], 0x4E)),
 | 
| +              0x4E));
 | 
| +
 | 
| +      tmp = data->green[i];
 | 
| +      data->green[i] = _mm_add_epi32(
 | 
| +          _mm_move_epi64(data->green[i]),
 | 
| +          _mm_shuffle_epi32(_mm_move_epi64(data->green[i + 1]), 0x4E));
 | 
| +      data->green[i + 1] = _mm_add_epi32(
 | 
| +          _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
 | 
| +          _mm_shuffle_epi32(
 | 
| +              _mm_move_epi64(_mm_shuffle_epi32(data->green[i + 1], 0x4E)),
 | 
| +              0x4E));
 | 
| +
 | 
| +      tmp = data->red[i];
 | 
| +      data->red[i] = _mm_add_epi32(
 | 
| +          _mm_move_epi64(data->red[i]),
 | 
| +          _mm_shuffle_epi32(_mm_move_epi64(data->red[i + 1]), 0x4E));
 | 
| +      data->red[i + 1] = _mm_add_epi32(
 | 
| +          _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)),
 | 
| +          _mm_shuffle_epi32(
 | 
| +              _mm_move_epi64(_mm_shuffle_epi32(data->red[i + 1], 0x4E)), 0x4E));
 | 
| +    }
 | 
| +
 | 
| +    tmp = data->blue[1];
 | 
| +    data->blue[1] = data->blue[2];
 | 
| +    data->blue[2] = tmp;
 | 
| +
 | 
| +    tmp = data->green[1];
 | 
| +    data->green[1] = data->green[2];
 | 
| +    data->green[2] = tmp;
 | 
| +
 | 
| +    tmp = data->red[1];
 | 
| +    data->red[1] = data->red[2];
 | 
| +    data->red[2] = tmp;
 | 
| +  }
 | 
| +
 | 
| +  // Compute luminance for the first sub block.
 | 
| +  ComputeLuminance(dst, sub_block_avg[sub_block_off_0], 0,
 | 
| +                   g_idx_to_num[sub_block_off_0], data,
 | 
| +                   SetETC1MaxError(expected_errors[0]));
 | 
| +  // Compute luminance for the second sub block.
 | 
| +  ComputeLuminance(dst, sub_block_avg[sub_block_off_1], 1,
 | 
| +                   g_idx_to_num[sub_block_off_1], data,
 | 
| +                   SetETC1MaxError(expected_errors[1]));
 | 
| +}
 | 
| +
 | 
| +static void ExtractBlock(uint8_t* dst, const uint8_t* src, int width) {
 | 
| +  for (int j = 0; j < 4; ++j) {
 | 
| +    memcpy(&dst[j * 4 * 4], src, 4 * 4);
 | 
| +    src += width * 4;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +inline bool TransposeBlock(uint8_t* block, __m128i* transposed) {
 | 
| +  // This function transforms an incommig block of RGBA or GBRA pixels into 4
 | 
| +  // registers, each containing the data corresponding for a single channel.
 | 
| +  // Ex: transposed[0] will have all the R values for a RGBA block,
 | 
| +  // transposed[1] will have G, etc.
 | 
| +  // The values are packed as 8 bit unsigned values in the SSE registers.
 | 
| +
 | 
| +  // Before doing any work we check if the block is solid.
 | 
| +  __m128i tmp3, tmp2, tmp1, tmp0;
 | 
| +  __m128i test_solid = _mm_set1_epi32(*((uint32_t*)block));
 | 
| +  uint16_t mask = 0xFFFF;
 | 
| +
 | 
| +  // a0,a1,a2,...a7, ...a15
 | 
| +  transposed[0] = _mm_loadu_si128((__m128i*)(block));
 | 
| +  // b0, b1,b2,...b7.... b15
 | 
| +  transposed[1] = _mm_loadu_si128((__m128i*)(block + 16));
 | 
| +  // c0, c1,c2,...c7....c15
 | 
| +  transposed[2] = _mm_loadu_si128((__m128i*)(block + 32));
 | 
| +  // d0,d1,d2,...d7....d15
 | 
| +  transposed[3] = _mm_loadu_si128((__m128i*)(block + 48));
 | 
| +
 | 
| +  for (int i = 0; i < 4; i++) {
 | 
| +    mask &= _mm_movemask_epi8(_mm_cmpeq_epi8(transposed[i], test_solid));
 | 
| +  }
 | 
| +
 | 
| +  if (mask == 0xFFFF) {
 | 
| +    // Block is solid, no need to do any more work.
