Chromium Code Reviews| Index: cc/resources/texture_compressor_etc1_sse.cc |
| diff --git a/cc/resources/texture_compressor_etc1_sse.cc b/cc/resources/texture_compressor_etc1_sse.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..fc4dfb168557f83fc6031582eaf5f1819878aeee |
| --- /dev/null |
| +++ b/cc/resources/texture_compressor_etc1_sse.cc |
| @@ -0,0 +1,824 @@ |
| +// Copyright 2015 The Chromium Authors. All rights reserved. |
| +// Use of this source code is governed by a BSD-style license that can be |
| +// found in the LICENSE file. |
| + |
| +#include "cc/resources/texture_compressor_etc1_sse.h" |
| + |
| +#include <assert.h> |
|
reveman
2015/05/07 16:26:29
is this needed?
radu.velea
2015/05/08 10:52:11
Done.
|
| +#include <emmintrin.h> |
| +#include <cmath> |
| +#include <limits> |
| + |
| +#include "base/compiler_specific.h" |
| +#include "base/logging.h" |
| +// Using this header for common functions such as Color handling |
| +// and codeword table. |
| +#include "cc/resources/texture_compressor_etc1.h" |
| + |
| +namespace cc { |
| + |
| +namespace { |
| + |
| +inline uint32_t SetETC1MaxError(uint32_t avg_error) { |
| + // ETC1 codeword table is sorted ascending. |
| + // Our algorithm will try to identify the index that generates the minimum |
| + // error. |
| + // The min error calculated during ComputeLuminance main loop will converge |
| + // towards that value. |
| + // We use this threashold to determine when it doesn't make sense to iterate |
| + // further through the array. |
| + return avg_error + avg_error / 2 + 384; |
| +} |
| + |
| +struct __sse_data { |
| + // This is used to store raw data. |
| + uint8_t* block; |
| + // This is used to store 8 bit packed values. |
| + __m128i* packed; |
| + // This is used to store 32 bit zero extended values into 4x4 arrays. |
| + __m128i* blue; |
| + __m128i* green; |
| + __m128i* red; |
| +}; |
| + |
| +// Commonly used registers throughout the code. |
| +static const __m128i __sse_zero = _mm_set1_epi32(0); |
| +static const __m128i __sse_max_int = _mm_set1_epi32(0x7FFFFFFF); |
| + |
| +inline __m128i AddAndClamp(const __m128i x, const __m128i y) { |
| + static const __m128i color_max = _mm_set1_epi32(0xFF); |
| + return _mm_max_epi16(__sse_zero, |
| + _mm_min_epi16(_mm_add_epi16(x, y), color_max)); |
| +} |
| + |
| +inline __m128i GetColorErrorSSE(const __m128i x, const __m128i y) { |
| + // Changed from _mm_mullo_epi32 (SSE4) to _mm_mullo_epi16 (SSE2). |
| + __m128i ret = _mm_sub_epi16(x, y); |
| + return _mm_mullo_epi16(ret, ret); |
| +} |
| + |
| +inline __m128i AddChannelError(const __m128i x, |
| + const __m128i y, |
| + const __m128i z) { |
| + return _mm_add_epi32(x, _mm_add_epi32(y, z)); |
| +} |
| + |
| +inline uint32_t SumSSE(const __m128i x) { |
| + __m128i sum = _mm_add_epi32(x, _mm_shuffle_epi32(x, 0x4E)); |
| + sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); |
| + |
| + return _mm_cvtsi128_si32(sum); |
| +} |
| + |
| +inline uint32_t GetVerticalError(const __sse_data* data, |
| + const __m128i* blue_avg, |
| + const __m128i* green_avg, |
| + const __m128i* red_avg, |
| + uint32_t* verror) { |
| + __m128i error = __sse_zero; |
| + |
| + for (int i = 0; i < 4; i++) { |
| + error = _mm_add_epi32(error, GetColorErrorSSE(data->blue[i], blue_avg[0])); |
| + error = |
| + _mm_add_epi32(error, GetColorErrorSSE(data->green[i], green_avg[0])); |
| + error = _mm_add_epi32(error, GetColorErrorSSE(data->red[i], red_avg[0])); |
| + } |
| + |
| + error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E)); |
| + |
| + verror[0] = _mm_cvtsi128_si32(error); |
| + verror[1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(error, 0xB1)); |
| + |
| + return verror[0] + verror[1]; |
| +} |
| + |
| +inline uint32_t GetHorizontalError(const __sse_data* data, |
