Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(253)

Unified Diff: src/gpu/GrAAConvexTessellator.cpp

Issue 1084943003: Add GrAAConvexTessellator class (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« src/gpu/GrAAConvexTessellator.h ('K') | « src/gpu/GrAAConvexTessellator.h ('k') | no next file » | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/gpu/GrAAConvexTessellator.cpp
diff --git a/src/gpu/GrAAConvexTessellator.cpp b/src/gpu/GrAAConvexTessellator.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..87227b0219e254ae72a6d771157857549c75fcc6
--- /dev/null
+++ b/src/gpu/GrAAConvexTessellator.cpp
@@ -0,0 +1,824 @@
+/*
+ * Copyright 2015 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "GrAAConvexTessellator.h"
+#include "SkCanvas.h"
+#include "SkPath.h"
+#include "SkPoint.h"
+#include "SkString.h"
+
+// Next steps:
+// use in AAConvexPathRenderer
+// add an interactive sample app slide
+// add a combo gm/bench
+// add debug check that all points are suitably far apart
+// test more degenerate cases
+
+// Add swap & converted flag to ring
+
+// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
+static const SkScalar kClose = (SK_Scalar1 / 16);
+static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
+
+static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
+ const SkPoint& p1, const SkPoint& n1) {
+ const SkPoint v = p1 - p0;
+
+ SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
+ return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
+}
+
+static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
bsalomon 2015/04/24 15:44:44 could use a tiny comment here
robertphillips 2015/05/05 15:21:32 Done.
+ const SkPoint& p1, const SkPoint& perp) {
+ const SkPoint v = p1 - p0;
+ SkScalar perpDot = n0.dot(perp);
+ return v.dot(perp) / perpDot;
+}
+
+static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
+ SkScalar distSq = p0.distanceToSqd(p1);
+ return distSq < kCloseSqd;
+}
+
+static SkScalar abs_dist_from_line(const SkPoint& p0, const SkPoint& p1, const SkPoint& test) {
bsalomon 2015/04/24 15:44:44 Wondering if we could use SkPoint::distanceToLineB
robertphillips 2015/05/05 15:21:33 Done. The new version uses the vector computed for
+ // TODO: update this to use the normals computed for a ring rather than recomputing
+ SkPoint v = p1 - p0;
+ v.normalize();
+
+ SkPoint testV = test - p0;
+ SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
+ return SkScalarAbs(dist);
+}
+
+int GrAAConvexTessellator::addPt(const SkPoint& pt,
+ SkScalar depth,
+ bool movable) {
+ this->validate();
+
+ int index = fPts.count();
+ *fPts.push() = pt;
+ *fDepths.push() = depth;
+ *fMovable.push() = movable;
+
+ this->validate();
+ return index;
+}
+
+void GrAAConvexTessellator::popLastPt() {
+ this->validate();
+
+ fPts.pop();
+ fDepths.pop();
+ fMovable.pop();
+
+ this->validate();
+}
+
+void GrAAConvexTessellator::popFirstPtShuffle() {
+ this->validate();
+
+ fPts.removeShuffle(0);
+ fDepths.removeShuffle(0);
+ fMovable.removeShuffle(0);
+
+ this->validate();
+}
+
+void GrAAConvexTessellator::updatePt(int index,
+ const SkPoint& pt,
+ SkScalar depth) {
+ this->validate();
+ SkASSERT(fMovable[index]);
+
+ fPts[index] = pt;
+ fDepths[index] = depth;
+}
+
+void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
+ if (i0 == i1 || i1 == i2 || i2 == i0) {
+ return;
+ }
+
+ *fIndices.push() = i0;
+ *fIndices.push() = i1;
+ *fIndices.push() = i2;
+}
+
+// The general idea here is to, conceptually, start with the original polygon and slide
+// the vertices along the bisectors until the first intersection. At that
+// point two of the edges collapse and the process repeats on the new polygon.
+// The polygon state is captured in the GrRing class while the GrAAConvexTessellator
+// controls the iteration.
+bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
+ static const int kMaxNumRings = 7;
+
+ if (!this->extractFromPath(m, path)) {
+ return false;
+ }
+
+ this->createOuterRing(fInitialRing);
+
+ GrRing* lastRing = &fInitialRing;
+ int i;
+ for (i = 0; i < kMaxNumRings; ++i) {
+ GrRing* nextRing = this->getNextRing(lastRing);
+
+ if (this->createInsetRing(*lastRing, nextRing)) {
+ break;
+ }
+
+ if (nextRing->numPts0() < 3) {
+ break;
+ }
+
+ nextRing->init(*this);
+ lastRing = nextRing;
+ }
+
+ if (kMaxNumRings == i) {
+ // If we've exceeded the amount of time we want to throw at this, set
+ // the depth of all points in the final ring to 'fTargetDepth' and
+ // create a fan.
+ for (int i = 0; i < lastRing->numPts0(); ++i) {
+ this->fDepths[lastRing->index(i)] = fTargetDepth;
+ }
+ this->fanRing(*lastRing);
+ }
+
+ this->validate();
+ SkDEBUGCODE(this->checkAllDepths();)
+ return true;
+}
+
+// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
+// along the 'bisector' from the 'startIdx'-th point.
+SkPoint GrAAConvexTessellator::computePtAlongBisector(int startIdx,
+ const SkVector& bisector,
+ int edgeIdx,
+ SkScalar desiredDepth) const {
+ const SkPoint& norm = fInitialRing.norm1(edgeIdx);
+
+ // First find the point where the edge and the bisector intersect
+ SkPoint newP;
+ SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
+ if (SkScalarNearlyEqual(t, 0.0f)) {
+ // the start point was one of the original ring points
+ SkASSERT(startIdx < fInitialRing.numPts0());
+ newP = fPts[startIdx];
+ } else {
+ SkASSERT(t < 0.0f);
+ newP = bisector;
+ newP.scale(t);
+ newP += fPts[startIdx];
+ }
+
+ // Then offset along the bisector from that point the correct distance
+ t = -desiredDepth / bisector.dot(norm);
+ SkASSERT(t > 0.0f);
+ SkPoint result = bisector;
+ result.scale(t);
+ result += newP;
+
+ return result;
+}
+
+bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
+ SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks());
+ SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
+
+ // Outer ring: 3*numPts
+ // Middle ring: numPts
+ // Presumptive inner ring: numPts
+ this->reservePts(5*path.countPoints());
+ // Outer ring: 12*numPts
+ // Middle ring: 0
+ // Presumptive inner ring: 6*numPts + 6
+ fIndices.setReserve(18*path.countPoints() + 6);
+
+ SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax;
+
+ // TODO: can we reuse the GrRing structure in this process?
+ SkPath::Iter iter(path, true);
+ SkPoint pts[4];
+ SkPath::Verb verb;
+ while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
bsalomon 2015/04/24 15:44:44 Do we really need to iterate here? We know all th
robertphillips 2015/05/05 15:21:33 I've added a TODO. I think we would need a new ent
+ switch (verb) {
+ case SkPath::kLine_Verb:
+ m.mapPoints(&pts[1], 1);
+ if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) {
+ continue;
+ }
+
+ if (this->numPts() >= 2 &&
+ abs_dist_from_line(fPts[this->numPts()-1], fPts[this->numPts()-2], pts[1]) <
+ kClose) {
+ // The old last point is on the line from the second to last to the new point
+ this->popLastPt();
+ }
+
+ this->addPt(pts[1], 0.0f, false);
+
+ if (this->numPts() >= 3) {
+ int cur = this->numPts()-1;
+
+ SkScalar cross = SkPoint::CrossProduct(fPts[cur] - fPts[cur-1],
+ fPts[cur-1] - fPts[cur-2]);
+ if (maxCross < cross) {
bsalomon 2015/04/24 15:44:44 maxCross = SkTMax(maxCross, cross); minCross = SkT
robertphillips 2015/05/05 15:21:32 Done.
+ maxCross = cross;
+ }
+ if (minCross > cross) {
+ minCross = cross;
+ }
+ }
+ break;
+ case SkPath::kQuad_Verb:
+ case SkPath::kConic_Verb:
+ case SkPath::kCubic_Verb:
+ SkASSERT(false);
+ break;
+ case SkPath::kMove_Verb:
+ case SkPath::kClose_Verb:
+ case SkPath::kDone_Verb:
+ break;
+ }
+ }
+
+ // check if last point is a duplicate of the first point. If so, remove it.
+ if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
+ this->popLastPt();
+ }
+
+ if (this->numPts() >= 3 &&
+ abs_dist_from_line(fPts[this->numPts()-1], fPts[this->numPts()-2], fPts[0]) < kClose) {
+ // The last point is on the line from the second to last to the first point.