 | 
| +    return false;
 | 
| +  }
 | 
| +
 | 
| +  // a0,b0, a1,b1, a2,b2, a3,b3,....a7,b7
 | 
| +  tmp0 = _mm_unpacklo_epi8(transposed[0], transposed[1]);
 | 
| +  // c0,d0, c1,d1, c2,d2, c3,d3,... c7,d7
 | 
| +  tmp1 = _mm_unpacklo_epi8(transposed[2], transposed[3]);
 | 
| +  // a8,b8, a9,b9, a10,b10, a11,b11,...a15,b15
 | 
| +  tmp2 = _mm_unpackhi_epi8(transposed[0], transposed[1]);
 | 
| +  // c8,d8, c9,d9, c10,d10, c11,d11,...c15,d15
 | 
| +  tmp3 = _mm_unpackhi_epi8(transposed[2], transposed[3]);
 | 
| +
 | 
| +  // a0,a8, b0,b8,  a1,a9, b1,b9, ....a3,a11, b3,b11
 | 
| +  transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2);
 | 
| +  // a4,a12, b4,b12, a5,a13, b5,b13,....a7,a15,b7,b15
 | 
| +  transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2);
 | 
| +  // c0,c8, d0,d8, c1,c9, d1,d9.....d3,d11
 | 
| +  transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3);
 | 
| +  // c4,c12,d4,d12, c5,c13, d5,d13,....d7,d15
 | 
| +  transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3);
 | 
| +
 | 
| +  // a0,a8, b0,b8, c0,c8, d0,d8, a1,a9, b1,b9, c1,c9, d1,d9
 | 
| +  tmp0 = _mm_unpacklo_epi32(transposed[0], transposed[2]);
 | 
| +  // a2,a10, b2,b10, c2,c10, d2,d10, a3,a11, b3,b11, c3,c11, d3,d11
 | 
| +  tmp1 = _mm_unpackhi_epi32(transposed[0], transposed[2]);
 | 
| +  // a4,a12, b4,b12, c4,c12, d4,d12, a5,a13, b5,b13, c5,c13, d5,d13
 | 
| +  tmp2 = _mm_unpacklo_epi32(transposed[1], transposed[3]);
 | 
| +  // a6,a14, b6,b14, c6,c14, d6,d14, a7,a15, b7,b15, c7,c15, d7,d15
 | 
| +  tmp3 = _mm_unpackhi_epi32(transposed[1], transposed[3]);
 | 
| +
 | 
| +  // a0,a4, a8,a12, b0,b4, b8,b12,  c0,c4, c8,c12, d0,d4, d8,d12
 | 
| +  transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2);
 | 
| +  // a1,a5, a9,a13, b1,b5, b9,b13,  c1,c5, c9,c13, d1,d5, d9,d13
 | 
| +  transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2);
 | 
| +  // a2,a6, a10,a14, b2,b6, b10,b14, c2,c6, c10,c14, d2,d6, d10,d14
 | 
| +  transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3);
 | 
| +  // a3,a7, a11,a15, b3,b7, b11,b15, c3,c7, c11,c15, d3,d7, d11,d15
 | 
| +  transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3);
 | 
| +
 | 
| +  return true;
 | 
| +}
 | 
| +
 | 
| +inline void UnpackBlock(__m128i* packed,
 | 
| +                        __m128i* red,
 | 
| +                        __m128i* green,
 | 
| +                        __m128i* blue,
 | 
| +                        __m128i* alpha) {
 | 
| +  const __m128i zero = _mm_set1_epi8(0);
 | 
| +  __m128i tmp_low, tmp_high;
 | 
| +
 | 
| +  // Unpack red.