| + const __m128i* blue_avg, |
| + const __m128i* green_avg, |
| + const __m128i* red_avg, |
| + uint32_t* verror) { |
| + __m128i error = __sse_zero; |
| + int first_index, second_index; |
| + |
| + for (int i = 0; i < 2; i++) { |
| + first_index = 2 * i; |
| + second_index = first_index + 1; |
| + |
| + error = _mm_add_epi32( |
| + error, GetColorErrorSSE(data->blue[first_index], blue_avg[i])); |
| + error = _mm_add_epi32( |
| + error, GetColorErrorSSE(data->blue[second_index], blue_avg[i])); |
| + error = _mm_add_epi32( |
| + error, GetColorErrorSSE(data->green[first_index], green_avg[i])); |
| + error = _mm_add_epi32( |
| + error, GetColorErrorSSE(data->green[second_index], green_avg[i])); |
| + error = _mm_add_epi32(error, |
| + GetColorErrorSSE(data->red[first_index], red_avg[i])); |
| + error = _mm_add_epi32( |
| + error, GetColorErrorSSE(data->red[second_index], red_avg[i])); |
| + } |
| + |
| + error = _mm_add_epi32(error, _mm_shuffle_epi32(error, 0x4E)); |
| + |
| + verror[0] = _mm_cvtsi128_si32(error); |
| + verror[1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(error, 0xB1)); |
| + |
| + return verror[0] + verror[1]; |
| +} |
| + |
| +inline void GetAvgColors(const __sse_data* data, |
| + float* output, |
| + bool* __sse_use_diff) { |
| + __m128i sum[2], tmp; |
| + |
| + // TODO(radu.velea): _mm_avg_epu8 on packed data maybe. |
| + |
| + // Compute avg red value. |
| + // [S0 S0 S1 S1] |
| + sum[0] = _mm_add_epi32(data->red[0], data->red[1]); |
| + sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1)); |
| + |
| + // [S2 S2 S3 S3] |
| + sum[1] = _mm_add_epi32(data->red[2], data->red[3]); |
| + sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1)); |
| + |
| + float hred[2], vred[2]; |
| + hred[0] = (_mm_cvtsi128_si32( |
| + _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) / |
| + 8.0f; |
| + hred[1] = (_mm_cvtsi128_si32( |
| + _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) / |
| + 8.0f; |
| + |
| + tmp = _mm_add_epi32(sum[0], sum[1]); |
| + vred[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f; |
| + vred[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f; |
| + |
| + // Compute avg green value. |
| + // [S0 S0 S1 S1] |
| + sum[0] = _mm_add_epi32(data->green[0], data->green[1]); |
| + sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1)); |
| + |
| + // [S2 S2 S3 S3] |
| + sum[1] = _mm_add_epi32(data->green[2], data->green[3]); |
| + sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1)); |
| + |
| + float hgreen[2], vgreen[2]; |
| + hgreen[0] = (_mm_cvtsi128_si32( |
| + _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) / |
| + 8.0f; |
| + hgreen[1] = (_mm_cvtsi128_si32( |
| + _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) / |
| + 8.0f; |
| + |
| + tmp = _mm_add_epi32(sum[0], sum[1]); |
| + vgreen[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f; |
| + vgreen[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f; |
| + |
| + // Compute avg blue value. |
| + // [S0 S0 S1 S1] |
| + sum[0] = _mm_add_epi32(data->blue[0], data->blue[1]); |
| + sum[0] = _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0xB1)); |
| + |
| + // [S2 S2 S3 S3] |
| + sum[1] = _mm_add_epi32(data->blue[2], data->blue[3]); |
| + sum[1] = _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0xB1)); |
| + |
| + float hblue[2], vblue[2]; |
| + hblue[0] = (_mm_cvtsi128_si32( |
| + _mm_add_epi32(sum[0], _mm_shuffle_epi32(sum[0], 0x4E)))) / |
| + 8.0f; |
| + hblue[1] = (_mm_cvtsi128_si32( |
| + _mm_add_epi32(sum[1], _mm_shuffle_epi32(sum[1], 0x4E)))) / |
| + 8.0f; |
| + |
| + tmp = _mm_add_epi32(sum[0], sum[1]); |
| + vblue[0] = (_mm_cvtsi128_si32(tmp)) / 8.0f; |
| + vblue[1] = (_mm_cvtsi128_si32(_mm_shuffle_epi32(tmp, 0x2))) / 8.0f; |
| + |
