| Index: src/opts/SkBlitRow_opts_arm_neon.cpp
|
| diff --git a/src/opts/SkBlitRow_opts_arm_neon.cpp b/src/opts/SkBlitRow_opts_arm_neon.cpp
|
| index 85287af62379abb3a0c137f1e93e5bc3dac3ca50..bd0c45f4c0b84c837877d99ef60779abd4ee39ef 100644
|
| --- a/src/opts/SkBlitRow_opts_arm_neon.cpp
|
| +++ b/src/opts/SkBlitRow_opts_arm_neon.cpp
|
| @@ -1679,104 +1679,66 @@ void S32_D565_Opaque_Dither_neon(uint16_t* SK_RESTRICT dst,
|
| }
|
| }
|
|
|
| -void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count,
|
| - SkPMColor color) {
|
| - if (count <= 0) {
|
| - return;
|
| - }
|
| -
|
| - if (0 == color) {
|
| - if (src != dst) {
|
| - memcpy(dst, src, count * sizeof(SkPMColor));
|
| - }
|
| - return;
|
| - }
|
| -
|
| - unsigned colorA = SkGetPackedA32(color);
|
| - if (255 == colorA) {
|
| - sk_memset32(dst, color, count);
|
| - return;
|
| +#define SK_SUPPORT_LEGACY_COLOR32_MATHx
|
| +
|
| +// Color32 and its SIMD specializations use the blend_256_round_alt algorithm
|
| +// from tests/BlendTest.cpp. It's not quite perfect, but it's never wrong in the
|
| +// interesting edge cases, and it's quite a bit faster than blend_perfect.
|
| +//
|
| +// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
|
| +void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
|
| + switch (SkGetPackedA32(color)) {
|
| + case 0: memmove(dst, src, count * sizeof(SkPMColor)); return;
|
| + case 255: sk_memset32(dst, color, count); return;
|
| }
|
|
|
| - unsigned scale = 256 - SkAlpha255To256(colorA);
|
| -
|
| - if (count >= 8) {
|
| - uint32x4_t vcolor;
|
| - uint8x8_t vscale;
|
| -
|
| - vcolor = vdupq_n_u32(color);
|
| -
|
| - // scale numerical interval [0-255], so load as 8 bits
|
| - vscale = vdup_n_u8(scale);
|
| -
|
| - do {
|
| - // load src color, 8 pixels, 4 64 bit registers
|
| - // (and increment src).
|
| - uint32x2x4_t vsrc;
|
| -#if defined(SK_CPU_ARM32) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)))
|
| - asm (
|
| - "vld1.32 %h[vsrc], [%[src]]!"
|
| - : [vsrc] "=w" (vsrc), [src] "+r" (src)
|
| - : :
|
| - );
|
| -#else // 64bit targets and Clang
|
| - vsrc.val[0] = vld1_u32(src);
|
| - vsrc.val[1] = vld1_u32(src+2);
|
| - vsrc.val[2] = vld1_u32(src+4);
|
| - vsrc.val[3] = vld1_u32(src+6);
|
| - src += 8;
|
| + uint16x8_t colorHigh = vshll_n_u8((uint8x8_t)vdup_n_u32(color), 8);
|
| +#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
|
| + uint16x8_t colorAndRound = colorHigh;
|
| +#else // blend_256_round_alt, good
|
| + uint16x8_t colorAndRound = vaddq_u16(colorHigh, vdupq_n_u16(128));
|
| #endif
|
|
|
| - // multiply long by scale, 64 bits at a time,
|
| - // destination into a 128 bit register.
|
| - uint16x8x4_t vtmp;
|
| - vtmp.val[0] = vmull_u8(vreinterpret_u8_u32(vsrc.val[0]), vscale);
|
| - vtmp.val[1] = vmull_u8(vreinterpret_u8_u32(vsrc.val[1]), vscale);
|
| - vtmp.val[2] = vmull_u8(vreinterpret_u8_u32(vsrc.val[2]), vscale);
|
| - vtmp.val[3] = vmull_u8(vreinterpret_u8_u32(vsrc.val[3]), vscale);
|
| -
|
| - // shift the 128 bit registers, containing the 16
|
| - // bit scaled values back to 8 bits, narrowing the
|
| - // results to 64 bit registers.
