| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include <cmath> | |
| 6 #include <limits> | |
| 7 | |
| 8 #include "base/basictypes.h" | |
| 9 #include "testing/gtest/include/gtest/gtest.h" | |
| 10 #include "ui/gfx/matrix3_f.h" | |
| 11 | |
| 12 namespace gfx { | |
| 13 namespace { | |
| 14 | |
| 15 TEST(Matrix3fTest, Constructors) { | |
| 16 Matrix3F zeros = Matrix3F::Zeros(); | |
| 17 Matrix3F ones = Matrix3F::Ones(); | |
| 18 Matrix3F identity = Matrix3F::Identity(); | |
| 19 | |
| 20 Matrix3F product_ones = Matrix3F::FromOuterProduct( | |
| 21 Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(1.0f, 1.0f, 1.0f)); | |
| 22 Matrix3F product_zeros = Matrix3F::FromOuterProduct( | |
| 23 Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(0.0f, 0.0f, 0.0f)); | |
| 24 EXPECT_EQ(ones, product_ones); | |
| 25 EXPECT_EQ(zeros, product_zeros); | |
| 26 | |
| 27 for (int i = 0; i < 3; ++i) { | |
| 28 for (int j = 0; j < 3; ++j) | |
| 29 EXPECT_EQ(i == j ? 1.0f : 0.0f, identity.get(i, j)); | |
| 30 } | |
| 31 } | |
| 32 | |
| 33 TEST(Matrix3fTest, DataAccess) { | |
| 34 Matrix3F matrix = Matrix3F::Ones(); | |
| 35 Matrix3F identity = Matrix3F::Identity(); | |
| 36 | |
| 37 EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), identity.get_column(1)); | |
| 38 matrix.set(0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f); | |
| 39 EXPECT_EQ(Vector3dF(2.0f, 5.0f, 8.0f), matrix.get_column(2)); | |
| 40 matrix.set_column(0, Vector3dF(0.1f, 0.2f, 0.3f)); | |
| 41 EXPECT_EQ(Vector3dF(0.1f, 0.2f, 0.3f), matrix.get_column(0)); | |
| 42 | |
| 43 EXPECT_EQ(0.1f, matrix.get(0, 0)); | |
| 44 EXPECT_EQ(5.0f, matrix.get(1, 2)); | |
| 45 } | |
| 46 | |
| 47 TEST(Matrix3fTest, Determinant) { | |
| 48 EXPECT_EQ(1.0f, Matrix3F::Identity().Determinant()); | |
| 49 EXPECT_EQ(0.0f, Matrix3F::Zeros().Determinant()); | |
| 50 EXPECT_EQ(0.0f, Matrix3F::Ones().Determinant()); | |
| 51 | |
| 52 // Now for something non-trivial... | |
| 53 Matrix3F matrix = Matrix3F::Zeros(); | |
| 54 matrix.set(0, 5, 6, 8, 7, 0, 1, 9, 0); | |
| 55 EXPECT_EQ(390.0f, matrix.Determinant()); | |
| 56 matrix.set(2, 0, 3 * matrix.get(0, 0)); | |
| 57 matrix.set(2, 1, 3 * matrix.get(0, 1)); | |
| 58 matrix.set(2, 2, 3 * matrix.get(0, 2)); | |
| 59 EXPECT_EQ(0, matrix.Determinant()); | |
| 60 | |
| 61 matrix.set(0.57f, 0.205f, 0.942f, | |
| 62 0.314f, 0.845f, 0.826f, | |
| 63 0.131f, 0.025f, 0.962f); | |
| 64 EXPECT_NEAR(0.3149f, matrix.Determinant(), 0.0001f); | |
| 65 } | |
| 66 | |
| 67 TEST(Matrix3fTest, Inverse) { | |
| 68 Matrix3F identity = Matrix3F::Identity(); | |
| 69 Matrix3F inv_identity = identity.Inverse(); | |
| 70 EXPECT_EQ(identity, inv_identity); | |
| 71 | |
| 72 Matrix3F singular = Matrix3F::Zeros(); | |
| 73 singular.set(1.0f, 3.0f, 4.0f, | |
| 74 2.0f, 11.0f, 5.0f, | |
| 75 0.5f, 1.5f, 2.0f); | |
| 76 EXPECT_EQ(0, singular.Determinant()); | |
| 77 EXPECT_EQ(Matrix3F::Zeros(), singular.Inverse()); | |
| 78 | |
| 79 Matrix3F regular = Matrix3F::Zeros(); | |
| 80 regular.set(0.57f, 0.205f, 0.942f, | |
| 81 0.314f, 0.845f, 0.826f, | |
| 82 0.131f, 0.025f, 0.962f); | |
| 83 Matrix3F inv_regular = regular.Inverse(); | |