| + // TODO(radu.velea): Return int's instead of floats, based on Quality. |
| + output[0] = vblue[0]; |
| + output[1] = vgreen[0]; |
| + output[2] = vred[0]; |
| + |
| + output[3] = vblue[1]; |
| + output[4] = vgreen[1]; |
| + output[5] = vred[1]; |
| + |
| + output[6] = hblue[0]; |
| + output[7] = hgreen[0]; |
| + output[8] = hred[0]; |
| + |
| + output[9] = hblue[1]; |
| + output[10] = hgreen[1]; |
| + output[11] = hred[1]; |
| + |
| + __m128i threshold_upper = _mm_set1_epi32(3); |
| + __m128i threshold_lower = _mm_set1_epi32(-4); |
| + |
| + __m128 factor_v = _mm_set1_ps(31.0f / 255.0f); |
| + __m128 rounding_v = _mm_set1_ps(0.5f); |
| + __m128 h_avg_0 = _mm_set_ps(hblue[0], hgreen[0], hred[0], 0); |
| + __m128 h_avg_1 = _mm_set_ps(hblue[1], hgreen[1], hred[1], 0); |
| + |
| + __m128 v_avg_0 = _mm_set_ps(vblue[0], vgreen[0], vred[0], 0); |
| + __m128 v_avg_1 = _mm_set_ps(vblue[1], vgreen[1], vred[1], 0); |
| + |
| + h_avg_0 = _mm_mul_ps(h_avg_0, factor_v); |
| + h_avg_1 = _mm_mul_ps(h_avg_1, factor_v); |
| + v_avg_0 = _mm_mul_ps(v_avg_0, factor_v); |
| + v_avg_1 = _mm_mul_ps(v_avg_1, factor_v); |
| + |
| + h_avg_0 = _mm_add_ps(h_avg_0, rounding_v); |
| + h_avg_1 = _mm_add_ps(h_avg_1, rounding_v); |
| + v_avg_0 = _mm_add_ps(v_avg_0, rounding_v); |
| + v_avg_1 = _mm_add_ps(v_avg_1, rounding_v); |
| + |
| + __m128i h_avg_0i = _mm_cvttps_epi32(h_avg_0); |
| + __m128i h_avg_1i = _mm_cvttps_epi32(h_avg_1); |
| + |
| + __m128i v_avg_0i = _mm_cvttps_epi32(v_avg_0); |
| + __m128i v_avg_1i = _mm_cvttps_epi32(v_avg_1); |
| + |
| + h_avg_0i = _mm_sub_epi32(h_avg_1i, h_avg_0i); |
| + v_avg_0i = _mm_sub_epi32(v_avg_1i, v_avg_0i); |
| + |
| + __sse_use_diff[0] = |
| + (0 == _mm_movemask_epi8(_mm_cmplt_epi32(v_avg_0i, threshold_lower))); |
| + __sse_use_diff[0] &= |
| + (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(v_avg_0i, threshold_upper))); |
| + |
| + __sse_use_diff[1] = |
| + (0 == _mm_movemask_epi8(_mm_cmplt_epi32(h_avg_0i, threshold_lower))); |
| + __sse_use_diff[1] &= |
| + (0 == _mm_movemask_epi8(_mm_cmpgt_epi32(h_avg_0i, threshold_upper))); |
| +} |
| + |
| +void ComputeLuminance(uint8_t* block, |
| + const Color& base, |
| + const int sub_block_id, |
| + const uint8_t* idx_to_num_tab, |
| + const __sse_data* data, |
| + const uint32_t expected_error) { |
| + uint8_t best_tbl_idx = 0; |
| + uint32_t best_error = 0x7FFFFFFF; |
| + uint8_t best_mod_idx[8][8]; // [table][texel] |
| + |
| + const __m128i base_blue = _mm_set1_epi32(base.channels.b); |
| + const __m128i base_green = _mm_set1_epi32(base.channels.g); |
| + const __m128i base_red = _mm_set1_epi32(base.channels.r); |
| + |
| + __m128i test_red, test_blue, test_green, tmp, tmp_blue, tmp_green, tmp_red; |
| + __m128i block_error, mask; |
| + |
| + // This will have the minimum errors for each 4 pixels. |
| + __m128i first_half_min; |
| + __m128i second_half_min; |
| + |
| + // This will have the matching table index combo for each 4 pixels. |
| + __m128i first_half_pattern; |
| + __m128i second_half_pattern; |
| + |
| + const __m128i first_blue_data_block = data->blue[2 * sub_block_id]; |
| + const __m128i first_green_data_block = data->green[2 * sub_block_id]; |
| + const __m128i first_red_data_block = data->red[2 * sub_block_id]; |
| + |
| + const __m128i second_blue_data_block = data->blue[2 * sub_block_id + 1]; |
| + const __m128i second_green_data_block = data->green[2 * sub_block_id + 1]; |
| + const __m128i second_red_data_block = data->red[2 * sub_block_id + 1]; |
| + |
| + uint32_t min; |
| + // Fail early to increase speed. |
| + long delta = INT32_MAX; |
| + uint32_t last_min = INT32_MAX; |
| + |
| + const uint8_t shuffle_mask[] = { |
| + 0x1B, 0x4E, 0xB1, 0xE4}; // Important they are sorted ascending. |
| + |
| + for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) { |
