Index: src/gpu/GrTessellatingPathRenderer.cpp |
diff --git a/src/gpu/GrTessellatingPathRenderer.cpp b/src/gpu/GrTessellatingPathRenderer.cpp |
index 14176db4ecef0e2b2dbd7c31f2c3ed3658e0a41b..5c3f45e7a478789c362cac49477ce7ee2fea0af8 100644 |
--- a/src/gpu/GrTessellatingPathRenderer.cpp |
+++ b/src/gpu/GrTessellatingPathRenderer.cpp |
@@ -67,21 +67,16 @@ |
* Only type 2 vertices (see paper) require the O(N) lookups, and these are much less |
* frequent. There may be other data structures worth investigating, however. |
* |
- * Note that there is a compile-time flag (SWEEP_IN_X) which changes the orientation of the |
- * line sweep algorithms. When SWEEP_IN_X is unset, we sort vertices based on increasing |
- * Y coordinate, and secondarily by increasing X coordinate. When SWEEP_IN_X is set, we sort by |
- * increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so that the |
- * "left" and "right" orientation in the code remains correct (edges to the left are increasing |
- * in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 degrees |
- * counterclockwise, rather that transposing. |
- * |
- * The choice is arbitrary, but most test cases are wider than they are tall, so the |
- * default is to sweep in X. In the future, we may want to make this a runtime parameter |
- * and base it on the aspect ratio of the clip bounds. |
+ * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the |
+ * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y |
+ * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall, |
+ * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so |
+ * that the "left" and "right" orientation in the code remains correct (edges to the left are |
+ * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 |
+ * degrees counterclockwise, rather that transposing. |
*/ |
#define LOGGING_ENABLED 0 |
#define WIREFRAME 0 |
-#define SWEEP_IN_X 1 |
#if LOGGING_ENABLED |
#define LOG printf |
@@ -165,20 +160,27 @@ struct Vertex { |
/***************************************************************************************/ |
-bool sweep_lt(const SkPoint& a, const SkPoint& b) { |
-#if SWEEP_IN_X |
+typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b); |
+ |
+struct Comparator { |
+ CompareFunc sweep_lt; |
+ CompareFunc sweep_gt; |
+}; |
+ |
+bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) { |
return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX; |
-#else |
+} |
+ |
+bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) { |
return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY; |
-#endif |
} |
-bool sweep_gt(const SkPoint& a, const SkPoint& b) { |
-#if SWEEP_IN_X |
+bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) { |
return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX; |
-#else |
+} |
+ |
+bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) { |
return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY; |
-#endif |
} |
inline void* emit_vertex(Vertex* v, void* data) { |
@@ -625,8 +627,8 @@ inline bool apply_fill_type(SkPath::FillType fillType, int winding) { |
} |
} |
-Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc) { |
- int winding = sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; |
+Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) { |
+ int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; |
Vertex* top = winding < 0 ? next : prev; |
Vertex* bottom = winding < 0 ? prev : next; |
return ALLOC_NEW(Edge, (top, bottom, winding), alloc); |
@@ -664,15 +666,15 @@ void find_enclosing_edges(Vertex* v, Edge* head, Edge** left, Edge** right) { |
return; |
} |
-void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) { |
+void find_enclosing_edges(Edge* edge, Edge* head, Comparator& c, Edge** left, Edge** right) { |
Edge* prev = NULL; |
Edge* next; |
for (next = head; next != NULL; next = next->fRight) { |
- if ((sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) || |
- (sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) || |
