| Index: ui/gfx/matrix3_f.cc
|
| diff --git a/ui/gfx/matrix3_f.cc b/ui/gfx/matrix3_f.cc
|
| deleted file mode 100644
|
| index 562fdb3a96470aeb50a516e72c08a2fd0e43f8f4..0000000000000000000000000000000000000000
|
| --- a/ui/gfx/matrix3_f.cc
|
| +++ /dev/null
|
| @@ -1,237 +0,0 @@
|
| -// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "ui/gfx/matrix3_f.h"
|
| -
|
| -#include <algorithm>
|
| -#include <cmath>
|
| -#include <limits>
|
| -
|
| -#ifndef M_PI
|
| -#define M_PI 3.14159265358979323846
|
| -#endif
|
| -
|
| -namespace {
|
| -
|
| -// This is only to make accessing indices self-explanatory.
|
| -enum MatrixCoordinates {
|
| - M00,
|
| - M01,
|
| - M02,
|
| - M10,
|
| - M11,
|
| - M12,
|
| - M20,
|
| - M21,
|
| - M22,
|
| - M_END
|
| -};
|
| -
|
| -template<typename T>
|
| -double Determinant3x3(T data[M_END]) {
|
| - // This routine is separated from the Matrix3F::Determinant because in
|
| - // computing inverse we do want higher precision afforded by the explicit
|
| - // use of 'double'.
|
| - return
|
| - static_cast<double>(data[M00]) * (
|
| - static_cast<double>(data[M11]) * data[M22] -
|
| - static_cast<double>(data[M12]) * data[M21]) +
|
| - static_cast<double>(data[M01]) * (
|
| - static_cast<double>(data[M12]) * data[M20] -
|
| - static_cast<double>(data[M10]) * data[M22]) +
|
| - static_cast<double>(data[M02]) * (
|
| - static_cast<double>(data[M10]) * data[M21] -
|
| - static_cast<double>(data[M11]) * data[M20]);
|
| -}
|
| -
|
| -} // namespace
|
| -
|
| -namespace gfx {
|
| -
|
| -Matrix3F::Matrix3F() {
|
| -}
|
| -
|
| -Matrix3F::~Matrix3F() {
|
| -}
|
| -
|
| -// static
|
| -Matrix3F Matrix3F::Zeros() {
|
| - Matrix3F matrix;
|
| - matrix.set(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
|
| - return matrix;
|
| -}
|
| -
|
| -// static
|
| -Matrix3F Matrix3F::Ones() {
|
| - Matrix3F matrix;
|
| - matrix.set(1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f);
|
| - return matrix;
|
| -}
|
| -
|
| -// static
|
| -Matrix3F Matrix3F::Identity() {
|
| - Matrix3F matrix;
|
| - matrix.set(1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
|
| - return matrix;
|
| -}
|
| -
|
| -// static
|
| -Matrix3F Matrix3F::FromOuterProduct(const Vector3dF& a, const Vector3dF& bt) {
|
| - Matrix3F matrix;
|
| - matrix.set(a.x() * bt.x(), a.x() * bt.y(), a.x() * bt.z(),
|
| - a.y() * bt.x(), a.y() * bt.y(), a.y() * bt.z(),
|
| - a.z() * bt.x(), a.z() * bt.y(), a.z() * bt.z());
|
| - return matrix;
|
| -}
|
| -
|
| -bool Matrix3F::IsEqual(const Matrix3F& rhs) const {
|
| - return 0 == memcmp(data_, rhs.data_, sizeof(data_));
|
| -}
|
| -
|
| -bool Matrix3F::IsNear(const Matrix3F& rhs, float precision) const {
|
| - DCHECK(precision >= 0);
|
| - for (int i = 0; i < M_END; ++i) {
|
| - if (std::abs(data_[i] - rhs.data_[i]) > precision)
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -Matrix3F Matrix3F::Inverse() const {
|
| - Matrix3F inverse = Matrix3F::Zeros();
|
| - double determinant = Determinant3x3(data_);
|
| - if (std::numeric_limits<float>::epsilon() > std::abs(determinant))
|
| - return inverse; // Singular matrix. Return Zeros().
|
| -
|
| - inverse.set(
|
| - (data_[M11] * data_[M22] - data_[M12] * data_[M21]) / determinant,
|
| - (data_[M02] * data_[M21] - data_[M01] * data_[M22]) / determinant,
|
| - (data_[M01] * data_[M12] - data_[M02] * data_[M11]) / determinant,
|
| - (data_[M12] * data_[M20] - data_[M10] * data_[M22]) / determinant,
|
| - (data_[M00] * data_[M22] - data_[M02] * data_[M20]) / determinant,
|
| - (data_[M02] * data_[M10] - data_[M00] * data_[M12]) / determinant,
|
| - (data_[M10] * data_[M21] - data_[M11] * data_[M20]) / determinant,
|
| - (data_[M01] * data_[M20] - data_[M00] * data_[M21]) / determinant,
|
| - (data_[M00] * data_[M11] - data_[M01] * data_[M10]) / determinant);
|
| - return inverse;
|
| -}
|
| -
|
| -float Matrix3F::Determinant() const {
|
| - return static_cast<float>(Determinant3x3(data_));
|
| -}
|
| -
|
| -Vector3dF Matrix3F::SolveEigenproblem(Matrix3F* eigenvectors) const {
|
| - // The matrix must be symmetric.