| + tmp = _mm_set_epi32( |
| + g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2], |
| + g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]); |
| + |
| + test_blue = AddAndClamp(tmp, base_blue); |
| + test_green = AddAndClamp(tmp, base_green); |
| + test_red = AddAndClamp(tmp, base_red); |
| + |
| + first_half_min = __sse_max_int; |
| + second_half_min = __sse_max_int; |
| + |
| + first_half_pattern = __sse_zero; |
| + second_half_pattern = __sse_zero; |
| + |
| + for (uint8_t imm8 : shuffle_mask) { |
| + switch (imm8) { |
| + case 0x1B: |
| + tmp_blue = _mm_shuffle_epi32(test_blue, 0x1B); |
| + tmp_green = _mm_shuffle_epi32(test_green, 0x1B); |
| + tmp_red = _mm_shuffle_epi32(test_red, 0x1B); |
| + break; |
| + case 0x4E: |
| + tmp_blue = _mm_shuffle_epi32(test_blue, 0x4E); |
| + tmp_green = _mm_shuffle_epi32(test_green, 0x4E); |
| + tmp_red = _mm_shuffle_epi32(test_red, 0x4E); |
| + break; |
| + case 0xB1: |
| + tmp_blue = _mm_shuffle_epi32(test_blue, 0xB1); |
| + tmp_green = _mm_shuffle_epi32(test_green, 0xB1); |
| + tmp_red = _mm_shuffle_epi32(test_red, 0xB1); |
| + break; |
| + case 0xE4: |
| + tmp_blue = _mm_shuffle_epi32(test_blue, 0xE4); |
| + tmp_green = _mm_shuffle_epi32(test_green, 0xE4); |
| + tmp_red = _mm_shuffle_epi32(test_red, 0xE4); |
| + break; |
| + default: |
| + tmp_blue = test_blue; |
| + tmp_green = test_green; |
| + tmp_red = test_red; |
| + } |
| + |
| + tmp = _mm_set1_epi32(imm8); |
| + |
| + block_error = |
| + AddChannelError(GetColorErrorSSE(tmp_blue, first_blue_data_block), |
| + GetColorErrorSSE(tmp_green, first_green_data_block), |
| + GetColorErrorSSE(tmp_red, first_red_data_block)); |
| + |
| + // Save winning pattern. |
| + first_half_pattern = _mm_max_epi16( |
| + first_half_pattern, |
| + _mm_and_si128(tmp, _mm_cmpgt_epi32(first_half_min, block_error))); |
| + // Should use _mm_min_epi32(first_half_min, block_error); from SSE4 |
| + // otherwise we have a small performance penalty. |
| + mask = _mm_cmplt_epi32(block_error, first_half_min); |
| + first_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error), |
| + _mm_andnot_si128(mask, first_half_min)); |
| + |
| + // Compute second part of the block. |
| + block_error = |
| + AddChannelError(GetColorErrorSSE(tmp_blue, second_blue_data_block), |
| + GetColorErrorSSE(tmp_green, second_green_data_block), |
| + GetColorErrorSSE(tmp_red, second_red_data_block)); |
| + |
| + // Save winning pattern. |
| + second_half_pattern = _mm_max_epi16( |
| + second_half_pattern, |
| + _mm_and_si128(tmp, _mm_cmpgt_epi32(second_half_min, block_error))); |
| + // Should use _mm_min_epi32(second_half_min, block_error); from SSE4 |
| + // otherwise we have a small performance penalty. |
| + mask = _mm_cmplt_epi32(block_error, second_half_min); |
| + second_half_min = _mm_add_epi32(_mm_and_si128(mask, block_error), |
| + _mm_andnot_si128(mask, second_half_min)); |
| + } |
| + |
| + first_half_min = _mm_add_epi32(first_half_min, second_half_min); |
| + first_half_min = |
| + _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0x4E)); |
| + first_half_min = |
| + _mm_add_epi32(first_half_min, _mm_shuffle_epi32(first_half_min, 0xB1)); |
| + |
| + min = _mm_cvtsi128_si32(first_half_min); |
| + |
| + delta = min - last_min; |
| + last_min = min; |
| + |
| + if (min < best_error) { |
| + best_tbl_idx = tbl_idx; |
| + best_error = min; |
| + |
| + best_mod_idx[tbl_idx][0] = |
| + (_mm_cvtsi128_si32(first_half_pattern) >> (0)) & 3; |
| + best_mod_idx[tbl_idx][4] = |
| + (_mm_cvtsi128_si32(second_half_pattern) >> (0)) & 3; |
| + |
| + best_mod_idx[tbl_idx][1] = |
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x1)) >> |
| + (2)) & |
| + 3; |
| + best_mod_idx[tbl_idx][5] = |
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x1)) >> |
| + (2)) & |