- (sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) && |
+ if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) || |
+ (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) || |
+ (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) && |
next->isRightOf(edge->fBottom)) || |
- (sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) && |
+ (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) && |
edge->isLeftOf(next->fBottom))) { |
break; |
} |
@@ -683,7 +685,7 @@ void find_enclosing_edges(Edge* edge, Edge* head, Edge** left, Edge** right) { |
return; |
} |
-void fix_active_state(Edge* edge, Edge** activeEdges) { |
+void fix_active_state(Edge* edge, Edge** activeEdges, Comparator& c) { |
if (edge->isActive(activeEdges)) { |
if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) { |
remove_edge(edge, activeEdges); |
@@ -691,14 +693,14 @@ void fix_active_state(Edge* edge, Edge** activeEdges) { |
} else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) { |
Edge* left; |
Edge* right; |
- find_enclosing_edges(edge, *activeEdges, &left, &right); |
+ find_enclosing_edges(edge, *activeEdges, c, &left, &right); |
insert_edge(edge, left, activeEdges); |
} |
} |
-void insert_edge_above(Edge* edge, Vertex* v) { |
+void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) { |
if (edge->fTop->fPoint == edge->fBottom->fPoint || |
- sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { |
+ c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { |
return; |
} |
LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID); |
@@ -714,9 +716,9 @@ void insert_edge_above(Edge* edge, Vertex* v) { |
edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); |
} |
-void insert_edge_below(Edge* edge, Vertex* v) { |
+void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) { |
if (edge->fTop->fPoint == edge->fBottom->fPoint || |
- sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { |
+ c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { |
return; |
} |
LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID); |
@@ -758,27 +760,27 @@ void erase_edge_if_zero_winding(Edge* edge, Edge** head) { |
} |
} |
-void merge_collinear_edges(Edge* edge, Edge** activeEdges); |
+void merge_collinear_edges(Edge* edge, Edge** activeEdges, Comparator& c); |
-void set_top(Edge* edge, Vertex* v, Edge** activeEdges) { |
+void set_top(Edge* edge, Vertex* v, Edge** activeEdges, Comparator& c) { |
remove_edge_below(edge); |
edge->fTop = v; |
edge->recompute(); |
- insert_edge_below(edge, v); |
- fix_active_state(edge, activeEdges); |
- merge_collinear_edges(edge, activeEdges); |
+ insert_edge_below(edge, v, c); |
+ fix_active_state(edge, activeEdges, c); |
+ merge_collinear_edges(edge, activeEdges, c); |
} |
-void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges) { |
+void set_bottom(Edge* edge, Vertex* v, Edge** activeEdges, Comparator& c) { |
remove_edge_above(edge); |
edge->fBottom = v; |
edge->recompute(); |
- insert_edge_above(edge, v); |
- fix_active_state(edge, activeEdges); |
- merge_collinear_edges(edge, activeEdges); |
+ insert_edge_above(edge, v, c); |
+ fix_active_state(edge, activeEdges, c); |
+ merge_collinear_edges(edge, activeEdges, c); |
} |
-void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) { |
+void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges, Comparator& c) { |
if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { |
LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", |
edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, |
@@ -787,18 +789,18 @@ void merge_edges_above(Edge* edge, Edge* other, Edge** activeEdges) { |
erase_edge_if_zero_winding(other, activeEdges); |
edge->fWinding = 0; |
erase_edge_if_zero_winding(edge, activeEdges); |
- } else if (sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { |
+ } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { |
other->fWinding += edge->fWinding; |
erase_edge_if_zero_winding(other, activeEdges); |
- set_bottom(edge, other->fTop, activeEdges); |