 | 
| +  tmp_low = _mm_unpacklo_epi8(packed[0], zero);
 | 
| +  tmp_high = _mm_unpackhi_epi8(packed[0], zero);
 | 
| +
 | 
| +  red[0] = _mm_unpacklo_epi16(tmp_low, zero);
 | 
| +  red[1] = _mm_unpackhi_epi16(tmp_low, zero);
 | 
| +
 | 
| +  red[2] = _mm_unpacklo_epi16(tmp_high, zero);
 | 
| +  red[3] = _mm_unpackhi_epi16(tmp_high, zero);
 | 
| +
 | 
| +  // Unpack green.
 | 
| +  tmp_low = _mm_unpacklo_epi8(packed[1], zero);
 | 
| +  tmp_high = _mm_unpackhi_epi8(packed[1], zero);
 | 
| +
 | 
| +  green[0] = _mm_unpacklo_epi16(tmp_low, zero);
 | 
| +  green[1] = _mm_unpackhi_epi16(tmp_low, zero);
 | 
| +
 | 
| +  green[2] = _mm_unpacklo_epi16(tmp_high, zero);
 | 
| +  green[3] = _mm_unpackhi_epi16(tmp_high, zero);
 | 
| +
 | 
| +  // Unpack blue.
 | 
| +  tmp_low = _mm_unpacklo_epi8(packed[2], zero);
 | 
| +  tmp_high = _mm_unpackhi_epi8(packed[2], zero);
 | 
| +
 | 
| +  blue[0] = _mm_unpacklo_epi16(tmp_low, zero);
 | 
| +  blue[1] = _mm_unpackhi_epi16(tmp_low, zero);
 | 
| +
 | 
| +  blue[2] = _mm_unpacklo_epi16(tmp_high, zero);
 | 
| +  blue[3] = _mm_unpackhi_epi16(tmp_high, zero);
 | 
| +
 | 
| +  // Unpack alpha - unused for ETC1.
 | 
| +  tmp_low = _mm_unpacklo_epi8(packed[3], zero);
 | 
| +  tmp_high = _mm_unpackhi_epi8(packed[3], zero);
 | 
| +
 | 
| +  alpha[0] = _mm_unpacklo_epi16(tmp_low, zero);
 | 
| +  alpha[1] = _mm_unpackhi_epi16(tmp_low, zero);
 | 
| +
 | 
| +  alpha[2] = _mm_unpacklo_epi16(tmp_high, zero);
 | 
| +  alpha[3] = _mm_unpackhi_epi16(tmp_high, zero);
 | 
| +}
 | 
| +
 | 
| +inline void CompressSolid(uint8_t* dst, uint8_t* block) {
 | 
| +  // Clear destination buffer so that we can "or" in the results.