| + 3; |
| + |
| + best_mod_idx[tbl_idx][2] = |
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x2)) >> |
| + (4)) & |
| + 3; |
| + best_mod_idx[tbl_idx][6] = |
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x2)) >> |
| + (4)) & |
| + 3; |
| + |
| + best_mod_idx[tbl_idx][3] = |
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(first_half_pattern, 0x3)) >> |
| + (6)) & |
| + 3; |
| + best_mod_idx[tbl_idx][7] = |
| + (_mm_cvtsi128_si32(_mm_shuffle_epi32(second_half_pattern, 0x3)) >> |
| + (6)) & |
| + 3; |
| + |
| + if (best_error == 0) { |
| + break; |
| + } |
| + } else if (delta > 0 && expected_error < min) { |
| + // The error is growing and is well beyond expected threshold. |
| + break; |
| + } |
| + } |
| + |
| + WriteCodewordTable(block, sub_block_id, best_tbl_idx); |
| + |
| + uint32_t pix_data = 0; |
| + uint8_t mod_idx; |
| + uint8_t pix_idx; |
| + uint32_t lsb; |
| + uint32_t msb; |
| + int texel_num; |
| + |
| + for (unsigned int i = 0; i < 8; ++i) { |
| + mod_idx = best_mod_idx[best_tbl_idx][i]; |
| + pix_idx = g_mod_to_pix[mod_idx]; |
| + |
| + lsb = pix_idx & 0x1; |
| + msb = pix_idx >> 1; |
| + |
| + // Obtain the texel number as specified in the standard. |
| + texel_num = idx_to_num_tab[i]; |
| + pix_data |= msb << (texel_num + 16); |
| + pix_data |= lsb << (texel_num); |
| + } |
| + |
| + WritePixelData(block, pix_data); |
| +} |
| + |
| +void CompressBlock(uint8_t* dst, __sse_data* data) { |
| + // First 3 values are for vertical 1, second 3 vertical 2, third 3 horizontal |
| + // 1, last 3 |
| + // horizontal 2. |
| + float __sse_avg_colors[12] = { |
| + 0, |
| + }; |
| + bool use_differential[2] = {true, true}; |
| + GetAvgColors(data, __sse_avg_colors, use_differential); |
| + Color sub_block_avg[4]; |
| + |
| + // TODO(radu.velea): Remove floating point operations and use only int's + |
| + // normal rounding and shifts for reduced Quality. |
| + for (int i = 0, j = 1; i < 4; i += 2, j += 2) { |
| + if (use_differential[i / 2] == false) { |
| + sub_block_avg[i] = MakeColor444(&__sse_avg_colors[i * 3]); |
| + sub_block_avg[j] = MakeColor444(&__sse_avg_colors[j * 3]); |
| + } else { |
| + sub_block_avg[i] = MakeColor555(&__sse_avg_colors[i * 3]); |
| + sub_block_avg[j] = MakeColor555(&__sse_avg_colors[j * 3]); |
| + } |
| + } |
| + |
| + __m128i red_avg[2], green_avg[2], blue_avg[2]; |
| + |
| + // TODO(radu.velea): Perfect accuracy, maybe skip floating variables. |
| + blue_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[3]), |
| + static_cast<int>(__sse_avg_colors[3]), |
| + static_cast<int>(__sse_avg_colors[0]), |
| + static_cast<int>(__sse_avg_colors[0])); |
| + |
| + green_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[4]), |
| + static_cast<int>(__sse_avg_colors[4]), |
| + static_cast<int>(__sse_avg_colors[1]), |
| + static_cast<int>(__sse_avg_colors[1])); |
| + |
| + red_avg[0] = _mm_set_epi32(static_cast<int>(__sse_avg_colors[5]), |
| + static_cast<int>(__sse_avg_colors[5]), |
| + static_cast<int>(__sse_avg_colors[2]), |
| + static_cast<int>(__sse_avg_colors[2])); |
| + |
| + uint32_t vertical_error[2]; |
| + GetVerticalError(data, blue_avg, green_avg, red_avg, vertical_error); |
| + |
| + // TODO(radu.velea): Perfect accuracy, maybe skip floating variables. |
| + blue_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[6])); |
| + blue_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[9])); |
| + |
| + green_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[7])); |
| + green_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[10])); |
| + |
| + red_avg[0] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[8])); |
| + red_avg[1] = _mm_set1_epi32(static_cast<int>(__sse_avg_colors[11])); |
| + |
| + uint32_t horizontal_error[2]; |