+ set_bottom(edge, other->fTop, activeEdges, c); |
} else { |
edge->fWinding += other->fWinding; |
erase_edge_if_zero_winding(edge, activeEdges); |
- set_bottom(other, edge->fTop, activeEdges); |
+ set_bottom(other, edge->fTop, activeEdges, c); |
} |
} |
-void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) { |
+void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges, Comparator& c) { |
if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { |
LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", |
edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, |
@@ -807,105 +809,107 @@ void merge_edges_below(Edge* edge, Edge* other, Edge** activeEdges) { |
erase_edge_if_zero_winding(other, activeEdges); |
edge->fWinding = 0; |
erase_edge_if_zero_winding(edge, activeEdges); |
- } else if (sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { |
+ } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { |
edge->fWinding += other->fWinding; |
erase_edge_if_zero_winding(edge, activeEdges); |
- set_top(other, edge->fBottom, activeEdges); |
+ set_top(other, edge->fBottom, activeEdges, c); |
} else { |
other->fWinding += edge->fWinding; |
erase_edge_if_zero_winding(other, activeEdges); |
- set_top(edge, other->fBottom, activeEdges); |
+ set_top(edge, other->fBottom, activeEdges, c); |
} |
} |
-void merge_collinear_edges(Edge* edge, Edge** activeEdges) { |
+void merge_collinear_edges(Edge* edge, Edge** activeEdges, Comparator& c) { |
if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop || |
!edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) { |
- merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges); |
+ merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c); |
} else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop || |
!edge->isLeftOf(edge->fNextEdgeAbove->fTop))) { |
- merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges); |
+ merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c); |
} |
if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom || |
!edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) { |
- merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges); |
+ merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c); |
} else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom || |
!edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) { |
- merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges); |
+ merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c); |
} |
} |
-void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc); |
+void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, Comparator& c, SkChunkAlloc& alloc); |
-void cleanup_active_edges(Edge* edge, Edge** activeEdges, SkChunkAlloc& alloc) { |
+void cleanup_active_edges(Edge* edge, Edge** activeEdges, Comparator& c, SkChunkAlloc& alloc) { |
Vertex* top = edge->fTop; |
Vertex* bottom = edge->fBottom; |
if (edge->fLeft) { |
Vertex* leftTop = edge->fLeft->fTop; |
Vertex* leftBottom = edge->fLeft->fBottom; |
- if (sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) { |
- split_edge(edge->fLeft, edge->fTop, activeEdges, alloc); |
- } else if (sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) { |
- split_edge(edge, leftTop, activeEdges, alloc); |
- } else if (sweep_lt(bottom->fPoint, leftBottom->fPoint) && !edge->fLeft->isLeftOf(bottom)) { |
- split_edge(edge->fLeft, bottom, activeEdges, alloc); |
- } else if (sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) { |
- split_edge(edge, leftBottom, activeEdges, alloc); |
+ if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) { |
+ split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc); |
+ } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) { |
+ split_edge(edge, leftTop, activeEdges, c, alloc); |
+ } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) && |
+ !edge->fLeft->isLeftOf(bottom)) { |
+ split_edge(edge->fLeft, bottom, activeEdges, c, alloc); |
+ } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) { |
