Index: base/hash_tables.h |
diff --git a/base/hash_tables.h b/base/hash_tables.h |
index 14119eda510ccd43826d535567dde134f4885fe8..57d5172f9a62ff817529973bc8ab8a4763ea0127 100644 |
--- a/base/hash_tables.h |
+++ b/base/hash_tables.h |
@@ -31,6 +31,10 @@ |
#define BASE_HASH_NAMESPACE stdext |
+template <typename Key> |
+struct hash : public BASE_HASH_NAMESPACE::hash_compare<Key> { |
+}; |
+ |
#elif defined(COMPILER_GCC) |
#if defined(OS_ANDROID) |
#define BASE_HASH_NAMESPACE std |
@@ -105,6 +109,137 @@ DEFINE_STRING_HASH(string16); |
#undef DEFINE_STRING_HASH |
+// Implement hashing for pairs of at-most 32 bit integer values. |
+// We use randomly-generated 32-bit and 64-bit values to produce a hash code. |
+// If the hash code is 64-bit then we can be very efficient to produce a |
+// universal hash function. When size_t is 64 bits, the algorithm, as described |
+// in Section 4 of "UMAC: Fast and Secure Message Authentication" by Black, |
+// Halevi, Krawczyk, Krovetz, and Rogaway, is: |
+// |
+// h64(x32, y32) = ((x32 + rand32) % 2^32)((y32 + rand32) % 2^32) % 2^64 |
jar (doing other things)
2012/09/17 22:01:13
a) It appears that the second modulus operator (mo
|
+// |
+// When size_t is 32 bits, we turn the 64-bit hash code above back into |
+// 32 bits by using multiply-add hashing. This algorithm, as described in |
+// Theorem 6 of "Efficient Strongly Universal and Optimally Universal Hashing" |
+// by Woelfel, is: |
+// |
+// h32(x32, y32) = (h64(x32, y32) * randOdd64 + rand32 * 2^32) % 2^64 / 2^32 |
jar (doing other things)
2012/09/17 22:01:13
Here, the addition of rand32 * 2^32 is useless, fo
|
+ |
+#define DEFINE_32BIT_PAIR_HASH(type1, type2) \ |
+ template<> \ |
+ struct hash<std::pair<type1, type2> > { \ |
+ std::size_t operator()(std::pair<type1, type2> value) const { \ |
+ uint32 shortRandom1 = 698340900U; \ |
+ uint32 shortRandom2 = 2638093458U; \ |
+ \ |
+ uint32 sum1 = value.first + shortRandom1; \ |
+ uint32 sum2 = value.second + shortRandom2; \ |
+ uint64 hash64 = static_cast<uint64>(sum1) * sum2; \ |
+ \ |
+ if (sizeof(std::size_t) >= sizeof(uint64)) \ |
+ return static_cast<std::size_t>(hash64); \ |
+ \ |
+ uint64 longRandom1 = 885644242649267641LL; \ |
+ uint64 longRandom2 = 1614045628LL << 32; \ |
+ \ |
+ hash64 = hash64 * longRandom1 + longRandom2; \ |
+ std::size_t highBits = static_cast<std::size_t>( \ |
+ hash64 >> (sizeof(uint64) - sizeof(std::size_t))); \ |
+ return highBits; \ |
+ } \ |
+ \ |
+ size_t operator()(const std::pair<type1, type2>& a, \ |
+ const std::pair<type1, type2>& b) const { \ |
+ return a < b; \ |
+ } \ |
+ }; \ |
+ |
+DEFINE_32BIT_PAIR_HASH(short, short); |
+DEFINE_32BIT_PAIR_HASH(short, unsigned short); |
+DEFINE_32BIT_PAIR_HASH(short, int); |
+DEFINE_32BIT_PAIR_HASH(short, unsigned); |
+DEFINE_32BIT_PAIR_HASH(unsigned short, short); |
+DEFINE_32BIT_PAIR_HASH(unsigned short, unsigned short); |
+DEFINE_32BIT_PAIR_HASH(unsigned short, int); |
+DEFINE_32BIT_PAIR_HASH(unsigned short, unsigned); |
+DEFINE_32BIT_PAIR_HASH(int, short); |
