| Index: ui/gfx/quad_f.cc
|
| diff --git a/ui/gfx/quad_f.cc b/ui/gfx/quad_f.cc
|
| deleted file mode 100644
|
| index 2796bf192b26ce1ab943ff295dbf35bdf945590e..0000000000000000000000000000000000000000
|
| --- a/ui/gfx/quad_f.cc
|
| +++ /dev/null
|
| @@ -1,127 +0,0 @@
|
| -// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "ui/gfx/quad_f.h"
|
| -
|
| -#include <limits>
|
| -
|
| -#include "base/strings/stringprintf.h"
|
| -
|
| -namespace gfx {
|
| -
|
| -void QuadF::operator=(const RectF& rect) {
|
| - p1_ = PointF(rect.x(), rect.y());
|
| - p2_ = PointF(rect.right(), rect.y());
|
| - p3_ = PointF(rect.right(), rect.bottom());
|
| - p4_ = PointF(rect.x(), rect.bottom());
|
| -}
|
| -
|
| -std::string QuadF::ToString() const {
|
| - return base::StringPrintf("%s;%s;%s;%s",
|
| - p1_.ToString().c_str(),
|
| - p2_.ToString().c_str(),
|
| - p3_.ToString().c_str(),
|
| - p4_.ToString().c_str());
|
| -}
|
| -
|
| -static inline bool WithinEpsilon(float a, float b) {
|
| - return std::abs(a - b) < std::numeric_limits<float>::epsilon();
|
| -}
|
| -
|
| -bool QuadF::IsRectilinear() const {
|
| - return
|
| - (WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) &&
|
| - WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) ||
|
| - (WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) &&
|
| - WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x()));
|
| -}
|
| -
|
| -bool QuadF::IsCounterClockwise() const {
|
| - // This math computes the signed area of the quad. Positive area
|
| - // indicates the quad is clockwise; negative area indicates the quad is
|
| - // counter-clockwise. Note carefully: this is backwards from conventional
|
| - // math because our geometric space uses screen coordiantes with y-axis
|
| - // pointing downards.
|
| - // Reference: http://mathworld.wolfram.com/PolygonArea.html
|
| -
|
| - // Up-cast to double so this cannot overflow.
|
| - double determinant1 = static_cast<double>(p1_.x()) * p2_.y()
|
| - - static_cast<double>(p2_.x()) * p1_.y();
|
| - double determinant2 = static_cast<double>(p2_.x()) * p3_.y()
|
| - - static_cast<double>(p3_.x()) * p2_.y();
|
| - double determinant3 = static_cast<double>(p3_.x()) * p4_.y()
|
| - - static_cast<double>(p4_.x()) * p3_.y();
|
| - double determinant4 = static_cast<double>(p4_.x()) * p1_.y()
|
| - - static_cast<double>(p1_.x()) * p4_.y();
|
| -
|
| - return determinant1 + determinant2 + determinant3 + determinant4 < 0;
|
| -}
|
| -
|
| -static inline bool PointIsInTriangle(const PointF& point,
|
| - const PointF& r1,
|
| - const PointF& r2,
|
| - const PointF& r3) {
|
| - // Compute the barycentric coordinates of |point| relative to the triangle
|
| - // (r1, r2, r3). This algorithm comes from Christer Ericson's Real-Time
|
| - // Collision Detection.
|
| - Vector2dF v0 = r2 - r1;
|
| - Vector2dF v1 = r3 - r1;
|
| - Vector2dF v2 = point - r1;
|
| -
|
| - double dot00 = DotProduct(v0, v0);
|
| - double dot01 = DotProduct(v0, v1);
|
| - double dot11 = DotProduct(v1, v1);
|
| - double dot20 = DotProduct(v2, v0);
|
| - double dot21 = DotProduct(v2, v1);
|
| -
|
| - double denom = dot00 * dot11 - dot01 * dot01;
|
| -
|
| - double v = (dot11 * dot20 - dot01 * dot21) / denom;
|
| - double w = (dot00 * dot21 - dot01 * dot20) / denom;
|
| - double u = 1 - v - w;
|
| -
|
| - // Use the barycentric coordinates to test if |point| is inside the
|
| - // triangle (r1, r2, r2).
|
| - return (v >= 0) && (w >= 0) && (u >= 0);
|
| -}
|
| -
|
| -bool QuadF::Contains(const PointF& point) const {
|
| - return PointIsInTriangle(point, p1_, p2_, p3_)
|
| - || PointIsInTriangle(point, p1_, p3_, p4_);
|
| -}
|
| -
|
| -void QuadF::Scale(float x_scale, float y_scale) {
|
| - p1_.Scale(x_scale, y_scale);
|
| - p2_.Scale(x_scale, y_scale);
|
| - p3_.Scale(x_scale, y_scale);
|
| - p4_.Scale(x_scale, y_scale);
|
| -}
|
| -
|
| -void QuadF::operator+=(const Vector2dF& rhs) {
|
| - p1_ += rhs;
|
| - p2_ += rhs;
|
| - p3_ += rhs;
|
| - p4_ += rhs;
|
| -}
|
| -
|
| -void QuadF::operator-=(const Vector2dF& rhs) {
|
| - p1_ -= rhs;
|
| - p2_ -= rhs;
|
| - p3_ -= rhs;
|
| - p4_ -= rhs;
|
| -}
|
| -
|
| -QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) {
|
| - QuadF result = lhs;
|
| - result += rhs;
|
| - return result;
|
| -}
|
| -
|
| -QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) {
|
| - QuadF result = lhs;
|
| - result -= rhs;
|
| - return result;
|
| -}
|
| -
|
| -} // namespace gfx
|
|
|