| + GetHorizontalError(data, blue_avg, green_avg, red_avg, horizontal_error); |
| + |
| + bool flip = (horizontal_error[0] + horizontal_error[1]) < |
| + (vertical_error[0] + vertical_error[1]); |
| + uint32_t* expected_errors = flip ? horizontal_error : vertical_error; |
| + |
| + // Clear destination buffer so that we can "or" in the results. |
| + memset(dst, 0, 8); |
| + |
| + WriteDiff(dst, use_differential[!!flip]); |
| + WriteFlip(dst, flip); |
| + |
| + uint8_t sub_block_off_0 = flip ? 2 : 0; |
| + uint8_t sub_block_off_1 = sub_block_off_0 + 1; |
| + |
| + if (use_differential[!!flip]) { |
| + WriteColors555(dst, sub_block_avg[sub_block_off_0], |
| + sub_block_avg[sub_block_off_1]); |
| + } else { |
| + WriteColors444(dst, sub_block_avg[sub_block_off_0], |
| + sub_block_avg[sub_block_off_1]); |
| + } |
| + |
| + if (!flip) { |
| + // Transpose vertical data into horizontal lines. |
| + __m128i tmp; |
| + for (int i = 0; i < 4; i += 2) { |
| + tmp = data->blue[i]; |
| + data->blue[i] = _mm_add_epi32( |
| + _mm_move_epi64(data->blue[i]), |
| + _mm_shuffle_epi32(_mm_move_epi64(data->blue[i + 1]), 0x4E)); |
| + data->blue[i + 1] = _mm_add_epi32( |
| + _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)), |
| + _mm_shuffle_epi32( |
| + _mm_move_epi64(_mm_shuffle_epi32(data->blue[i + 1], 0x4E)), |
| + 0x4E)); |
| + |
| + tmp = data->green[i]; |
| + data->green[i] = _mm_add_epi32( |
| + _mm_move_epi64(data->green[i]), |
| + _mm_shuffle_epi32(_mm_move_epi64(data->green[i + 1]), 0x4E)); |
| + data->green[i + 1] = _mm_add_epi32( |
| + _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)), |
| + _mm_shuffle_epi32( |
| + _mm_move_epi64(_mm_shuffle_epi32(data->green[i + 1], 0x4E)), |
| + 0x4E)); |
| + |
| + tmp = data->red[i]; |
| + data->red[i] = _mm_add_epi32( |
| + _mm_move_epi64(data->red[i]), |
| + _mm_shuffle_epi32(_mm_move_epi64(data->red[i + 1]), 0x4E)); |
| + data->red[i + 1] = _mm_add_epi32( |
| + _mm_move_epi64(_mm_shuffle_epi32(tmp, 0x4E)), |
| + _mm_shuffle_epi32( |
| + _mm_move_epi64(_mm_shuffle_epi32(data->red[i + 1], 0x4E)), 0x4E)); |
| + } |
| + |
| + tmp = data->blue[1]; |
| + data->blue[1] = data->blue[2]; |
| + data->blue[2] = tmp; |
| + |
| + tmp = data->green[1]; |
| + data->green[1] = data->green[2]; |
| + data->green[2] = tmp; |
| + |
| + tmp = data->red[1]; |
| + data->red[1] = data->red[2]; |
| + data->red[2] = tmp; |
| + } |
| + |
| + // Compute luminance for the first sub block. |
| + ComputeLuminance(dst, sub_block_avg[sub_block_off_0], 0, |
| + g_idx_to_num[sub_block_off_0], data, |
| + SetETC1MaxError(expected_errors[0])); |
| + // Compute luminance for the second sub block. |
| + ComputeLuminance(dst, sub_block_avg[sub_block_off_1], 1, |
| + g_idx_to_num[sub_block_off_1], data, |
| + SetETC1MaxError(expected_errors[1])); |
| +} |
| + |
| +static void ExtractBlock(uint8_t* dst, const uint8_t* src, int width) { |
| + for (int j = 0; j < 4; ++j) { |
| + memcpy(&dst[j * 4 * 4], src, 4 * 4); |
| + src += width * 4; |
| + } |
| +} |
| + |
| +inline bool TransposeBlock(uint8_t* block, __m128i* transposed) { |
| + // This function transforms an incommig block of RGBA or GBRA pixels into 4 |
| + // registers, each containing the data corresponding for a single channel. |
| + // Ex: transposed[0] will have all the R values for a RGBA block, |
| + // transposed[1] will have G, etc. |
| + // The values are packed as 8 bit unsigned values in the SSE registers. |
| + |
| + // Before doing any work we check if the block is solid. |
| + __m128i tmp3, tmp2, tmp1, tmp0; |
| + __m128i test_solid = _mm_set1_epi32(*((uint32_t*)block)); |
| + uint16_t mask = 0xFFFF; |
| + |
| + // a0,a1,a2,...a7, ...a15 |
| + transposed[0] = _mm_loadu_si128((__m128i*)(block)); |
| + // b0, b1,b2,...b7.... b15 |
| + transposed[1] = _mm_loadu_si128((__m128i*)(block + 16)); |