+ split_edge(edge, leftBottom, activeEdges, c, alloc); |
} |
} |
if (edge->fRight) { |
Vertex* rightTop = edge->fRight->fTop; |
Vertex* rightBottom = edge->fRight->fBottom; |
- if (sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) { |
- split_edge(edge->fRight, top, activeEdges, alloc); |
- } else if (sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) { |
- split_edge(edge, rightTop, activeEdges, alloc); |
- } else if (sweep_lt(bottom->fPoint, rightBottom->fPoint) && |
+ if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) { |
+ split_edge(edge->fRight, top, activeEdges, c, alloc); |
+ } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) { |
+ split_edge(edge, rightTop, activeEdges, c, alloc); |
+ } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) && |
!edge->fRight->isRightOf(bottom)) { |
- split_edge(edge->fRight, bottom, activeEdges, alloc); |
- } else if (sweep_lt(rightBottom->fPoint, bottom->fPoint) && |
+ split_edge(edge->fRight, bottom, activeEdges, c, alloc); |
+ } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) && |
!edge->isLeftOf(rightBottom)) { |
- split_edge(edge, rightBottom, activeEdges, alloc); |
+ split_edge(edge, rightBottom, activeEdges, c, alloc); |
} |
} |
} |
-void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, SkChunkAlloc& alloc) { |
+void split_edge(Edge* edge, Vertex* v, Edge** activeEdges, Comparator& c, SkChunkAlloc& alloc) { |
LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", |
edge->fTop->fID, edge->fBottom->fID, |
v->fID, v->fPoint.fX, v->fPoint.fY); |
- if (sweep_lt(v->fPoint, edge->fTop->fPoint)) { |
- set_top(edge, v, activeEdges); |
- } else if (sweep_gt(v->fPoint, edge->fBottom->fPoint)) { |
- set_bottom(edge, v, activeEdges); |
+ if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) { |
+ set_top(edge, v, activeEdges, c); |
+ } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) { |
+ set_bottom(edge, v, activeEdges, c); |
} else { |
Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc); |
- insert_edge_below(newEdge, v); |
- insert_edge_above(newEdge, edge->fBottom); |
- set_bottom(edge, v, activeEdges); |
- cleanup_active_edges(edge, activeEdges, alloc); |
- fix_active_state(newEdge, activeEdges); |
- merge_collinear_edges(newEdge, activeEdges); |
+ insert_edge_below(newEdge, v, c); |
+ insert_edge_above(newEdge, edge->fBottom, c); |
+ set_bottom(edge, v, activeEdges, c); |
+ cleanup_active_edges(edge, activeEdges, c, alloc); |
+ fix_active_state(newEdge, activeEdges, c); |
+ merge_collinear_edges(newEdge, activeEdges, c); |
} |
} |
-void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, SkChunkAlloc& alloc) { |
+void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) { |
LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY, |
src->fID, dst->fID); |
for (Edge* edge = src->fFirstEdgeAbove; edge;) { |
Edge* next = edge->fNextEdgeAbove; |
- set_bottom(edge, dst, NULL); |
+ set_bottom(edge, dst, NULL, c); |
edge = next; |
} |
for (Edge* edge = src->fFirstEdgeBelow; edge;) { |
Edge* next = edge->fNextEdgeBelow; |
- set_top(edge, dst, NULL); |
+ set_top(edge, dst, NULL, c); |
edge = next; |
} |
remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, NULL); |
} |
-Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkChunkAlloc& alloc) { |
+Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, Comparator& c, |
+ SkChunkAlloc& alloc) { |
SkPoint p; |
if (!edge || !other) { |
return NULL; |
@@ -913,24 +917,24 @@ Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkCh |
if (edge->intersect(*other, &p)) { |
Vertex* v; |
LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); |
- if (p == edge->fTop->fPoint || sweep_lt(p, edge->fTop->fPoint)) { |
- split_edge(other, edge->fTop, activeEdges, alloc); |
+ if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) { |
+ split_edge(other, edge->fTop, activeEdges, c, alloc); |
v = edge->fTop; |
- } else if (p == edge->fBottom->fPoint || sweep_gt(p, edge->fBottom->fPoint)) { |