| 84 regular.set(2.51540616f, -0.55138018f, -1.98968043f, | |
| 85 -0.61552266f, 1.34920184f, -0.55573636f, | |
| 86 -0.32653861f, 0.04002158f, 1.32488726f); | |
| 87 EXPECT_TRUE(regular.IsNear(inv_regular, 0.00001f)); | |
| 88 } | |
| 89 | |
| 90 TEST(Matrix3fTest, EigenvectorsIdentity) { | |
| 91 // This block tests the trivial case of eigenvalues of the identity matrix. | |
| 92 Matrix3F identity = Matrix3F::Identity(); | |
| 93 Vector3dF eigenvals = identity.SolveEigenproblem(NULL); | |
| 94 EXPECT_EQ(Vector3dF(1.0f, 1.0f, 1.0f), eigenvals); | |
| 95 } | |
| 96 | |
| 97 TEST(Matrix3fTest, EigenvectorsDiagonal) { | |
| 98 // This block tests the another trivial case of eigenvalues of a diagonal | |
| 99 // matrix. Here we expect values to be sorted. | |
| 100 Matrix3F matrix = Matrix3F::Zeros(); | |
| 101 matrix.set(0, 0, 1.0f); | |
| 102 matrix.set(1, 1, -2.5f); | |
| 103 matrix.set(2, 2, 3.14f); | |
| 104 Matrix3F eigenvectors = Matrix3F::Zeros(); | |
| 105 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); | |
| 106 EXPECT_EQ(Vector3dF(3.14f, 1.0f, -2.5f), eigenvals); | |
| 107 | |
| 108 EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0)); | |
| 109 EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1)); | |
| 110 EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2)); | |
| 111 } | |
| 112 | |
| 113 TEST(Matrix3fTest, EigenvectorsNiceNotPositive) { | |
| 114 // This block tests computation of eigenvectors of a matrix where nice | |
| 115 // round values are expected. | |
| 116 Matrix3F matrix = Matrix3F::Zeros(); | |
| 117 // This is not a positive-definite matrix but eigenvalues and the first | |
| 118 // eigenvector should nonetheless be computed correctly. | |
| 119 matrix.set(3, 2, 4, 2, 0, 2, 4, 2, 3); | |
| 120 Matrix3F eigenvectors = Matrix3F::Zeros(); | |
| 121 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); | |
| 122 EXPECT_EQ(Vector3dF(8.0f, -1.0f, -1.0f), eigenvals); | |
| 123 | |
| 124 Vector3dF expected_principal(0.66666667f, 0.33333333f, 0.66666667f); | |
| 125 EXPECT_NEAR(0.0f, | |
| 126 (expected_principal - eigenvectors.get_column(0)).Length(), | |
| 127 0.000001f); | |
| 128 } | |
| 129 | |
| 130 TEST(Matrix3fTest, EigenvectorsPositiveDefinite) { | |
| 131 // This block tests computation of eigenvectors of a matrix where output | |
| 132 // is not as nice as above, but it actually meets the definition. | |
| 133 Matrix3F matrix = Matrix3F::Zeros(); | |
| 134 Matrix3F eigenvectors = Matrix3F::Zeros(); | |
| 135 Matrix3F expected_eigenvectors = Matrix3F::Zeros(); | |
| 136 matrix.set(1, -1, 2, -1, 4, 5, 2, 5, 0); | |
| 137 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); | |
| 138 Vector3dF expected_eigv(7.3996266f, 1.91197255f, -4.31159915f); | |
| 139 expected_eigv -= eigenvals; | |
| 140 EXPECT_NEAR(0, expected_eigv.LengthSquared(), 0.00001f); | |
| 141 expected_eigenvectors.set(0.04926317f, -0.92135662f, -0.38558414f, | |
| 142 0.82134249f, 0.25703273f, -0.50924521f, | |
| 143 0.56830419f, -0.2916096f, 0.76941158f); | |
| 144 EXPECT_TRUE(expected_eigenvectors.IsNear(eigenvectors, 0.00001f)); | |
| 145 } | |
| 146 | |
| 147 } | |
| 148 } | |
| OLD | NEW |