| + // c0, c1,c2,...c7....c15 |
| + transposed[2] = _mm_loadu_si128((__m128i*)(block + 32)); |
| + // d0,d1,d2,...d7....d15 |
| + transposed[3] = _mm_loadu_si128((__m128i*)(block + 48)); |
| + |
| + for (int i = 0; i < 4; i++) { |
| + mask &= _mm_movemask_epi8(_mm_cmpeq_epi8(transposed[i], test_solid)); |
| + } |
| + |
| + if (mask == 0xFFFF) { |
| + // Block is solid, no need to do any more work. |
| + return false; |
| + } |
| + |
| + // a0,b0, a1,b1, a2,b2, a3,b3,....a7,b7 |
| + tmp0 = _mm_unpacklo_epi8(transposed[0], transposed[1]); |
| + // c0,d0, c1,d1, c2,d2, c3,d3,... c7,d7 |
| + tmp1 = _mm_unpacklo_epi8(transposed[2], transposed[3]); |
| + // a8,b8, a9,b9, a10,b10, a11,b11,...a15,b15 |
| + tmp2 = _mm_unpackhi_epi8(transposed[0], transposed[1]); |
| + // c8,d8, c9,d9, c10,d10, c11,d11,...c15,d15 |
| + tmp3 = _mm_unpackhi_epi8(transposed[2], transposed[3]); |
| + |
| + // a0,a8, b0,b8, a1,a9, b1,b9, ....a3,a11, b3,b11 |
| + transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2); |
| + // a4,a12, b4,b12, a5,a13, b5,b13,....a7,a15,b7,b15 |
| + transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2); |
| + // c0,c8, d0,d8, c1,c9, d1,d9.....d3,d11 |
| + transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3); |
| + // c4,c12,d4,d12, c5,c13, d5,d13,....d7,d15 |
| + transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3); |
| + |
| + // a0,a8, b0,b8, c0,c8, d0,d8, a1,a9, b1,b9, c1,c9, d1,d9 |
| + tmp0 = _mm_unpacklo_epi32(transposed[0], transposed[2]); |
| + // a2,a10, b2,b10, c2,c10, d2,d10, a3,a11, b3,b11, c3,c11, d3,d11 |
| + tmp1 = _mm_unpackhi_epi32(transposed[0], transposed[2]); |
| + // a4,a12, b4,b12, c4,c12, d4,d12, a5,a13, b5,b13, c5,c13, d5,d13 |
| + tmp2 = _mm_unpacklo_epi32(transposed[1], transposed[3]); |
| + // a6,a14, b6,b14, c6,c14, d6,d14, a7,a15, b7,b15, c7,c15, d7,d15 |
| + tmp3 = _mm_unpackhi_epi32(transposed[1], transposed[3]); |
| + |
| + // a0,a4, a8,a12, b0,b4, b8,b12, c0,c4, c8,c12, d0,d4, d8,d12 |
| + transposed[0] = _mm_unpacklo_epi8(tmp0, tmp2); |
| + // a1,a5, a9,a13, b1,b5, b9,b13, c1,c5, c9,c13, d1,d5, d9,d13 |
| + transposed[1] = _mm_unpackhi_epi8(tmp0, tmp2); |
| + // a2,a6, a10,a14, b2,b6, b10,b14, c2,c6, c10,c14, d2,d6, d10,d14 |
| + transposed[2] = _mm_unpacklo_epi8(tmp1, tmp3); |
| + // a3,a7, a11,a15, b3,b7, b11,b15, c3,c7, c11,c15, d3,d7, d11,d15 |
| + transposed[3] = _mm_unpackhi_epi8(tmp1, tmp3); |
| + |
| + return true; |
| +} |
| + |
| +inline void UnpackBlock(__m128i* packed, |
| + __m128i* red, |
| + __m128i* green, |
| + __m128i* blue, |
| + __m128i* alpha) { |
| + const __m128i zero = _mm_set1_epi8(0); |
| + __m128i tmp_low, tmp_high; |
| + |
| + // Unpack red. |
| + tmp_low = _mm_unpacklo_epi8(packed[0], zero); |
| + tmp_high = _mm_unpackhi_epi8(packed[0], zero); |
| + |
| + red[0] = _mm_unpacklo_epi16(tmp_low, zero); |
| + red[1] = _mm_unpackhi_epi16(tmp_low, zero); |
| + |
| + red[2] = _mm_unpacklo_epi16(tmp_high, zero); |
| + red[3] = _mm_unpackhi_epi16(tmp_high, zero); |
| + |
| + // Unpack green. |
| + tmp_low = _mm_unpacklo_epi8(packed[1], zero); |
| + tmp_high = _mm_unpackhi_epi8(packed[1], zero); |
| + |
| + green[0] = _mm_unpacklo_epi16(tmp_low, zero); |
| + green[1] = _mm_unpackhi_epi16(tmp_low, zero); |
| + |
| + green[2] = _mm_unpacklo_epi16(tmp_high, zero); |
| + green[3] = _mm_unpackhi_epi16(tmp_high, zero); |
| + |
| + // Unpack blue. |
| + tmp_low = _mm_unpacklo_epi8(packed[2], zero); |
| + tmp_high = _mm_unpackhi_epi8(packed[2], zero); |
| + |
| + blue[0] = _mm_unpacklo_epi16(tmp_low, zero); |
| + blue[1] = _mm_unpackhi_epi16(tmp_low, zero); |
| + |
| + blue[2] = _mm_unpacklo_epi16(tmp_high, zero); |
| + blue[3] = _mm_unpackhi_epi16(tmp_high, zero); |
| + |
| + // Unpack alpha - unused for ETC1. |
| + tmp_low = _mm_unpacklo_epi8(packed[3], zero); |