- split_edge(other, edge->fBottom, activeEdges, alloc); |
+ } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) { |
+ split_edge(other, edge->fBottom, activeEdges, c, alloc); |
v = edge->fBottom; |
- } else if (p == other->fTop->fPoint || sweep_lt(p, other->fTop->fPoint)) { |
- split_edge(edge, other->fTop, activeEdges, alloc); |
+ } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) { |
+ split_edge(edge, other->fTop, activeEdges, c, alloc); |
v = other->fTop; |
- } else if (p == other->fBottom->fPoint || sweep_gt(p, other->fBottom->fPoint)) { |
- split_edge(edge, other->fBottom, activeEdges, alloc); |
+ } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) { |
+ split_edge(edge, other->fBottom, activeEdges, c, alloc); |
v = other->fBottom; |
} else { |
Vertex* nextV = edge->fTop; |
- while (sweep_lt(p, nextV->fPoint)) { |
+ while (c.sweep_lt(p, nextV->fPoint)) { |
nextV = nextV->fPrev; |
} |
- while (sweep_lt(nextV->fPoint, p)) { |
+ while (c.sweep_lt(nextV->fPoint, p)) { |
nextV = nextV->fNext; |
} |
Vertex* prevV = nextV->fPrev; |
@@ -951,8 +955,8 @@ Vertex* check_for_intersection(Edge* edge, Edge* other, Edge** activeEdges, SkCh |
prevV->fNext = v; |
nextV->fPrev = v; |
} |
- split_edge(edge, v, activeEdges, alloc); |
- split_edge(other, v, activeEdges, alloc); |
+ split_edge(edge, v, activeEdges, c, alloc); |
+ split_edge(other, v, activeEdges, c, alloc); |
} |
return v; |
} |
@@ -983,34 +987,34 @@ void sanitize_contours(Vertex** contours, int contourCnt) { |
} |
} |
-void merge_coincident_vertices(Vertex** vertices, SkChunkAlloc& alloc) { |
+void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) { |
for (Vertex* v = (*vertices)->fNext; v != NULL; v = v->fNext) { |
- if (sweep_lt(v->fPoint, v->fPrev->fPoint)) { |
+ if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) { |
v->fPoint = v->fPrev->fPoint; |
} |
if (coincident(v->fPrev->fPoint, v->fPoint)) { |
- merge_vertices(v->fPrev, v, vertices, alloc); |
+ merge_vertices(v->fPrev, v, vertices, c, alloc); |
} |
} |
} |
// Stage 2: convert the contours to a mesh of edges connecting the vertices. |
-Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { |
+Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) { |
Vertex* vertices = NULL; |
Vertex* prev = NULL; |
for (int i = 0; i < contourCnt; ++i) { |
for (Vertex* v = contours[i]; v != NULL;) { |
Vertex* vNext = v->fNext; |
- Edge* edge = new_edge(v->fPrev, v, alloc); |
+ Edge* edge = new_edge(v->fPrev, v, alloc, c); |
if (edge->fWinding > 0) { |
- insert_edge_below(edge, v->fPrev); |
- insert_edge_above(edge, v); |
+ insert_edge_below(edge, v->fPrev, c); |
+ insert_edge_above(edge, v, c); |
} else { |
- insert_edge_below(edge, v); |
- insert_edge_above(edge, v->fPrev); |
+ insert_edge_below(edge, v, c); |
+ insert_edge_above(edge, v->fPrev, c); |
} |
- merge_collinear_edges(edge, NULL); |
+ merge_collinear_edges(edge, NULL, c); |
if (prev) { |
prev->fNext = v; |
v->fPrev = prev; |
@@ -1028,9 +1032,9 @@ Vertex* build_edges(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { |
return vertices; |
} |
-// Stage 3: sort the vertices by increasing Y (or X if SWEEP_IN_X is on). |
+// Stage 3: sort the vertices by increasing sweep direction. |
-Vertex* sorted_merge(Vertex* a, Vertex* b); |
+Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c); |
void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) { |
Vertex* fast; |
@@ -1057,7 +1061,7 @@ void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) { |
} |
} |
-void merge_sort(Vertex** head) { |
+void merge_sort(Vertex** head, Comparator& c) { |
if (!*head || !(*head)->fNext) { |
return; |
} |
@@ -1066,10 +1070,10 @@ void merge_sort(Vertex** head) { |
Vertex* b; |
front_back_split(*head, &a, &b); |
- merge_sort(&a); |
- merge_sort(&b); |
+ merge_sort(&a, c); |
+ merge_sort(&b, c); |
- *head = sorted_merge(a, b); |
+ *head = sorted_merge(a, b, c); |
} |
inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) { |