+DEFINE_32BIT_PAIR_HASH(int, unsigned short); |
+DEFINE_32BIT_PAIR_HASH(int, int); |
+DEFINE_32BIT_PAIR_HASH(int, unsigned); |
+DEFINE_32BIT_PAIR_HASH(unsigned, short); |
+DEFINE_32BIT_PAIR_HASH(unsigned, unsigned short); |
+DEFINE_32BIT_PAIR_HASH(unsigned, int); |
+DEFINE_32BIT_PAIR_HASH(unsigned, unsigned); |
+ |
+#undef DEFINE_32BIT_PAIR_HASH |
+ |
+// Implement hashing for pairs of up-to 64-bit integer values. |
+// We use the above algorithms for 32-bit integers, but treat each 64-bit |
+// value as 2 32-bit values. |
+ |
+#define DEFINE_64BIT_PAIR_HASH(type1, type2) \ |
+ template<> \ |
+ struct hash<std::pair<type1, type2> > { \ |
+ std::size_t operator()(std::pair<type1, type2> value) const { \ |
+ uint32 shortRandom1 = 673537332U; \ |
+ uint32 shortRandom2 = 2309950629U; \ |
+ uint32 shortRandom3 = 29379286U; \ |
+ uint32 shortRandom4 = 2611985739U; \ |
+ \ |
+ uint64 value1 = value.first; \ |
+ uint64 value2 = value.second; \ |
+ uint32 value1a = static_cast<uint32>(value1 & 0xffffffff); \ |
+ uint32 value1b = static_cast<uint32>((value1 >> 32) & 0xffffffff); \ |
+ uint32 value2a = static_cast<uint32>(value2 & 0xffffffff); \ |
+ uint32 value2b = static_cast<uint32>((value2 >> 32) & 0xffffffff); \ |
+ \ |
+ uint32 sum1 = value1a + shortRandom1; \ |
+ uint32 sum2 = value1b + shortRandom2; \ |
+ uint32 sum3 = value2a + shortRandom3; \ |
+ uint32 sum4 = value2b + shortRandom4; \ |
+ uint64 hash64 = static_cast<uint64>(sum1) * sum2 + \ |
+ static_cast<uint64>(sum3) * sum4; \ |
+ \ |
+ if (sizeof(std::size_t) >= sizeof(uint64)) \ |
+ return static_cast<std::size_t>(hash64); \ |
+ \ |
+ uint64 longRandom1 = 629146275505555501LL; \ |
+ uint64 longRandom2 = 45557137LL << 32; \ |
+ \ |
+ hash64 = hash64 * longRandom1 + longRandom2; \ |
+ std::size_t highBits = static_cast<std::size_t>( \ |
+ hash64 >> (sizeof(uint64) - sizeof(std::size_t))); \ |
+ return highBits; \ |
+ } \ |
+ size_t operator()(const std::pair<type1, type2>& a, \ |
+ const std::pair<type1, type2>& b) const { \ |
+ return a < b; \ |
+ } \ |
+ }; |
+ |
+DEFINE_64BIT_PAIR_HASH(short, int64); |
+DEFINE_64BIT_PAIR_HASH(short, uint64); |
+DEFINE_64BIT_PAIR_HASH(unsigned short, int64); |
+DEFINE_64BIT_PAIR_HASH(unsigned short, uint64); |
+DEFINE_64BIT_PAIR_HASH(int, int64); |
+DEFINE_64BIT_PAIR_HASH(int, uint64); |
+DEFINE_64BIT_PAIR_HASH(unsigned, int64); |
+DEFINE_64BIT_PAIR_HASH(unsigned, uint64); |
+DEFINE_64BIT_PAIR_HASH(int64, short); |
+DEFINE_64BIT_PAIR_HASH(int64, unsigned short); |
+DEFINE_64BIT_PAIR_HASH(int64, int); |
+DEFINE_64BIT_PAIR_HASH(int64, unsigned); |
+DEFINE_64BIT_PAIR_HASH(int64, int64); |
+DEFINE_64BIT_PAIR_HASH(int64, uint64); |
+DEFINE_64BIT_PAIR_HASH(uint64, short); |
+DEFINE_64BIT_PAIR_HASH(uint64, unsigned short); |
+DEFINE_64BIT_PAIR_HASH(uint64, int); |
+DEFINE_64BIT_PAIR_HASH(uint64, unsigned); |
+DEFINE_64BIT_PAIR_HASH(uint64, int64); |
+DEFINE_64BIT_PAIR_HASH(uint64, uint64); |
+ |
+#undef DEFINE_64BIT_PAIR_HASH |
+ |
} // namespace BASE_HASH_NAMESPACE |
#else // COMPILER |