| + tmp_high = _mm_unpackhi_epi8(packed[3], zero); |
| + |
| + alpha[0] = _mm_unpacklo_epi16(tmp_low, zero); |
| + alpha[1] = _mm_unpackhi_epi16(tmp_low, zero); |
| + |
| + alpha[2] = _mm_unpacklo_epi16(tmp_high, zero); |
| + alpha[3] = _mm_unpackhi_epi16(tmp_high, zero); |
| +} |
| + |
| +inline void CompressSolid(uint8_t* dst, uint8_t* block) { |
| + // Clear destination buffer so that we can "or" in the results. |
| + memset(dst, 0, 8); |
| + |
| + const float src_color_float[3] = {static_cast<float>(block[0]), |
| + static_cast<float>(block[1]), |
| + static_cast<float>(block[2])}; |
| + const Color base = MakeColor555(src_color_float); |
| + const __m128i base_v = |
| + _mm_set_epi32(0, base.channels.r, base.channels.g, base.channels.b); |
| + |
| + const __m128i constant = _mm_set_epi32(0, block[2], block[1], block[0]); |
| + __m128i lum; |
| + __m128i colors[4]; |
| + static const __m128i rgb = |
| + _mm_set_epi32(0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); |
| + |
| + WriteDiff(dst, true); |
| + WriteFlip(dst, false); |
| + |
| + WriteColors555(dst, base, base); |
| + |
| + uint8_t best_tbl_idx = 0; |
| + uint8_t best_mod_idx = 0; |
| + uint32_t best_mod_err = INT32_MAX; |
| + |
| + for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) { |
| + lum = _mm_set_epi32( |
| + g_codeword_tables[tbl_idx][3], g_codeword_tables[tbl_idx][2], |
| + g_codeword_tables[tbl_idx][1], g_codeword_tables[tbl_idx][0]); |
| + colors[0] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0x0)); |
| + colors[1] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0x55)); |
| + colors[2] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0xAA)); |
| + colors[3] = AddAndClamp(base_v, _mm_shuffle_epi32(lum, 0xFF)); |
| + |
| + for (int i = 0; i < 4; i++) { |
| + uint32_t mod_err = |
| + SumSSE(GetColorErrorSSE(constant, _mm_and_si128(colors[i], rgb))); |
| + colors[i] = _mm_and_si128(colors[i], rgb); |
| + if (mod_err < best_mod_err) { |
| + best_tbl_idx = tbl_idx; |
| + best_mod_idx = i; |
| + best_mod_err = mod_err; |
| + |
| + if (mod_err == 0) { |
| + break; // We cannot do any better than this. |
| + } |
| + } |
| + } |
| + } |
| + |
| + WriteCodewordTable(dst, 0, best_tbl_idx); |
| + WriteCodewordTable(dst, 1, best_tbl_idx); |
| + |
| + uint8_t pix_idx = g_mod_to_pix[best_mod_idx]; |
| + uint32_t lsb = pix_idx & 0x1; |
| + uint32_t msb = pix_idx >> 1; |
| + |
| + uint32_t pix_data = 0; |
| + for (unsigned int i = 0; i < 2; ++i) { |
| + for (unsigned int j = 0; j < 8; ++j) { |
| + // Obtain the texel number as specified in the standard. |
| + int texel_num = g_idx_to_num[i][j]; |
| + pix_data |= msb << (texel_num + 16); |
| + pix_data |= lsb << (texel_num); |
| + } |
| + } |
| + |
| + WritePixelData(dst, pix_data); |
| +} |
| + |
| +} // namespace |
| + |
| +void TextureCompressorETC1SSE::Compress(const uint8_t* src, |
| + uint8_t* dst, |
| + int width, |
| + int height, |
| + Quality quality) { |
| + DCHECK_GE(width, 4); |
| + DCHECK_EQ((width & 3), 0); |
| + DCHECK_GE(height, 4); |
| + DCHECK_EQ((height & 3), 0); |
| + |
| + ALIGNAS(16) uint8_t block[64]; |
| + __m128i packed[4]; |
| + __m128i red[4], green[4], blue[4], alpha[4]; |
| + __sse_data data; |
| + |
| + for (int y = 0; y < height; y += 4, src += width * 4 * 4) { |
| + for (int x = 0; x < width; x += 4, dst += 8) { |
| + ExtractBlock(block, src + x * 4, width); |
| + if (TransposeBlock(block, packed) == false) { |
| + CompressSolid(dst, block); |
| + } else { |
| + UnpackBlock(packed, blue, green, red, alpha); |
| + |
| + data.block = block; |
| + data.packed = packed; |
| + data.red = red; |
| + data.blue = blue; |
| + data.green = green; |
| + |
| + CompressBlock(dst, &data); |
| + } |
| + } |
| + } |
| +} |
| + |
| +} // namespace cc |