| Index: third_party/libwebp/utils/huffman_encode.c
|
| diff --git a/third_party/libwebp/utils/huffman_encode.c b/third_party/libwebp/utils/huffman_encode.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8ccd291d22ad0991474370e49bbcadeb5b029325
|
| --- /dev/null
|
| +++ b/third_party/libwebp/utils/huffman_encode.c
|
| @@ -0,0 +1,439 @@
|
| +// Copyright 2011 Google Inc. All Rights Reserved.
|
| +//
|
| +// This code is licensed under the same terms as WebM:
|
| +// Software License Agreement: http://www.webmproject.org/license/software/
|
| +// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
|
| +// -----------------------------------------------------------------------------
|
| +//
|
| +// Author: Jyrki Alakuijala (jyrki@google.com)
|
| +//
|
| +// Entropy encoding (Huffman) for webp lossless.
|
| +
|
| +#include <assert.h>
|
| +#include <stdlib.h>
|
| +#include <string.h>
|
| +#include "./huffman_encode.h"
|
| +#include "../utils/utils.h"
|
| +#include "../webp/format_constants.h"
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Util function to optimize the symbol map for RLE coding
|
| +
|
| +// Heuristics for selecting the stride ranges to collapse.
|
| +static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
|
| + return abs(a - b) < 4;
|
| +}
|
| +
|
| +// Change the population counts in a way that the consequent
|
| +// Hufmann tree compression, especially its RLE-part, give smaller output.
|
| +static int OptimizeHuffmanForRle(int length, int* const counts) {
|
| + uint8_t* good_for_rle;
|
| + // 1) Let's make the Huffman code more compatible with rle encoding.
|
| + int i;
|
| + for (; length >= 0; --length) {
|
| + if (length == 0) {
|
| + return 1; // All zeros.
|
| + }
|
| + if (counts[length - 1] != 0) {
|
| + // Now counts[0..length - 1] does not have trailing zeros.
|
| + break;
|
| + }
|
| + }
|
| + // 2) Let's mark all population counts that already can be encoded
|
| + // with an rle code.
|
| + good_for_rle = (uint8_t*)calloc(length, 1);
|
| + if (good_for_rle == NULL) {
|
| + return 0;
|
| + }
|
| + {
|
| + // Let's not spoil any of the existing good rle codes.
|
| + // Mark any seq of 0's that is longer as 5 as a good_for_rle.
|
| + // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
|
| + int symbol = counts[0];
|
| + int stride = 0;
|
| + for (i = 0; i < length + 1; ++i) {
|
| + if (i == length || counts[i] != symbol) {
|
| + if ((symbol == 0 && stride >= 5) ||
|
| + (symbol != 0 && stride >= 7)) {
|
| + int k;
|
| + for (k = 0; k < stride; ++k) {
|
| + good_for_rle[i - k - 1] = 1;
|
| + }
|
| + }
|
| + stride = 1;
|
| + if (i != length) {
|
| + symbol = counts[i];
|
| + }
|
| + } else {
|
| + ++stride;
|
| + }
|
| + }
|
| + }
|
| + // 3) Let's replace those population counts that lead to more rle codes.
|
| + {
|
| + int stride = 0;
|
| + int limit = counts[0];
|
| + int sum = 0;
|
| + for (i = 0; i < length + 1; ++i) {
|
| + if (i == length || good_for_rle[i] ||
|
| + (i != 0 && good_for_rle[i - 1]) ||
|
| + !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
|
| + if (stride >= 4 || (stride >= 3 && sum == 0)) {
|
| + int k;
|
| + // The stride must end, collapse what we have, if we have enough (4).
|
| + int count = (sum + stride / 2) / stride;
|
| + if (count < 1) {
|
| + count = 1;
|
| + }
|
| + if (sum == 0) {
|
| + // Don't make an all zeros stride to be upgraded to ones.
|
| + count = 0;
|
| + }
|
| + for (k = 0; k < stride; ++k) {
|
| + // We don't want to change value at counts[i],
|
| + // that is already belonging to the next stride. Thus - 1.
|
| + counts[i - k - 1] = count;
|
| + }
|
| + }
|
| + stride = 0;
|
| + sum = 0;
|
| + if (i < length - 3) {
|
| + // All interesting strides have a count of at least 4,
|
| + // at least when non-zeros.
|
| + limit = (counts[i] + counts[i + 1] +
|
| + counts[i + 2] + counts[i + 3] + 2) / 4;
|
| + } else if (i < length) {
|
| + limit = counts[i];
|
| + } else {
|
| + limit = 0;
|
| + }
|
| + }
|
| + ++stride;
|
| + if (i != length) {
|
| + sum += counts[i];
|
| + if (stride >= 4) {
|
| + limit = (sum + stride / 2) / stride;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + free(good_for_rle);
|
| + return 1;
|
| +}
|
| +
|
| +typedef struct {
|
| + int total_count_;
|
| + int value_;
|
| + int pool_index_left_;
|
| + int pool_index_right_;
|
| +} HuffmanTree;
|
| +
|
| +// A comparer function for two Huffman trees: sorts first by 'total count'
|
| +// (more comes first), and then by 'value' (more comes first).
|
| +static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) {
|
| + const HuffmanTree* const t1 = (const HuffmanTree*)ptr1;
|
| + const HuffmanTree* const t2 = (const HuffmanTree*)ptr2;
|
| + if (t1->total_count_ > t2->total_count_) {
|
| + return -1;
|
| + } else if (t1->total_count_ < t2->total_count_) {
|
| + return 1;
|
| + } else {
|
| + if (t1->value_ < t2->value_) {
|
| + return -1;
|
| + }
|
| + if (t1->value_ > t2->value_) {
|
| + return 1;
|
| + }
|
| + return 0;
|
| + }
|
| +}
|
| +
|
| +static void SetBitDepths(const HuffmanTree* const tree,
|
| + const HuffmanTree* const pool,
|
| + uint8_t* const bit_depths, int level) {
|
| + if (tree->pool_index_left_ >= 0) {
|
| + SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1);
|
| + SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1);
|
| + } else {
|
| + bit_depths[tree->value_] = level;
|
| + }
|
| +}
|
| +
|
| +// Create an optimal Huffman tree.
|
| +//
|
| +// (data,length): population counts.
|
| +// tree_limit: maximum bit depth (inclusive) of the codes.
|
| +// bit_depths[]: how many bits are used for the symbol.
|
| +//
|
| +// Returns 0 when an error has occurred.
|
| +//
|
| +// The catch here is that the tree cannot be arbitrarily deep
|
| +//
|
| +// count_limit is the value that is to be faked as the minimum value
|
| +// and this minimum value is raised until the tree matches the
|
| +// maximum length requirement.
|
| +//
|
| +// This algorithm is not of excellent performance for very long data blocks,
|
| +// especially when population counts are longer than 2**tree_limit, but
|
| +// we are not planning to use this with extremely long blocks.
|
| +//
|
| +// See http://en.wikipedia.org/wiki/Huffman_coding
|
| +static int GenerateOptimalTree(const int* const histogram, int histogram_size,
|
| + int tree_depth_limit,
|
| + uint8_t* const bit_depths) {
|
| + int count_min;
|
| + HuffmanTree* tree_pool;
|
| + HuffmanTree* tree;
|
| + int tree_size_orig = 0;
|
| + int i;
|
| +
|
| + for (i = 0; i < histogram_size; ++i) {
|
| + if (histogram[i] != 0) {
|
| + ++tree_size_orig;
|
| + }
|
| + }
|
| +
|
| + // 3 * tree_size is enough to cover all the nodes representing a
|
| + // population and all the inserted nodes combining two existing nodes.
|
| + // The tree pool needs 2 * (tree_size_orig - 1) entities, and the
|
| + // tree needs exactly tree_size_orig entities.
|
| + tree = (HuffmanTree*)WebPSafeMalloc(3ULL * tree_size_orig, sizeof(*tree));
|
| + if (tree == NULL) return 0;
|
| + tree_pool = tree + tree_size_orig;
|
| +
|
| + // For block sizes with less than 64k symbols we never need to do a
|
| + // second iteration of this loop.
|
| + // If we actually start running inside this loop a lot, we would perhaps
|
| + // be better off with the Katajainen algorithm.
|
| + assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
|
| + for (count_min = 1; ; count_min *= 2) {
|
| + int tree_size = tree_size_orig;
|
| + // We need to pack the Huffman tree in tree_depth_limit bits.
|
| + // So, we try by faking histogram entries to be at least 'count_min'.
|
| + int idx = 0;
|
| + int j;
|
| + for (j = 0; j < histogram_size; ++j) {
|
| + if (histogram[j] != 0) {
|
| + const int count =
|
| + (histogram[j] < count_min) ? count_min : histogram[j];
|
| + tree[idx].total_count_ = count;
|
| + tree[idx].value_ = j;
|
| + tree[idx].pool_index_left_ = -1;
|
| + tree[idx].pool_index_right_ = -1;
|
| + ++idx;
|
| + }
|
| + }
|
| +
|
| + // Build the Huffman tree.
|
| + qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees);
|
| +
|
| + if (tree_size > 1) { // Normal case.
|
| + int tree_pool_size = 0;
|
| + while (tree_size > 1) { // Finish when we have only one root.
|
| + int count;
|
| + tree_pool[tree_pool_size++] = tree[tree_size - 1];
|
| + tree_pool[tree_pool_size++] = tree[tree_size - 2];
|
| + count = tree_pool[tree_pool_size - 1].total_count_ +
|
| + tree_pool[tree_pool_size - 2].total_count_;
|
| + tree_size -= 2;
|
| + {
|
| + // Search for the insertion point.
|
| + int k;
|
| + for (k = 0; k < tree_size; ++k) {
|
| + if (tree[k].total_count_ <= count) {
|
| + break;
|
| + }
|
| + }
|
| + memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree));
|
| + tree[k].total_count_ = count;
|
| + tree[k].value_ = -1;
|
| +
|
| + tree[k].pool_index_left_ = tree_pool_size - 1;
|
| + tree[k].pool_index_right_ = tree_pool_size - 2;
|
| + tree_size = tree_size + 1;
|
| + }
|
| + }
|
| + SetBitDepths(&tree[0], tree_pool, bit_depths, 0);
|
| + } else if (tree_size == 1) { // Trivial case: only one element.
|
| + bit_depths[tree[0].value_] = 1;
|
| + }
|
| +
|
| + {
|
| + // Test if this Huffman tree satisfies our 'tree_depth_limit' criteria.
|
| + int max_depth = bit_depths[0];
|
| + for (j = 1; j < histogram_size; ++j) {
|
| + if (max_depth < bit_depths[j]) {
|
| + max_depth = bit_depths[j];
|
| + }
|
| + }
|
| + if (max_depth <= tree_depth_limit) {
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + free(tree);
|
| + return 1;
|
| +}
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Coding of the Huffman tree values
|
| +
|
| +static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
|
| + HuffmanTreeToken* tokens,
|
| + int value, int prev_value) {
|
| + assert(value <= MAX_ALLOWED_CODE_LENGTH);
|
| + if (value != prev_value) {
|
| + tokens->code = value;
|
| + tokens->extra_bits = 0;
|
| + ++tokens;
|
| + --repetitions;
|
| + }
|
| + while (repetitions >= 1) {
|
| + if (repetitions < 3) {
|
| + int i;
|
| + for (i = 0; i < repetitions; ++i) {
|
| + tokens->code = value;
|
| + tokens->extra_bits = 0;
|
| + ++tokens;
|
| + }
|
| + break;
|
| + } else if (repetitions < 7) {
|
| + tokens->code = 16;
|
| + tokens->extra_bits = repetitions - 3;
|
| + ++tokens;
|
| + break;
|
| + } else {
|
| + tokens->code = 16;
|
| + tokens->extra_bits = 3;
|
| + ++tokens;
|
| + repetitions -= 6;
|
| + }
|
| + }
|
| + return tokens;
|
| +}
|
| +
|
| +static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
|
| + HuffmanTreeToken* tokens) {
|
| + while (repetitions >= 1) {
|
| + if (repetitions < 3) {
|
| + int i;
|
| + for (i = 0; i < repetitions; ++i) {
|
| + tokens->code = 0; // 0-value
|
| + tokens->extra_bits = 0;
|
| + ++tokens;
|
| + }
|
| + break;
|
| + } else if (repetitions < 11) {
|
| + tokens->code = 17;
|
| + tokens->extra_bits = repetitions - 3;
|
| + ++tokens;
|
| + break;
|
| + } else if (repetitions < 139) {
|
| + tokens->code = 18;
|
| + tokens->extra_bits = repetitions - 11;
|
| + ++tokens;
|
| + break;
|
| + } else {
|
| + tokens->code = 18;
|
| + tokens->extra_bits = 0x7f; // 138 repeated 0s
|
| + ++tokens;
|
| + repetitions -= 138;
|
| + }
|
| + }
|
| + return tokens;
|
| +}
|
| +
|
| +int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
|
| + HuffmanTreeToken* tokens, int max_tokens) {
|
| + HuffmanTreeToken* const starting_token = tokens;
|
| + HuffmanTreeToken* const ending_token = tokens + max_tokens;
|
| + const int depth_size = tree->num_symbols;
|
| + int prev_value = 8; // 8 is the initial value for rle.
|
| + int i = 0;
|
| + assert(tokens != NULL);
|
| + while (i < depth_size) {
|
| + const int value = tree->code_lengths[i];
|
| + int k = i + 1;
|
| + int runs;
|
| + while (k < depth_size && tree->code_lengths[k] == value) ++k;
|
| + runs = k - i;
|
| + if (value == 0) {
|
| + tokens = CodeRepeatedZeros(runs, tokens);
|
| + } else {
|
| + tokens = CodeRepeatedValues(runs, tokens, value, prev_value);
|
| + prev_value = value;
|
| + }
|
| + i += runs;
|
| + assert(tokens <= ending_token);
|
| + }
|
| + (void)ending_token; // suppress 'unused variable' warning
|
| + return (int)(tokens - starting_token);
|
| +}
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +
|
| +// Pre-reversed 4-bit values.
|
| +static const uint8_t kReversedBits[16] = {
|
| + 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
|
| + 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
|
| +};
|
| +
|
| +static uint32_t ReverseBits(int num_bits, uint32_t bits) {
|
| + uint32_t retval = 0;
|
| + int i = 0;
|
| + while (i < num_bits) {
|
| + i += 4;
|
| + retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i);
|
| + bits >>= 4;
|
| + }
|
| + retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits);
|
| + return retval;
|
| +}
|
| +
|
| +// Get the actual bit values for a tree of bit depths.
|
| +static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
|
| + // 0 bit-depth means that the symbol does not exist.
|
| + int i;
|
| + int len;
|
| + uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
|
| + int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
|
| +
|
| + assert(tree != NULL);
|
| + len = tree->num_symbols;
|
| + for (i = 0; i < len; ++i) {
|
| + const int code_length = tree->code_lengths[i];
|
| + assert(code_length <= MAX_ALLOWED_CODE_LENGTH);
|
| + ++depth_count[code_length];
|
| + }
|
| + depth_count[0] = 0; // ignore unused symbol
|
| + next_code[0] = 0;
|
| + {
|
| + uint32_t code = 0;
|
| + for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) {
|
| + code = (code + depth_count[i - 1]) << 1;
|
| + next_code[i] = code;
|
| + }
|
| + }
|
| + for (i = 0; i < len; ++i) {
|
| + const int code_length = tree->code_lengths[i];
|
| + tree->codes[i] = ReverseBits(code_length, next_code[code_length]++);
|
| + }
|
| +}
|
| +
|
| +// -----------------------------------------------------------------------------
|
| +// Main entry point
|
| +
|
| +int VP8LCreateHuffmanTree(int* const histogram, int tree_depth_limit,
|
| + HuffmanTreeCode* const tree) {
|
| + const int num_symbols = tree->num_symbols;
|
| + if (!OptimizeHuffmanForRle(num_symbols, histogram)) {
|
| + return 0;
|
| + }
|
| + if (!GenerateOptimalTree(histogram, num_symbols,
|
| + tree_depth_limit, tree->code_lengths)) {
|
| + return 0;
|
| + }
|
| + // Create the actual bit codes for the bit lengths.
|
| + ConvertBitDepthsToSymbols(tree);
|
| + return 1;
|
| +}
|
|
|