+ this->popLastPt();
+ }
+
+ if (this->numPts() >= 3 &&
+ abs_dist_from_line(fPts[0], fPts[this->numPts()-1], fPts[1]) < kClose) {
+ // The first point is on the line from the last to the second.
+ this->popFirstPtShuffle();
+ SkASSERT(0);
+ }
+
+ if (this->numPts() < 3) {
+ return false;
+ }
+
+ // Check the cross produce of the final trio
+ SkScalar cross = SkPoint::CrossProduct(fPts[1] - fPts[0], fPts[0] - fPts[fPts.count()-1]);
+ if (maxCross < cross) {
+ maxCross = cross;
+ }
+ if (minCross > cross) {
+ minCross = cross;
+ }
+
+ SkPoint::Side side;
bsalomon 2015/04/24 15:44:44 It wouldn't surprise me much if the asserts here w
robertphillips 2015/05/05 15:21:32 I think the colinear cleanup pass should remove th
+ if (maxCross > 0.0f) {
+ SkASSERT(minCross >= 0.0f);
+ side = SkPoint::kRight_Side;
+ } else {
+ SkASSERT(minCross <= 0.0f);
+ side = SkPoint::kLeft_Side;
+ }
+
+ fInitialRing.setReserve(this->numPts());
+ fInitialRing.setSide(side);
+ for (int i = 0; i < this->numPts(); ++i) {
+ fInitialRing.addIdx1(i, i);
+ }
+ fInitialRing.init(*this);
+
+ this->validate();
+ return true;
+}
+
+GrRing* GrAAConvexTessellator::getNextRing(GrRing* lastRing) {
+#if GR_AA_CONVEX_TESSELLATOR_VIZ
+ GrRing* ring = *fRings.push() = SkNEW(GrRing);
+ ring->setReserve(fInitialRing.numPts0());
+ ring->setSide(fInitialRing.side());
+ ring->rewind();
+ return ring;
+#else
+ // Flip flop back and forth between fRings[0] & fRings[1]
bsalomon 2015/04/24 15:44:44 Is this different than int nextRing = lastRing ==
robertphillips 2015/05/05 15:21:32 Done.
+ if (lastRing == &fInitialRing) {
+ fRings[0].setReserve(fInitialRing.numPts0());
+ fRings[0].setSide(fInitialRing.side());
+ fRings[0].rewind();
+ return &fRings[0];
+ } else if (lastRing == &fRings[0]) {
+ fRings[1].setReserve(fInitialRing.numPts0());
+ fRings[1].setSide(fInitialRing.side());
+ fRings[1].rewind();
+ return &fRings[1];
+ } else {
+ SkASSERT(lastRing == &fRings[1]);
+ fRings[0].setReserve(fInitialRing.numPts0());
+ fRings[0].setSide(fInitialRing.side());
+ fRings[0].rewind();
+ return &fRings[0];
+ }
+#endif
+}
+
+void GrAAConvexTessellator::fanRing(const GrRing& ring) {
+ // fan out from point 0
+ for (int cur = 1; cur < ring.numPts2()-1; ++cur) {
+ this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1));
+ }
+}
+
+void GrAAConvexTessellator::createOuterRing(const GrRing& ring) {
+ // For now, we're only generating one outer ring (at the start). This
+ // could be relaxed for stroking use cases.
+ SkASSERT(0 == fIndices.count());
+
+ const int numPts = ring.numPts0();
+
+ int prev = numPts - 1;
+ int lastOut = -1, firstOut, newIdx0, newIdx1, newIdx2;
+ for (int cur = 0; cur < numPts; ++cur) {
bsalomon 2015/04/24 15:44:44 Maybe an explanation somewhere that what we're doi
robertphillips 2015/05/05 15:21:33 Done.
+ SkPoint temp = ring.norm1(prev);
+ temp.scale(fTargetDepth);
+ temp += this->point(ring.index(cur));
+
+ if (lastOut > -1 && duplicate_pt(temp, this->point(lastOut))) {
bsalomon 2015/04/24 15:44:44 "With a very shallow angle between two edges, the
robertphillips 2015/05/05 15:21:32 Done-ish. I think it is still useful to track the
+ SkASSERT(lastOut == this->numPts()-1);
+ newIdx0 = this->numPts()-1;
+ } else {
+ newIdx0 = this->addPt(temp, -fTargetDepth, false);
+ }
+
+ temp = ring.bisector(cur);
+ temp.scale(-fTargetDepth); // the bisectors point in
+ temp += this->point(ring.index(cur));
+
+ if (duplicate_pt(temp, this->point(newIdx0))) {
+ newIdx1 = newIdx0;
+ } else {
+ newIdx1 = this->addPt(temp, -fTargetDepth, false);
+ }
+
+ temp = ring.norm1(cur);
+ temp.scale(fTargetDepth);
+ temp += this->point(ring.index(cur));
+
+ if (duplicate_pt(temp, this->point(newIdx1))) {
+ newIdx2 = newIdx1;
+ } else {
+ newIdx2 = this->addPt(temp, -fTargetDepth, false);
+ }
+
+ // The previous edge
+ if (lastOut != -1) {
+ this->addTri(ring.index(prev), newIdx0, ring.index(cur));
+ this->addTri(ring.index(prev), lastOut, newIdx0);
+ } else {
+ firstOut = newIdx0;
+ }
+
+ // The cap around the corner
+ this->addTri(ring.index(cur), newIdx0, newIdx1);
+ this->addTri(ring.index(cur), newIdx1, newIdx2);
+
+ prev = cur;
+ lastOut = newIdx2;
+ }
+
+ // pick up the final edge rect
+ this->addTri(ring.index(numPts-1), firstOut, ring.index(0));
+ this->addTri(ring.index(numPts-1), lastOut, firstOut);
+
+ this->validate();
+}
+
+// return true when processing is complete
+bool GrAAConvexTessellator::createInsetRing(const GrRing& lastRing, GrRing* nextRing) {
+ bool done = false;
+
+ // Loop through all the points in the ring and find the intersection with the smallest depth
+ SkScalar minDist = SK_ScalarMax, minT;
+ int minEdgeIdx;
+
+ for (int cur = 0; cur < lastRing.numPts0(); ++cur) {
+ int next = (cur + 1) % lastRing.numPts0();
bsalomon 2015/04/24 15:44:44 wonder if we can avoid int mod.
+
+ SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
+ this->point(lastRing.index(next)), lastRing.bisector(next));
+ SkScalar dist = -t * lastRing.norm1(cur).dot(lastRing.bisector(cur));
+
+ if (minDist > dist) {
+ minDist = dist;
+ minT = t;
+ minEdgeIdx = cur;
+ }
+ }
+
+ SkPoint newPt = lastRing.bisector(minEdgeIdx);
+ newPt.scale(minT);
+ newPt += this->point(lastRing.index(minEdgeIdx));
+
+ SkScalar depth = fInitialRing.computeDepthFromEdge(*this,
+ lastRing.origEdgeID(minEdgeIdx),
+ newPt);
+ // TODO: if this assert consistently holds we don't need the above computeDepthFromEdge
+ SkASSERT(SkScalarNearlyEqual(depth, minDist + this->depth(lastRing.index(minEdgeIdx))));
+
+ if (depth >= fTargetDepth) {
+ // None of the bisectors intersect before reaching the desired depth.
+ // Just step them all to the desired depth
+ depth = fTargetDepth;
+ done = true;
+ }
+
+ // 'dst' is the index into the vertex array each point in the current poly maps to/
bsalomon 2015/04/24 15:44:44 maybe say "... in the last ring maps to/transforms
robertphillips 2015/05/05 15:21:32 Done.
+ // transforms into
+ // TODO: can/should 'dst' be moved into the GrRing?
+ SkTDArray<int> dst;
+ dst.setCount(lastRing.numPts0());
+
+ // Check on the first point (who compares with no one)
+ newPt = this->computePtAlongBisector(lastRing.index(0),
+ lastRing.bisector(0),
+ lastRing.origEdgeID(0),
+ depth);
+ dst[0] = nextRing->addNewPt(newPt,
+ lastRing.index(0), lastRing.origEdgeID(0),
+ !this->movable(lastRing.index(0)));
+
+ // Handle the middle points (who only compare with the prior point)
+ for (int cur = 1; cur < lastRing.numPts0()-1; ++cur) {
+ newPt = this->computePtAlongBisector(lastRing.index(cur),
+ lastRing.bisector(cur),
+ lastRing.origEdgeID(cur),
+ depth);
+ if (!duplicate_pt(newPt, nextRing->lastPoint())) {
+ dst[cur] = nextRing->addNewPt(newPt,
+ lastRing.index(cur), lastRing.origEdgeID(cur),
+ !this->movable(lastRing.index(cur)));
+ } else {
+ dst[cur] = nextRing->fuseWithPrior(lastRing.origEdgeID(cur));
+ }
+ }
+
+ // Check on the last point (handling the wrap around)
+ int cur = lastRing.numPts0()-1;
+ newPt = this->computePtAlongBisector(lastRing.index(cur),
+ lastRing.bisector(cur),
+ lastRing.origEdgeID(cur),
+ depth);
+ bool dupPrev = duplicate_pt(newPt, nextRing->lastPoint());
+ bool dupNext = duplicate_pt(newPt, nextRing->firstPoint());
+
+ if (!dupPrev && !dupNext) {
+ dst[cur] = nextRing->addNewPt(newPt,
+ lastRing.index(cur), lastRing.origEdgeID(cur),
+ !this->movable(lastRing.index(cur)));
+ } else if (dupPrev && !dupNext) {
+ dst[cur] = nextRing->fuseWithPrior(lastRing.origEdgeID(cur));
+ } else if (!dupPrev && dupNext) {
+ dst[cur] = nextRing->fuseWithNext();
+ } else {
+ bool dupPrevVsNext = duplicate_pt(nextRing->firstPoint(), nextRing->lastPoint());
+
+ if (!dupPrevVsNext) {
+ dst[cur] = nextRing->fuseWithPrior(lastRing.origEdgeID(cur));
+ } else {
+ dst[cur] = dst[cur-1] = nextRing->fuseWithBoth();
+ }
+ }
+
+ // Fold the new ring's points into the global pool
+ for (int i = 0; i < nextRing->numPts2(); ++i) {
+ int newIdx;
+ if (nextRing->needsToBeNew(i)) {
+ // if the originating index is still valid then this point wasn't
+ // fused (and is thus movable)
+ newIdx = this->addPt(nextRing->point(i), depth,
+ nextRing->originatingIdx(i) != -1);
+ } else {
+ SkASSERT(nextRing->originatingIdx(i) != -1);
+ this->updatePt(nextRing->originatingIdx(i), nextRing->point(i), depth);
+ newIdx = nextRing->originatingIdx(i);
+ }
+
+ nextRing->addIdx1(newIdx, nextRing->origEdge2(i));
+ }
+
+ // 'dst' currently has indices into the ring. Remap these to be indices
+ // into the global pool since the triangulation operates in that space.
+ for (int i = 0; i < dst.count(); ++i) {
+ dst[i] = nextRing->index(dst[i]);
+ }
+
+ for (int cur = 0; cur < lastRing.numPts0(); ++cur) {
+ int next = (cur + 1) % lastRing.numPts0();
+
+ this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]);
+ this->addTri(lastRing.index(cur), dst[next], dst[cur]);
+ }
+
+ if (done) {
+ this->fanRing(*nextRing);
+ }
+
+ return done;
+}
+
+void GrAAConvexTessellator::validate() const {
+ SkASSERT(fPts.count() == fDepths.count());
+ SkASSERT(fPts.count() == fMovable.count());
+ SkASSERT(0 == (fIndices.count() % 3));
+}
+
+//////////////////////////////////////////////////////////////////////////////
+void GrRing::setReserve(int numPts) {
+ fIndices.setReserve(numPts);
+ fNorms.setReserve(numPts);
+ fBisectors.setReserve(numPts);
+ fOrigEdgeIds.setReserve(numPts);
+
+ fPts2.setReserve(numPts);
+ fOrigEdgeIds2.setReserve(numPts);
+ fOriginatingIdx2.setReserve(numPts);
+ fNeedsToBeNew2.setReserve(numPts);
+}
+
+void GrRing::rewind() {
+ fIndices.rewind();
+ fNorms.rewind();
+ fBisectors.rewind();
+ fOrigEdgeIds.rewind();
+
+ fPts2.rewind();
+ fOrigEdgeIds2.rewind();
+ fOriginatingIdx2.rewind();
+ fNeedsToBeNew2.rewind();
+}
+
+void GrRing::init(const GrAAConvexTessellator& tess) {
+ this->computeNormals(tess);
+ this->computeBisectors();
+ SkASSERT(this->isConvex(tess));
+}
+
+SkScalar GrRing::computeDepthFromEdge(GrAAConvexTessellator& tess,
+ int edgeIdx,
+ const SkPoint& p) const {
+ SkASSERT(edgeIdx < this->numPts0());
+
+ SkPoint v = p - tess.point(fIndices[edgeIdx]);
+ SkScalar depth = -fNorms[edgeIdx].dot(v);
+ SkASSERT(depth >= 0.0f);
+ return depth;
+}
+
+// Compute the outward facing normal at each vertex.
+void GrRing::computeNormals(const GrAAConvexTessellator& tess) {
+ fNorms.setCount(fIndices.count());
+
+ for (int cur = 0; cur < fIndices.count(); ++cur) {
+ int next = (cur + 1) % fIndices.count();
+
+ fNorms[cur] = tess.point(fIndices[next]) - tess.point(fIndices[cur]);
+ SkScalar len = SkPoint::Normalize(&fNorms[cur]);
+ SkASSERT(len > 0.0f);
+ fNorms[cur].setOrthog(fNorms[cur], fSide);
+
+ SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
+ }
+}
+
+void GrRing::computeBisectors() {
+ fBisectors.setCount(fNorms.count());
+
+ int prev = fBisectors.count() - 1;
+ for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
+ fBisectors[cur] = fNorms[cur] + fNorms[prev];
+ fBisectors[cur].normalize();
+ fBisectors[cur].negate(); // make the bisector face in
+
+ SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
+ }
+}
+
+void GrRing::validate() const {
+ SkASSERT(fPts2.count() == fOriginatingIdx2.count());
+ SkASSERT(fPts2.count() == fOrigEdgeIds2.count());
+ SkASSERT(fPts2.count() == fNeedsToBeNew2.count());
+}
+
+//////////////////////////////////////////////////////////////////////////////
+#ifdef SK_DEBUG
+// Is this ring convex?
+bool GrRing::isConvex(const GrAAConvexTessellator& tess) const {
+ if (fIndices.count() < 3) {
+ return false;
+ }
+
+ SkPoint prev = tess.point(fIndices[0]) - tess.point(fIndices[fIndices.count()-1]);
+ SkPoint cur = tess.point(fIndices[1]) - tess.point(fIndices[0]);
+ SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
+ SkScalar maxDot = minDot;
+
+ prev = cur;
+ for (int i = 1; i < fIndices.count(); ++i) {
+ int next = (i + 1) % fIndices.count();
+
+ cur = tess.point(fIndices[next]) - tess.point(fIndices[i]);
+ SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
+
+ minDot = SkMinScalar(minDot, dot);
+ maxDot = SkMaxScalar(maxDot, dot);
+
+ prev = cur;
+ }
+
+ return (maxDot > 0.0f) == (minDot >= 0.0f);
+}
+
+static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1,
+ const SkPoint& test, SkPoint::Side side,
+ int* sign) {
+ *sign = -1;
+ SkPoint edge = p1 - p0;
+ SkScalar len = SkPoint::Normalize(&edge);
+
+ SkPoint testVec = test - p0;
+
+ SkScalar d0 = edge.dot(testVec);
+ if (d0 < 0.0f) {
+ return SkPoint::Distance(p0, test);
+ }
+ if (d0 > len) {
+ return SkPoint::Distance(p1, test);
+ }
+
+ SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY;
+ if (SkPoint::kRight_Side == side) {
+ perpDist = -perpDist;
+ }
+
+ if (perpDist < 0.0f) {
+ perpDist = -perpDist;
+ } else {
+ *sign = 1;
+ }
+ return perpDist;
+}
+
+SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const {
+ SkScalar minDist = SK_ScalarMax;
+ int closestEdge, closestSign, sign;
+
+ for (int edge = 0; edge < fInitialRing.numPts0(); ++edge) {
+ SkScalar dist = capsule_depth(this->point(edge),
+ this->point((edge+1) % fInitialRing.numPts0()),
+ p, fInitialRing.side(), &sign);
+ SkASSERT(dist >= 0.0f);
+
+ if (minDist > dist) {
+ minDist = dist;
+ closestEdge = edge;
+ closestSign = sign;
+ }
+ }
+
+ return closestSign * minDist;
+}
+
+// Verify that the incrementally computed depths are close to the actual depths.