 | 
| +  memset(dst, 0, 8);
 | 
| +
 | 
| +  const float src_color_float[3] = {static_cast<float>(block[0]),
 | 
| +                                    static_cast<float>(block[1]),
 | 
| +                                    static_cast<float>(block[2])};
 | 
| +  const Color base = MakeColor555(src_color_float);
 | 
| +  const __m128i base_v =
 | 
| +      _mm_set_epi32(0, base.channels.r, base.channels.g, base.channels.b);
 | 
| +
 | 
| +  const __m128i constant = _mm_set_epi32(0, block[2], block[1], block[0]);
 | 
| +  __m128i lum;
 | 
| +  __m128i colors[4];
 | 
| +  static const __m128i rgb =
 | 
| +      _mm_set_epi32(0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF);
 | 
| +
 | 
| +  WriteDiff(dst, true);
 | 
| +  WriteFlip(dst, false);
 | 
| +
 | 
| +  WriteColors555(dst, base, base);
 | 
| +
 | 
| +  uint8_t best_tbl_idx = 0;
 | 
| +  uint8_t best_mod_idx = 0;
 | 
| +  uint32_t best_mod_err = INT32_MAX;
 | 
| +
 | 
| +  for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
 | 
| +    lum = _mm_set_epi32(
 | 
| +        g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2],
 | 
| +        g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]);
 | 
| +    colors[0] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0x0));
 | 
| +    colors[1] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0x55));
 | 
| +    colors[2] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0xAA));
 | 
| +    colors[3] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0xFF));
 | 
| +
 | 
| +    for (int i = 0; i < 4; i++) {
 | 
| +      uint32_t mod_err =
 | 
| +          SumSSE(GetColorErrorSSE(constant, _mm_and_si128(colors[i], rgb)));
 | 
| +      colors[i] = _mm_and_si128(colors[i], rgb);
 | 
| +      if (mod_err < best_mod_err) {
 | 
| +        best_tbl_idx = tbl_idx;
 | 
| +        best_mod_idx = i;
 | 
| +        best_mod_err = mod_err;
 | 
| +
 | 
| +        if (mod_err == 0) {
 | 
| +          break;  // We cannot do any better than this.
 | 
| +        }
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  WriteCodewordTable(dst, 0, best_tbl_idx);
 | 
| +  WriteCodewordTable(dst, 1, best_tbl_idx);
 | 
| +
 | 
| +  uint8_t pix_idx = g_mod_to_pix[best_mod_idx];
 | 
| +  uint32_t lsb = pix_idx & 0x1;
 | 
| +  uint32_t msb = pix_idx >> 1;
 | 
| +
 | 
| +  uint32_t pix_data = 0;
 | 
| +  for (unsigned int i = 0; i < 2; ++i) {
 | 
| +    for (unsigned int j = 0; j < 8; ++j) {
 | 
| +      // Obtain the texel number as specified in the standard.
 | 
| +      int texel_num = g_idx_to_num[i][j];
 | 
| +      pix_data |= msb << (texel_num + 16);
 | 
| +      pix_data |= lsb << (texel_num);
 | 
| +    }
 | 
| +  }
 | 
| +
 | 
| +  WritePixelData(dst, pix_data);
 | 
| +}
 | 
| +
 | 
| +}  // namespace
 | 
| +
 | 
| +void TextureCompressorETC1SSE::Compress(const uint8_t* src,
 | 
| +                                        uint8_t* dst,
 | 
| +                                        int width,
 | 
| +                                        int height,
 | 
| +                                        Quality quality) {
 | 
| +  DCHECK_GE(width, 4);
 | 
| +  DCHECK_EQ((width & 3), 0);
 | 
| +  DCHECK_GE(height, 4);
 | 
| +  DCHECK_EQ((height & 3), 0);
 | 
| +
 | 
| +  ALIGNAS(16) uint8_t block[64];
 | 
| +  __m128i packed[4];
 | 
| +  __m128i red[4], green[4], blue[4], alpha[4];
 | 
| +  __sse_data data;
 | 
| +
 | 
| +  for (int y = 0; y < height; y += 4, src += width * 4 * 4) {
 | 
| +    for (int x = 0; x < width; x += 4, dst += 8) {
 | 
| +      ExtractBlock(block, src + x * 4, width);
 | 
| +      if (TransposeBlock(block, packed) == false) {
 | 
| +        CompressSolid(dst, block);
 | 
| +      } else {
 | 
| +        UnpackBlock(packed, blue, green, red, alpha);
 | 
| +
 | 
| +        data.block = block;
 | 
| +        data.packed = packed;
 | 
| +        data.red = red;
 | 
| +        data.blue = blue;
 | 
| +        data.green = green;
 | 
| +
 | 
| +        CompressBlock(dst, &data);
 | 
| +      }
 | 
| +    }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +}  // namespace cc
 | 
| 
 |