|
| - uint8x16x2_t vres;
|
| - vres.val[0] = vcombine_u8(
|
| - vshrn_n_u16(vtmp.val[0], 8),
|
| - vshrn_n_u16(vtmp.val[1], 8));
|
| - vres.val[1] = vcombine_u8(
|
| - vshrn_n_u16(vtmp.val[2], 8),
|
| - vshrn_n_u16(vtmp.val[3], 8));
|
| -
|
| - // adding back the color, using 128 bit registers.
|
| - uint32x4x2_t vdst;
|
| - vdst.val[0] = vreinterpretq_u32_u8(vres.val[0] +
|
| - vreinterpretq_u8_u32(vcolor));
|
| - vdst.val[1] = vreinterpretq_u32_u8(vres.val[1] +
|
| - vreinterpretq_u8_u32(vcolor));
|
| -
|
| - // store back the 8 calculated pixels (2 128 bit
|
| - // registers), and increment dst.
|
| -#if defined(SK_CPU_ARM32) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6)))
|
| - asm (
|
| - "vst1.32 %h[vdst], [%[dst]]!"
|
| - : [dst] "+r" (dst)
|
| - : [vdst] "w" (vdst)
|
| - : "memory"
|
| - );
|
| -#else // 64bit targets and Clang
|
| - vst1q_u32(dst, vdst.val[0]);
|
| - vst1q_u32(dst+4, vdst.val[1]);
|
| - dst += 8;
|
| + unsigned invA = 255 - SkGetPackedA32(color);
|
| +#ifdef SK_SUPPORT_LEGACY_COLOR32_MATH // blend_256_plus1_trunc, busted
|
| + uint8x8_t invA8 = vdup_n_u8(invA);
|
| +#else // blend_256_round_alt, good
|
| + SkASSERT(invA + (invA >> 7) < 256); // This next part only works if alpha is not 0.
|
| + uint8x8_t invA8 = vdup_n_u8(invA + (invA >> 7));
|
| #endif
|
| - count -= 8;
|
|
|
| - } while (count >= 8);
|
| - }
|
| + // Does the core work of blending color onto 4 pixels, returning the resulting 4 pixels.
|
| + auto kernel = [&](const uint32x4_t& src4) -> uint32x4_t {
|
| + uint16x8_t lo = vmull_u8(vget_low_u8( (uint8x16_t)src4), invA8),
|
| + hi = vmull_u8(vget_high_u8((uint8x16_t)src4), invA8);
|
| + return (uint32x4_t)
|
| + vcombine_u8(vaddhn_u16(colorAndRound, lo), vaddhn_u16(colorAndRound, hi));
|
| + };
|
|
|
| - while (count > 0) {
|
| - *dst = color + SkAlphaMulQ(*src, scale);
|
| - src += 1;
|
| - dst += 1;
|
| - count--;
|
| + while (count >= 8) {
|
| + uint32x4_t dst0 = kernel(vld1q_u32(src+0)),
|
| + dst4 = kernel(vld1q_u32(src+4));
|
| + vst1q_u32(dst+0, dst0);
|
| + vst1q_u32(dst+4, dst4);
|
| + src += 8;
|
| + dst += 8;
|
| + count -= 8;
|
| + }
|
| + if (count >= 4) {
|
| + vst1q_u32(dst, kernel(vld1q_u32(src)));
|
| + src += 4;
|
| + dst += 4;
|
| + count -= 4;
|
| + }
|
| + if (count >= 2) {
|
| + uint32x2_t src2 = vld1_u32(src);
|
| + vst1_u32(dst, vget_low_u32(kernel(vcombine_u32(src2, src2))));
|
| + src += 2;
|
| + dst += 2;
|
| + count -= 2;
|
| + }
|
| + if (count >= 1) {
|
| + vst1q_lane_u32(dst, kernel(vdupq_n_u32(*src)), 0);
|
| }
|
| }
|
|
|
|
|