+void GrAAConvexTessellator::checkAllDepths() const {
+ for (int cur = 0; cur < this->numPts(); ++cur) {
+ SkScalar realDepth = this->computeRealDepth(this->point(cur));
+ SkASSERT(SkScalarNearlyEqual(realDepth, this->depth(cur)));
+ }
+}
+#endif
+
+//////////////////////////////////////////////////////////////////////////////
+#if GR_AA_CONVEX_TESSELLATOR_VIZ
+static const SkScalar kPointRadius = 3.0f;
+static const SkScalar kArrowStrokeWidth = 0.75f;
+static const SkScalar kArrowLength = 10.0f;
+static const SkScalar kEdgeTextSize = 6.0f;
+static const SkScalar kPointTextSize = 4.0f;
+
+static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
+ SkPaint paint;
+ SkASSERT(paramValue <= 1.0f);
+ int gs = int(255*paramValue);
+ paint.setARGB(255, gs, gs, gs);
+
+ canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
+
+ if (stroke) {
+ SkPaint stroke;
+ stroke.setColor(SK_ColorYELLOW);
+ stroke.setStyle(SkPaint::kStroke_Style);
+ stroke.setStrokeWidth(kPointRadius/3.0f);
+ canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
+ }
+}
+
+static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
+ SkPaint p;
+ p.setColor(color);
+
+ canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
+}
+
+static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
+ SkScalar len, SkColor color) {
+ SkPaint paint;
+ paint.setColor(color);
+ paint.setStrokeWidth(kArrowStrokeWidth);
+ paint.setStyle(SkPaint::kStroke_Style);
+
+ canvas->drawLine(p.fX, p.fY,
+ p.fX + len * n.fX, p.fY + len * n.fY,
+ paint);
+}
+
+void GrRing::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
+ SkPaint paint;
+ paint.setTextSize(kEdgeTextSize);
+
+ for (int cur = 0; cur < fIndices.count(); ++cur) {
+ int next = (cur + 1) % fIndices.count();
+
+ draw_line(canvas,
+ tess.point(fIndices[cur]),
+ tess.point(fIndices[next]),
+ SK_ColorGREEN);
+
+ SkPoint mid = tess.point(fIndices[cur]) + tess.point(fIndices[next]);
+ mid.scale(0.5f);
+
+ if (fNorms.count()) {
+ draw_arrow(canvas, mid, fNorms[cur], kArrowLength, SK_ColorRED);
+ mid.fX += (kArrowLength/2) * fNorms[cur].fX;
+ mid.fY += (kArrowLength/2) * fNorms[cur].fY;
+ }
+
+ SkString num;
+ num.printf("%d", this->origEdgeID(cur));
+ canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
+
+ if (fBisectors.count()) {
+ draw_arrow(canvas, tess.point(fIndices[cur]), fBisectors[cur],
+ kArrowLength, SK_ColorBLUE);
+ }
+ }
+}
+
+void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
+ for (int i = 0; i < fIndices.count(); i += 3) {
+ SkASSERT(fIndices[i] < this->numPts()) ;
+ SkASSERT(fIndices[i+1] < this->numPts()) ;
+ SkASSERT(fIndices[i+2] < this->numPts()) ;
+
+ draw_line(canvas,
+ this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
+ SK_ColorBLACK);
+ draw_line(canvas,
+ this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
+ SK_ColorBLACK);
+ draw_line(canvas,
+ this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
+ SK_ColorBLACK);
+ }
+
+ fInitialRing.draw(canvas, *this);
+ for (int i = 0; i < fRings.count(); ++i) {
+ fRings[i]->draw(canvas, *this);
+ }
+
+ for (int i = 0; i < this->numPts(); ++i) {
+ draw_point(canvas,
+ this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)),
+ !this->movable(i));
+
+ SkPaint paint;
+ paint.setTextSize(kPointTextSize);
+ paint.setTextAlign(SkPaint::kCenter_Align);
+ if (this->depth(i) <= -fTargetDepth) {
+ paint.setColor(SK_ColorWHITE);
+ }
+
+ SkString num;
+ num.printf("%d", i);
+ canvas->drawText(num.c_str(), num.size(),
+ this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
+ paint);
+ }
+}
+
+#endif
+
« src/gpu/GrAAConvexTessellator.h ('K') | « src/gpu/GrAAConvexTessellator.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698