@@ -1080,12 +1084,12 @@ inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) { |
insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail); |
} |
-Vertex* sorted_merge(Vertex* a, Vertex* b) { |
+Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) { |
Vertex* head = NULL; |
Vertex* tail = NULL; |
while (a && b) { |
- if (sweep_lt(a->fPoint, b->fPoint)) { |
+ if (c.sweep_lt(a->fPoint, b->fPoint)) { |
Vertex* next = a->fNext; |
append_vertex(a, &head, &tail); |
a = next; |
@@ -1106,7 +1110,7 @@ Vertex* sorted_merge(Vertex* a, Vertex* b) { |
// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. |
-void simplify(Vertex* vertices, SkChunkAlloc& alloc) { |
+void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) { |
LOG("simplifying complex polygons\n"); |
Edge* activeEdges = NULL; |
for (Vertex* v = vertices; v != NULL; v = v->fNext) { |
@@ -1124,19 +1128,19 @@ void simplify(Vertex* vertices, SkChunkAlloc& alloc) { |
find_enclosing_edges(v, activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); |
if (v->fFirstEdgeBelow) { |
for (Edge* edge = v->fFirstEdgeBelow; edge != NULL; edge = edge->fNextEdgeBelow) { |
- if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, alloc)) { |
+ if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) { |
restartChecks = true; |
break; |
} |
- if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, alloc)) { |
+ if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) { |
restartChecks = true; |
break; |
} |
} |
} else { |
if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge, |
- &activeEdges, alloc)) { |
- if (sweep_lt(pv->fPoint, v->fPoint)) { |
+ &activeEdges, c, alloc)) { |
+ if (c.sweep_lt(pv->fPoint, v->fPoint)) { |
v = pv; |
} |
restartChecks = true; |
@@ -1276,7 +1280,7 @@ Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) { |
// This is a driver function which calls stages 2-5 in turn. |
-Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) { |
+Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) { |
#if LOGGING_ENABLED |
for (int i = 0; i < contourCnt; ++i) { |
Vertex* v = contours[i]; |
@@ -1288,21 +1292,21 @@ Poly* contours_to_polys(Vertex** contours, int contourCnt, SkChunkAlloc& alloc) |
} |
#endif |
sanitize_contours(contours, contourCnt); |
- Vertex* vertices = build_edges(contours, contourCnt, alloc); |
+ Vertex* vertices = build_edges(contours, contourCnt, c, alloc); |
if (!vertices) { |
return NULL; |
} |
// Sort vertices in Y (secondarily in X). |
- merge_sort(&vertices); |
- merge_coincident_vertices(&vertices, alloc); |
+ merge_sort(&vertices, c); |
+ merge_coincident_vertices(&vertices, c, alloc); |
#if LOGGING_ENABLED |
for (Vertex* v = vertices; v != NULL; v = v->fNext) { |
static float gID = 0.0f; |
v->fID = gID++; |
} |
#endif |
- simplify(vertices, alloc); |
+ simplify(vertices, c, alloc); |
return tessellate(vertices, alloc); |
} |
@@ -1373,7 +1377,16 @@ public: |
} |
void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override { |
- SkScalar tol = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, fViewMatrix, fPath.getBounds()); |
+ SkRect pathBounds = fPath.getBounds(); |
+ Comparator c; |
+ if (pathBounds.width() > pathBounds.height()) { |
+ c.sweep_lt = sweep_lt_horiz; |
+ c.sweep_gt = sweep_gt_horiz; |
+ } else { |
+ c.sweep_lt = sweep_lt_vert; |
+ c.sweep_gt = sweep_gt_vert; |
+ } |
+ SkScalar tol = GrPathUtils::scaleToleranceToSrc(SK_Scalar1, fViewMatrix, pathBounds); |
int contourCnt; |
int maxPts = GrPathUtils::worstCasePointCount(fPath, &contourCnt, tol); |
if (maxPts <= 0) { |
@@ -1404,7 +1417,7 @@ public: |
SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); |
path_to_contours(fPath, tol, fClipBounds, contours.get(), alloc); |
Poly* polys; |
- polys = contours_to_polys(contours.get(), contourCnt, alloc); |
+ polys = contours_to_polys(contours.get(), contourCnt, c, alloc); |
int count = 0; |
for (Poly* poly = polys; poly; poly = poly->fNext) { |
if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { |