OLD | NEW |
| (Empty) |
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <cmath> | |
6 #include <limits> | |
7 | |
8 #include "base/basictypes.h" | |
9 #include "testing/gtest/include/gtest/gtest.h" | |
10 #include "ui/gfx/matrix3_f.h" | |
11 | |
12 namespace gfx { | |
13 namespace { | |
14 | |
15 TEST(Matrix3fTest, Constructors) { | |
16 Matrix3F zeros = Matrix3F::Zeros(); | |
17 Matrix3F ones = Matrix3F::Ones(); | |
18 Matrix3F identity = Matrix3F::Identity(); | |
19 | |
20 Matrix3F product_ones = Matrix3F::FromOuterProduct( | |
21 Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(1.0f, 1.0f, 1.0f)); | |
22 Matrix3F product_zeros = Matrix3F::FromOuterProduct( | |
23 Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(0.0f, 0.0f, 0.0f)); | |
24 EXPECT_EQ(ones, product_ones); | |
25 EXPECT_EQ(zeros, product_zeros); | |
26 | |
27 for (int i = 0; i < 3; ++i) { | |
28 for (int j = 0; j < 3; ++j) | |
29 EXPECT_EQ(i == j ? 1.0f : 0.0f, identity.get(i, j)); | |
30 } | |
31 } | |
32 | |
33 TEST(Matrix3fTest, DataAccess) { | |
34 Matrix3F matrix = Matrix3F::Ones(); | |
35 Matrix3F identity = Matrix3F::Identity(); | |
36 | |
37 EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), identity.get_column(1)); | |
38 matrix.set(0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f); | |
39 EXPECT_EQ(Vector3dF(2.0f, 5.0f, 8.0f), matrix.get_column(2)); | |
40 matrix.set_column(0, Vector3dF(0.1f, 0.2f, 0.3f)); | |
41 EXPECT_EQ(Vector3dF(0.1f, 0.2f, 0.3f), matrix.get_column(0)); | |
42 | |
43 EXPECT_EQ(0.1f, matrix.get(0, 0)); | |
44 EXPECT_EQ(5.0f, matrix.get(1, 2)); | |
45 } | |
46 | |
47 TEST(Matrix3fTest, Determinant) { | |
48 EXPECT_EQ(1.0f, Matrix3F::Identity().Determinant()); | |
49 EXPECT_EQ(0.0f, Matrix3F::Zeros().Determinant()); | |
50 EXPECT_EQ(0.0f, Matrix3F::Ones().Determinant()); | |
51 | |
52 // Now for something non-trivial... | |
53 Matrix3F matrix = Matrix3F::Zeros(); | |
54 matrix.set(0, 5, 6, 8, 7, 0, 1, 9, 0); | |
55 EXPECT_EQ(390.0f, matrix.Determinant()); | |
56 matrix.set(2, 0, 3 * matrix.get(0, 0)); | |
57 matrix.set(2, 1, 3 * matrix.get(0, 1)); | |
58 matrix.set(2, 2, 3 * matrix.get(0, 2)); | |
59 EXPECT_EQ(0, matrix.Determinant()); | |
60 | |
61 matrix.set(0.57f, 0.205f, 0.942f, | |
62 0.314f, 0.845f, 0.826f, | |
63 0.131f, 0.025f, 0.962f); | |
64 EXPECT_NEAR(0.3149f, matrix.Determinant(), 0.0001f); | |
65 } | |
66 | |
67 TEST(Matrix3fTest, Inverse) { | |
68 Matrix3F identity = Matrix3F::Identity(); | |
69 Matrix3F inv_identity = identity.Inverse(); | |
70 EXPECT_EQ(identity, inv_identity); | |
71 | |
72 Matrix3F singular = Matrix3F::Zeros(); | |
73 singular.set(1.0f, 3.0f, 4.0f, | |
74 2.0f, 11.0f, 5.0f, | |
75 0.5f, 1.5f, 2.0f); | |
76 EXPECT_EQ(0, singular.Determinant()); | |
77 EXPECT_EQ(Matrix3F::Zeros(), singular.Inverse()); | |
78 | |
79 Matrix3F regular = Matrix3F::Zeros(); | |
80 regular.set(0.57f, 0.205f, 0.942f, | |
81 0.314f, 0.845f, 0.826f, | |
82 0.131f, 0.025f, 0.962f); | |
83 Matrix3F inv_regular = regular.Inverse(); | |
84 regular.set(2.51540616f, -0.55138018f, -1.98968043f, | |
85 -0.61552266f, 1.34920184f, -0.55573636f, | |
86 -0.32653861f, 0.04002158f, 1.32488726f); | |
87 EXPECT_TRUE(regular.IsNear(inv_regular, 0.00001f)); | |
88 } | |
89 | |
90 TEST(Matrix3fTest, EigenvectorsIdentity) { | |
91 // This block tests the trivial case of eigenvalues of the identity matrix. | |
92 Matrix3F identity = Matrix3F::Identity(); | |
93 Vector3dF eigenvals = identity.SolveEigenproblem(NULL); | |
94 EXPECT_EQ(Vector3dF(1.0f, 1.0f, 1.0f), eigenvals); | |
95 } | |
96 | |
97 TEST(Matrix3fTest, EigenvectorsDiagonal) { | |
98 // This block tests the another trivial case of eigenvalues of a diagonal | |
99 // matrix. Here we expect values to be sorted. | |
100 Matrix3F matrix = Matrix3F::Zeros(); | |
101 matrix.set(0, 0, 1.0f); | |
102 matrix.set(1, 1, -2.5f); | |
103 matrix.set(2, 2, 3.14f); | |
104 Matrix3F eigenvectors = Matrix3F::Zeros(); | |
105 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); | |
106 EXPECT_EQ(Vector3dF(3.14f, 1.0f, -2.5f), eigenvals); | |
107 | |
108 EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0)); | |
109 EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1)); | |
110 EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2)); | |
111 } | |
112 | |
113 TEST(Matrix3fTest, EigenvectorsNiceNotPositive) { | |
114 // This block tests computation of eigenvectors of a matrix where nice | |
115 // round values are expected. | |
116 Matrix3F matrix = Matrix3F::Zeros(); | |
117 // This is not a positive-definite matrix but eigenvalues and the first | |
118 // eigenvector should nonetheless be computed correctly. | |
119 matrix.set(3, 2, 4, 2, 0, 2, 4, 2, 3); | |
120 Matrix3F eigenvectors = Matrix3F::Zeros(); | |
121 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); | |
122 EXPECT_EQ(Vector3dF(8.0f, -1.0f, -1.0f), eigenvals); | |
123 | |
124 Vector3dF expected_principal(0.66666667f, 0.33333333f, 0.66666667f); | |
125 EXPECT_NEAR(0.0f, | |
126 (expected_principal - eigenvectors.get_column(0)).Length(), | |
127 0.000001f); | |
128 } | |
129 | |
130 TEST(Matrix3fTest, EigenvectorsPositiveDefinite) { | |
131 // This block tests computation of eigenvectors of a matrix where output | |
132 // is not as nice as above, but it actually meets the definition. | |
133 Matrix3F matrix = Matrix3F::Zeros(); | |
134 Matrix3F eigenvectors = Matrix3F::Zeros(); | |
135 Matrix3F expected_eigenvectors = Matrix3F::Zeros(); | |
136 matrix.set(1, -1, 2, -1, 4, 5, 2, 5, 0); | |
137 Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); | |
138 Vector3dF expected_eigv(7.3996266f, 1.91197255f, -4.31159915f); | |
139 expected_eigv -= eigenvals; | |
140 EXPECT_NEAR(0, expected_eigv.LengthSquared(), 0.00001f); | |
141 expected_eigenvectors.set(0.04926317f, -0.92135662f, -0.38558414f, | |
142 0.82134249f, 0.25703273f, -0.50924521f, | |
143 0.56830419f, -0.2916096f, 0.76941158f); | |
144 EXPECT_TRUE(expected_eigenvectors.IsNear(eigenvectors, 0.00001f)); | |
145 } | |
146 | |
147 } | |
148 } | |
OLD | NEW |