|
| - const float epsilon = std::numeric_limits<float>::epsilon();
|
| - if (std::abs(data_[M01] - data_[M10]) > epsilon ||
|
| - std::abs(data_[M02] - data_[M20]) > epsilon ||
|
| - std::abs(data_[M12] - data_[M21]) > epsilon) {
|
| - NOTREACHED();
|
| - return Vector3dF();
|
| - }
|
| -
|
| - float eigenvalues[3];
|
| - float p =
|
| - data_[M01] * data_[M01] +
|
| - data_[M02] * data_[M02] +
|
| - data_[M12] * data_[M12];
|
| -
|
| - bool diagonal = std::abs(p) < epsilon;
|
| - if (diagonal) {
|
| - eigenvalues[0] = data_[M00];
|
| - eigenvalues[1] = data_[M11];
|
| - eigenvalues[2] = data_[M22];
|
| - } else {
|
| - float q = Trace() / 3.0f;
|
| - p = (data_[M00] - q) * (data_[M00] - q) +
|
| - (data_[M11] - q) * (data_[M11] - q) +
|
| - (data_[M22] - q) * (data_[M22] - q) +
|
| - 2 * p;
|
| - p = std::sqrt(p / 6);
|
| -
|
| - // The computation below puts B as (A - qI) / p, where A is *this.
|
| - Matrix3F matrix_b(*this);
|
| - matrix_b.data_[M00] -= q;
|
| - matrix_b.data_[M11] -= q;
|
| - matrix_b.data_[M22] -= q;
|
| - for (int i = 0; i < M_END; ++i)
|
| - matrix_b.data_[i] /= p;
|
| -
|
| - double half_det_b = Determinant3x3(matrix_b.data_) / 2.0;
|
| - // half_det_b should be in <-1, 1>, but beware of rounding error.
|
| - double phi = 0.0f;
|
| - if (half_det_b <= -1.0)
|
| - phi = M_PI / 3;
|
| - else if (half_det_b < 1.0)
|
| - phi = acos(half_det_b) / 3;
|
| -
|
| - eigenvalues[0] = q + 2 * p * static_cast<float>(cos(phi));
|
| - eigenvalues[2] = q + 2 * p *
|
| - static_cast<float>(cos(phi + 2.0 * M_PI / 3.0));
|
| - eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2];
|
| - }
|
| -
|
| - // Put eigenvalues in the descending order.
|
| - int indices[3] = {0, 1, 2};
|
| - if (eigenvalues[2] > eigenvalues[1]) {
|
| - std::swap(eigenvalues[2], eigenvalues[1]);
|
| - std::swap(indices[2], indices[1]);
|
| - }
|
| -
|
| - if (eigenvalues[1] > eigenvalues[0]) {
|
| - std::swap(eigenvalues[1], eigenvalues[0]);
|
| - std::swap(indices[1], indices[0]);
|
| - }
|
| -
|
| - if (eigenvalues[2] > eigenvalues[1]) {
|
| - std::swap(eigenvalues[2], eigenvalues[1]);
|
| - std::swap(indices[2], indices[1]);
|
| - }
|
| -
|
| - if (eigenvectors != NULL && diagonal) {
|
| - // Eigenvectors are e-vectors, just need to be sorted accordingly.
|
| - *eigenvectors = Zeros();
|
| - for (int i = 0; i < 3; ++i)
|
| - eigenvectors->set(indices[i], i, 1.0f);
|
| - } else if (eigenvectors != NULL) {
|
| - // Consult the following for a detailed discussion:
|
| - // Joachim Kopp
|
| - // Numerical diagonalization of hermitian 3x3 matrices
|
| - // arXiv.org preprint: physics/0610206
|
| - // Int. J. Mod. Phys. C19 (2008) 523-548
|
| -
|
| - // TODO(motek): expand to handle correctly negative and multiple
|
| - // eigenvalues.
|
| - for (int i = 0; i < 3; ++i) {
|
| - float l = eigenvalues[i];
|
| - // B = A - l * I
|
| - Matrix3F matrix_b(*this);
|
| - matrix_b.data_[M00] -= l;
|
| - matrix_b.data_[M11] -= l;
|
| - matrix_b.data_[M22] -= l;
|
| - Vector3dF e1 = CrossProduct(matrix_b.get_column(0),
|
| - matrix_b.get_column(1));
|
| - Vector3dF e2 = CrossProduct(matrix_b.get_column(1),
|
| - matrix_b.get_column(2));
|
| - Vector3dF e3 = CrossProduct(matrix_b.get_column(2),
|
| - matrix_b.get_column(0));
|
| -
|
| - // e1, e2 and e3 should point in the same direction.
|
| - if (DotProduct(e1, e2) < 0)
|
| - e2 = -e2;
|
| -
|
| - if (DotProduct(e1, e3) < 0)
|
| - e3 = -e3;
|
| -
|
| - Vector3dF eigvec = e1 + e2 + e3;
|
| - // Normalize.
|
| - eigvec.Scale(1.0f / eigvec.Length());
|
| - eigenvectors->set_column(i, eigvec);
|
| - }
|
| - }
|
| -
|
| - return Vector3dF(eigenvalues[0], eigenvalues[1], eigenvalues[2]);
|
| -}
|
| -
|
| -} // namespace gfx
|
|
|